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Matchings in Graphs

Definition

A matching in a graph G is a set M of pairwise disjoint edges. A matching
M in G is perfect if the set V (M) of vertices of G incident with an edge in
M equals V (G ). The matching number ν(G ) of G is the maximum order
of a matching in G .
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Matchings in Graphs

Definition

An edge coloring of a graph G is a partition of its edge set E (G ) into
matchings. The chromatic index χ′(G ) of G is the minimum number of
matchings/colors needed for such a partition.

ν(G )χ′(G ) ≥ m(G )

3 / 40



Matchings in Graphs
Petersen 1891

I cubic bridgeless graphs have a perfect matching

Kőnig and Egerváry 1930ies

I ν(G )
G bip.

= τ(G ) ; LP duality, tum matrices, integral polyhedra
I Hungarian method ; Ford-Fulkerson 1956

Tutte 1947
I 2ν(G ) = n(G ) ⇔ ∀S ⊆ V (G ) : q(S) ≤ |S | ; good characterization

Vizing 1964
I ∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1

Edmonds 1965
I maximum matching algorithm
I Gallai-Edmonds structure theorem
I ...

Holyer 1981

...
4 / 40



Restricted Types of Matchings

A matching M in a graph G is strong/induced if G [V (M)] is 1-regular.
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Faudree, Gyárfás, Schelp, and Tuza 1989

strong/induced chromatic index χ′s(G )

Erdős and Nešeťril 1985: χ′s(G )
?!
≤ 5

4 ∆(G )2

Molloy and Reed 1997: χ′s(G ) ≤
(

1.998 + o(∆(G ))
)

∆(G )2
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Restricted Types of Matchings

M is uniquely restricted if V (M) = V (M ′) ⇒ M = M ′.

(ai ,j)→ (aπ(i),σ(j)) =


1 ∗ ∗ . . .
0 1 ∗ . . .
0 0 1 . . .
...

...
...

. . .


uniquely restricted matching number νur (G )
(Hershkowitz and Schneider 1993)
Golumbic, Hirst, and Lewenstein 2001
Levit and Mandrescu 2003
Mishra 2011
Francis, Jacob, and Jana 2016

uniquely restricted chromatic index χ′ur (G )
Baste, R, and Sau 2016

6 / 40



Restricted Types of Matchings

M is uniquely restricted if V (M) = V (M ′) ⇒ M = M ′.

(ai ,j)→ (aπ(i),σ(j)) =


1 ∗ ∗ . . .
0 1 ∗ . . .
0 0 1 . . .
...

...
...

. . .



uniquely restricted matching number νur (G )
(Hershkowitz and Schneider 1993)
Golumbic, Hirst, and Lewenstein 2001
Levit and Mandrescu 2003
Mishra 2011
Francis, Jacob, and Jana 2016

uniquely restricted chromatic index χ′ur (G )
Baste, R, and Sau 2016

6 / 40



Restricted Types of Matchings

M is uniquely restricted if V (M) = V (M ′) ⇒ M = M ′.

(ai ,j)→ (aπ(i),σ(j)) =


1 ∗ ∗ . . .
0 1 ∗ . . .
0 0 1 . . .
...

...
...

. . .


uniquely restricted matching number νur (G )
(Hershkowitz and Schneider 1993)
Golumbic, Hirst, and Lewenstein 2001

Levit and Mandrescu 2003
Mishra 2011
Francis, Jacob, and Jana 2016

uniquely restricted chromatic index χ′ur (G )
Baste, R, and Sau 2016

6 / 40



Restricted Types of Matchings

M is uniquely restricted if V (M) = V (M ′) ⇒ M = M ′.

(ai ,j)→ (aπ(i),σ(j)) =


1 ∗ ∗ . . .
0 1 ∗ . . .
0 0 1 . . .
...

...
...

. . .


uniquely restricted matching number νur (G )
(Hershkowitz and Schneider 1993)
Golumbic, Hirst, and Lewenstein 2001
Levit and Mandrescu 2003
Mishra 2011
Francis, Jacob, and Jana 2016

uniquely restricted chromatic index χ′ur (G )
Baste, R, and Sau 2016

6 / 40



Restricted Types of Matchings

M is uniquely restricted if V (M) = V (M ′) ⇒ M = M ′.

