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Purpose

• Present a solution to a problem posed by Golumbic, Lipshteyn
and Stern (2008)

• Show that the graphs in ORTH[3, 2, 3] are line graphs of
planar graphs
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Intersection Graphs of Subtrees of a Tree

A graph G is an Intersection Graph of Subtrees of a Tree if:

• ∃ a family of subtrees {Sv}v∈V (G) of a host tree T

• uv ∈ E (G ) ⇔ Su ∩ Sv 6= ∅
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(h,s,t)-representation

A graph G has an (h, s, t)-representation if ∃ a family of subtrees
{Sv}v∈V (G) of a host tree T , such that:

• ∆(T ) ≤ h

• ∆(Sv ) ≤ s

• uv ∈ E (G ) ⇔ |Su ∩ Sv | ≥ t

We denote the class of graphs having an (h, s, t)-representation by
[h, s, t].
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(h,s,t)-representation

( 3 , 3 , 1 )-representation

( 3 , 3 , 3 )-representation
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(h,s,t)-representation

( 3 , 3 , 1 )-representation
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orthodox (h, s, t)-representation

• The leaves of each subtree Sv must be leaves of T

• The vertices u, v ∈ G are adjacent iff:
Su,Sv have at least t vertices in common, iff
Su,Sv share a leaf of T .
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orthodox (h, s, t)-representation
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ORTH[h, 2, t] and line graphs
Theorem
Let G be a connected, twin-free graph with |V (G )| ≥ 4. If G is
ORTH[h,2,t] with h ≥ 3 then G is the line graph of a connected
graph H.

H is unique up to isomorphismthere is a bijection φ : V (H)→ L(T ), andtwo distinct vertices x and y are adjacent in H if and only if exist a
path in T between φ(x) and φ(y).
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Tree layout

Let H be a graph.
If ∃ a tree T and two integers h ≥ 3 and t ≥ 1, s.t.

• ∆(T ) ≤ h,
• V (H) = L(T ), and
• for every two independent edges xy and x ′y ′ of H, the two

paths x − y and x ′ − y ′ in T share at most t − 1 vertices.

Then, T is an (h, t)-tree layout of H.
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ORTH[h, 2, t] and (h, t)-tree layout

Theorem
Let G be a connected twin-free line graph of order at least 4, H a
connected graph with L(H) = G, and h ≥ 3, t ≥ 1 integers. Then

G ∈ ORTH[h, 2, t] ⇔ H has an (h, t)-tree layout.
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The Question

Golumbic, Lipshteyn and Stern asked
if ORTH[∞, 2, t] and ORTH[3, 2, t] coincide or

there is a separating example between these families.

We find some of these examples.

For each pair h, t ≥ 3, we exhibit a graph
G ∈ (ORTH[h + 1, 2, t] \ ORTH[h, 2, t]).

M.C. Golumbic, M. Lipshteyn, M. Stern, Equivalences and the complete
hierarchy of intersection graphs of paths in a tree, Discrete Applied
Mathematics, 156, pp. 3203–3215, 2008.
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Maximum number of leaves of T

Let H be a complete graph Kn, and T an (h, t)-tree layout of H.

Since H is complete, there is a path between each pair of leaves.

Let x − y be the longest path between two internal vertices. Then,
x − y has at most (t − 1) vertices.

This implies that the diameter of the tree T is at most t.
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Maximum number of leaves of T

Lemma
Let T be a tree of maximum degree ≤ h, such that every two
leaves are at distance ≤ t. Then

|L(T )| ≤

 2(h − 1)( t−1
2 ) , if t is odd,

h(h − 1)( t
2
−1) , if t is even.
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ORTH[h + 1, 2, t] and ORTH[h, 2, t]

We describe some graphs G ∈ (ORTH[h + 1, 2, t] \ ORTH[h, 2, t])

Which are line graphs of complete graphs, whose orders depend on
h and t.

Theorem
Let h and t be integers with h ≥ 3 and t ≥ 3.

If N =
{
n ∈ N∗ : L(Kn) ∈ ORTH[h + 1, 2, t] \ORTH[h, 2, t]

}
,

then

N =


[
2(h − 1)( t−1

2 ) + 1 , 2h( t−1
2 )

]
, if t is odd, and[

h(h − 1)( t
2
−1) + 1 , (h + 1)h( t

2
−1)

]
, if t is even.
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The largest value of n such that L(Kn) ∈ ORTH[h, 2, t]

n t
3 4 5 6 7 8 9 10

3 4 6 8 12 16 24 32 48
4 6 12 18 36 54 108 162 324
5 8 20 32 80 128 320 512 1.280
6 10 30 50 150 250 750 1.250 3.750

h 7 12 42 72 252 432 1.512 2.592 9.072
8 14 56 98 392 686 2.744 4.802 19.208
9 16 72 128 576 1.024 4.608 8.192 36.864
10 18 90 162 810 1.458 7.290 13.122 65.610

Example: L(K5) ∈ ( ORTH[4, 2, 3] \ ORTH[3, 2, 3] )
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ORTH[3, 2, 3] and planar graphs

Lemma
If H is a subdivision of K5 and G = L(H) then G 6∈ ORTH[3, 2, 3]

Lemma
If H is a subdivision of K3,3 and G = L(H) then G 6∈ ORTH[3, 2, 3]

Theorem
If a connected twin-free graph G of order ≥ 4 is in ORTH[3, 2, 3],
then G is the line graph of a planar graph.

Such necessary condition is not sufficient.
Example: K5 − e is planar, but L(K5 − e) 6∈ ORTH[3, 2, 3]
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Open questions

• Recognition of the graphs G ∈ ORTH[3, 2, 3]

• Characterize and determine the complexity of recognizing
graphs G ∈ ORTH[3, 3, 3]
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Merci beaucoup !!!
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