(ai ,j)→ (aπ(i),σ(j)) =


1 ∗ ∗ . . .
0 1 ∗ . . .
0 0 1 . . .
...

...
...

. . .


uniquely restricted matching number νur (G )
(Hershkowitz and Schneider 1993)
Golumbic, Hirst, and Lewenstein 2001
Levit and Mandrescu 2003
Mishra 2011
Francis, Jacob, and Jana 2016

uniquely restricted chromatic index χ′ur (G )
Baste, R, and Sau 2016

6 / 40



Restricted Types of Matchings

M is acyclic if G [V (M)] is a forest.

acyclic matching number ν1(G )
Goddard, Hedetniemi, Hedetniemi, and Laskar 2005

M is r -degenerate if G [V (M)] is r -degenerate, that is,

H ⊆ G [V (M)] and n(H) > 0⇒ δ(H) ≤ r .

r -degenerate matching number νr (G )
r -degenerate chromatic index χ′r (G )
Baste and R 2017
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Restricted Types of Matchings

induced ⇒ acyclic ⇒ uniquely restricted

ν(G ) ≥ νur (G ) ≥ ν1(G ) ≥ νs(G )

χ′(G ) ≤ χ′ur (G ) ≤ χ′1(G ) ≤ χ′s(G ).

r -degenerate ⇒ (r + 1)-degenerate

ν1(G ) ≤ ν2(G ) ≤ ν3(G ) ≤ . . . ≤ ν∆(G)(G ) = ν(G )
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Given a graph G .

Does G have a matching M such that G −M is a forest?

Does G have a matching M such that G −M is bipartite?
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Today’s menu

Fürst, Leichter, and R 2017

Locally searching for large induced matchings

Baste, R, and Sau 2016

Approximation algorithm for νur (G ) in bipartite graphs

Upper bounds on χ′ur (G )

Baste and R 2017

Upper bounds on χ′r (G )

Efficient algorithm for νr (G ) in chordal graphs

Lima, R, Souza, and Szwarcfiter 2016

Decycling with a matching

Bipartizing with a matching
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Approximating νs(G )

Theorem (Duckworth, Manlove, and Zito 2005)

The maximum induced matching problem is APX-hard for d-regular
graphs for every d ≥ 3.

Theorem (Dabrowski, Demange, and Lozin 2013)

...this remains true even restricted to bipartite graphs...

Theorem (Kobler and Rotics 2003)

The maximum induced matching problem is NP-hard for line graphs.
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Approximating νs(G )

Theorem (Duckworth, Manlove, and Zito 2005)

The maximum induced matching problem restricted to d-regular graphs
has an (d + O(1))-factor approximation algorithm.

If M is an induced matching of a d-regular graph G , then

|M| ≤ m(G )

2d − 1
,

and, if M is maximal,

|M| ≥ m(G )

2d2 − 2d + 1
.

2d2 − 2d + 1

2d − 1
= d − 1

2
+

1

4d − 2
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Approximating νs(G )

Theorem (Gotthilf and Lewenstein 2006)

The maximum induced matching problem restricted to d-regular graphs
has an (0.75d + 0.15)-factor approximation algorithm.

Theorem (R 2016)

...for {C3,C5}-free graphs the factor can be improved to 0.7083̄d + 0.425.
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Approximating νs(G )

Definition (Conflict edges)

For an edge e of a graph G , let

CG (e) = {e} ∪ NL(G)2(e) = {f ∈ E (G ) : distL(G)(e, f ) ≤ 2},

and let cG (e) = |CG (e)|.

Definition (Private conflict edges)

For a set M of edges of G and an edge e in M, let

PCG (M, e) = CG (e) \
⋃

f ∈M\{e}

CG (f ),

and let pcG (M, e) = |PCG (M, e)|.
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Approximating νs(G )

If nxy = |NG (x) ∩ NG (y)| and mxy = mG ((NG (x) ∪ NG (y)) \ {x , y}) for
an edge xy of G , then

u u
x y

,
,

l
l

ZZaa ��








�
�
�

cG (xy) ≤ |{xy}|+ d
∣∣∣(NG (x) ∪ NG (y)) \ {x , y}

∣∣∣−mxy

= 2d2 − 2d + 1−
(
dnxy + mxy

)
.
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Approximating νs(G )

Greedy(α)
Input: A graph G .
Output: A pair (M,G ′) such that M is an induced matching of G ,

and G ′ is a subgraph of G .

M ← ∅;
G0 ← G ;
i ← 1;
while min{cGi−1

(e) : e ∈ E (Gi−1)} ≤ α do
Choose an edge ei of Gi−1 with cGi−1

(ei ) ≤ α;
M ← M ∪ {ei};
Gi ← Gi−1 − CGi−1

(ei );
i ← i + 1;

end
return (M,Gi−1);
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Approximating νs(G )

Local Search
Input: A graph G .
Output: An induced matching M of G .

M ← ∅;
repeat

if M ∪ {e} is an induced matching of G for some edge e ∈ E (G ) \M
then

M ← M ∪ {e};
end

if (M \ {e}) ∪ {e ′, e ′′} is an induced matching of G for some three
distinct edges e ∈ M and e ′, e ′′ ∈ E (G ) \M then

M ← (M \ {e}) ∪ {e ′, e ′′};
end

until |M| does not increase during one iteration;
return M;
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Approximating νs(G )

If (M,G ′) is the output of Greedy(α) applied to G , then

cG ′(e) > α for every edge e of G ′.

If M is the output of Local Search applied to G , and

p =
∣∣∣{(e, f ) : e ∈ M and f ∈ CG (e)

}∣∣∣,
then

2m(G )−
∑
e∈M

pcG (M, e) ≤

p

≤
∑
e∈M

cG (e)
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Approximating νs(G )

Theorem (Fürst, Leichter, and R 2017)

Local Search is an approximation algorithm for the maximum induced
matching problem that has approximation factor

9
16d + 33

80 for d-regular C4-free graphs,

1
2d + 1

4 + 1
8d−4 for d-regular {C3,C4}-free graphs,

3
4d −

1
8 + 3

16d−8 d-regular C5-free graphs,

and

1
2d + 3

4 −
1

8d−4 for d-regular claw-free graphs.

Theorem (Fürst, Leichter, and R 2017)

For claw-free d-regular graphs, choosing any maximal induced matching

yields a
(

7
12d + 31

24 + 55
48d−24

)
-factor approximation algorithm.
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Approximating νs(G )
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Approximating νur(G )
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Approximating νur(G ) in bipartite graphs

Theorem (Golumbic, Hirst, and Lewenstein 2001)

νur (G ) is hard for bipartite graphs and split graphs.

Theorem (Mishra 2011)

νur (G ) is APX-complete for subcubic bipartite graphs but can be
approximated within a factor of 2 for cubic bipartite graphs.
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Approximating νur(G ) in bipartite graphs

Theorem (Baste, R, and Sau 2016)

For a given connected subcubic bipartite graph G, one can find in
polynomial time a uniquely restricted matching of G of size at least

5

9
νur (G ).

Theorem (Baste, R, and Sau 2016)

Let ∆ ≥ 3 be an integer.
For a given connected C4-free bipartite graph G of maximum degree at
most ∆, one can find in polynomial time a uniquely restricted matching M
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Approximating νur(G ) in bipartite graphs

Lemma (Baste, R, and Sau 2016)

Let ∆ ≥ 3 be an integer.
If G is a connected C4-free bipartite graph of maximum degree at most ∆
with partite sets A and B

such that

every vertex in A has degree at least 2, and

some vertex in B has degree less than ∆,

then G has a uniquely restricted matching M of size at least

(∆− 1)2 + (∆− 2)

(∆− 1)3 + (∆− 2)
|A|.

Furthermore, such a matching can be found in polynomial time.
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Approximating νur(G ) in bipartite graphs
Proof:

Given G , we maintain pairs (U,M) such that...
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B
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t
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s dt t

w

t t
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f

(∆− 1)2
(

(∆− 2)s − (d + f )
)
≥ (∆− 2)f
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Approximating νur(G ) in bipartite graphs

Initially, (U,M) = (∅, ∅).

While U 6= V (G ), we extend (U,M) to (U ′,M ′).

Once U = V (G ), the statement follows using

(∆− 1)2
(

(∆− 2) |M|︸︷︷︸
s

−(|A| − |M|︸ ︷︷ ︸
d+f

)
)
≥ (∆− 2)(|A| − |M|︸ ︷︷ ︸

f

).

Suppose U 6= V (G ). There is some vertex u in B \ U with

1 ≤ dA\U(u) ≤ ∆− 1.

Choose u minimizing dA\U(u).
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Approximating νur(G ) in bipartite graphs

Case 1 dA\U(u) = 1.
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Approximating νur(G ) in bipartite graphs

Case 2 dA\U(u) ≥ 2.
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If u has a neighbor v in U and no neighbor of u in U is incident with M,
then...

otherwise...2
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Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ).

For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored,

and color the d edges between ui and {ui+1, . . . , un}
using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d

= ∆2 many colors.

29 / 40



Upper bounds on χ′ur(G )

Theorem (Baste, R, and Sau 2016)

If G is a connected graph of maximum degree at most ∆, then
χ′ur (G ) ≤ ∆2 with equality if and only if G is K∆,∆.

Proof: Let u1, . . . , un be any linear ordering of V (G ). For i from 1 up to
n − 1, assume that the edges incident with vertices in {u1, . . . , ui−1} are
already colored, and color the d edges between ui and {ui+1, . . . , un}

using distinct colors, and

avoiding any color that has already been used on a previously colored
edge incident with some neighbor of ui .

s s s s s. . .

u1 ui−1 ui

s s. . .

un

#
#%
%% #

#%
%%

e
ee
A
A
A
A

@
@

This requires at most (∆− d)∆ + d(∆− 1) + d = ∆2 many colors.
29 / 40



Upper bounds on χ′ur(G )
If some color class M is not a uniquely restricted matching, then there is
an M-alternating cycle

C : ur1us1ur2us2 . . . urkuskur1 .

Let r1 be the smallest index, and let ur1usk ∈ M, that is, r1 < s1, r2. Since
us1ur2 ∈ M, the coloring rule implies

r1 < r2 < s1.

Again exploiting the coloring rule, we obtain

ri < ri+1 < si ⇒ ri+1 < ri+2 < si+1,

which implies the contradiction

r1 < r2 < · · · < rk < r1.

For the characterization of the extremal graphs, consider a uniquely
restricted edge coloring

using ∆2 colors, and
minimizing the number of edges colored ∆2.
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Upper bounds on χ′ur(G )

The following is inspired by Lovász’s elegant proof of Brooks’ Theorem.

Lemma (Baste, R, and Sau 2016)

If G is a connected bipartite graph of maximum degree at most ∆ ≥ 4
that is distinct from K∆,∆, and M is a matching in G, then M can be
partitioned into at most ∆− 1 uniquely restricted matchings in G.

Theorem (Baste, R, and Sau 2016)

If G is a connected bipartite graph of maximum degree at most ∆ ≥ 4
that is distinct from K∆,∆, then χ′ur (G ) ≤ ∆2 −∆.

Proof: Lemma + Kőnig’s theorem. 2

For ∆ = 3 or G non-bipartite, the lemma fails.

31 / 40



Upper bounds on χ′ur(G )

The following is inspired by Lovász’s elegant proof of Brooks’ Theorem.

Lemma (Baste, R, and Sau 2016)

If G is a connected bipartite graph of maximum degree at most ∆ ≥ 4
that is distinct from K∆,∆, and M is a matching in G, then M can be
partitioned into at most ∆− 1 uniquely restricted matchings in G.

Theorem (Baste, R, and Sau 2016)

If G is a connected bipartite graph of maximum degree at most ∆ ≥ 4
that is distinct from K∆,∆, then χ′ur (G ) ≤ ∆2 −∆.

Proof: Lemma + Kőnig’s theorem. 2
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Upper bounds on χ′r(G )

Theorem (Baste and R 2017)

If r is a positive integer and G is a graph of maximum degree at most ∆,
then

χ′r (G ) ≤ 2(∆− 1)2

r + 1
+ 2(∆− 1) + 1. (1)

For r = 1, G satisfies (1) with equality if and only if G is K∆,∆

Proposition (Baste and R 2017)

If r is an integer at least 2, then no graph G of maximum degree at most
∆ satisfies (1) with equality.
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Efficient algorithm for νr(G ) in chordal graphs

Goddard, Hedetniemi, Hedetniemi, and Laskar 2005 ask for an efficient
algorithm to determine the acyclic matching number of interval graphs.
Panda and Pradhan 2012 describe such algorithms for chain graphs and
bipartite permutation graphs.

Let r ∈ N be fixed.

Let G be a given chordal graph.

Consider a nice tree decomposition

(T , (Xt)t∈V (T ))

of G with complete bags Xt .
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Efficient algorithm for νr(G ) in chordal graphs

For every node t of T , generate the set Rt of all triples (S ,N, k) such
that...

'

&
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Gt'
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%
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+

S

'
&

$
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s s
ss · · ·· · ·
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s s
· · ·

· · ·s
s
s
s

...where M has size k and G [V (M) ∪ S ] is r -degenerate.
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Efficient algorithm for νr(G ) in chordal graphs

Lemma (Baste and R 2017)

Let G, (T , (Xt)t∈V (T )), and (Rt)t∈V (T ) be as above.

(a) If t is a leaf of T , then Rt = {(∅, ∅, 0)}.

(b) If t is an introduce node, t′ is the child of t, and {x} = Xt \ Xt′ , then

(S ,N, k) ∈ Rt if and only if

I either (S ,N, k) ∈ Rt′

I or (S ,N, k) = (S ′ ∪ {x},N, k) for some (S ′,N, k) ∈ Rt′ with |S ′| ≤ r .

(c) If t is a forget node, t′ is the child of t, and {x} = Xt′ \ Xt , then (S ,N, k) ∈ Rt if

and only if

I either (S ,N, k) ∈ Rt′ and x 6∈ S,
I or (S ,N, k) = (S ′ \ {x},N ′ ∪ {y}, k ′ + 1) for some (S ′,N ′, k ′) ∈ Rt′

with x ∈ S ′ \ N ′ and some y ∈ S ′ \ (N ′ ∪ {x}),
I or (S ,N, k) = (S ′ \ {x},N ′ \ {x}, k ′) for some (S ′,N ′, k ′) ∈ Rt′ with

x ∈ N ′.

(d) If t is a join node, and t′ and t′′ are the children of t, then (S ,N, k) ∈ Rt if and
only if (S ,N, k) = (S ,N ′ ∪ N ′′, k ′ + k ′′) for some (S ,N ′, k ′) ∈ Rt′ and
(S ,N ′′, k ′′) ∈ Rt′′ with N ′ ∩ N ′′ = ∅.
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Efficient algorithm for νr(G ) in chordal graphs

Theorem (Baste and R 2017)

For a fixed positive integer r , and a given chordal graph G, the maximum
size of an r-degenerate matching can be determined in polynomial time.
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Decycling/bipartizing matchings

Let FM be the set of all graphs G that have a matching M such that
G −M is a forest. Let BM ... is bipartite.

Lemma (Lima, R, Souza, and Szwarcfiter 2016)

Let G be a graph.

(i) If G ∈ FM is connected, then G has a matching M for which
G −M is a tree.

(ii) If G ∈ FM, then m(H) ≤
⌊

3n(H)
2

⌋
− 1 for every subgraph H of G.

(iii) If G is subcubic and connected, then G ∈ FM if and only if G has a
spanning tree T such that all endvertices of T are of degree at most
2 in G.
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Decycling/bipartizing matchings

Theorem (Lima, R, Souza, and Szwarcfiter 2016)

For a given 2-connected planar subcubic graph G, it is NP-complete to
decide whether G ∈ FM.

Proof: Hamiltonian cycle is NP-complete for 3-connected planar
cubic graphs (Garey, Johnson, and Tarjan 1976). Remove an edge from
their construction that belongs to every Hamiltonian cycle. 2

Theorem (Lima, R, Souza, and Szwarcfiter 2016)

Deciding whether a given graph belongs to FM can be done in
polynomial time for

{claw,paw}-free graphs,

P5-free graphs,

chordal graphs, and

C4-free distance hereditary graphs.
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Decycling/bipartizing matchings

Fact (Lima, R, Souza, and Szwarcfiter 2016)

Every subcubic graphs belongs to BM.

Theorem (Lima, R, Souza, and Szwarcfiter 2016)

Deciding whether a given graph of maximum degree 4 or a given planar
graph of maximum degree 5 belongs to BM is NP-complete.

Theorem (Lima, R, Souza, and Szwarcfiter 2016)

Deciding whether a given graph belongs to BM can be done in polynomial
time for

{claw,paw}-free graphs, and

P5-free graphs.
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Thank you for the attention!
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