Constant Threshold Intersection Graphs of Orthodox Paths in Trees

Claudson F. Bornstein¹ José W. C. Pinto^{1,2} Dieter Rautenbach³ Jayme Szwarcfiter^{1,4}

¹Federal University of Rio de Janeiro, Brazil
²Technological Education Faculty of Rio de Janeiro, Brazil
³University of Ulm, Germany
⁴Rio de Janeiro State University, Brazil

2017/09/11

- Present a solution to a problem posed by Golumbic, Lipshteyn and Stern (2008)
- Show that the graphs in ORTH[3, 2, 3] are line graphs of planar graphs

Intersection Graphs of Subtrees of a Tree

A graph G is an Intersection Graph of Subtrees of a Tree if:

- \exists a family of subtrees $\{S_v\}_{v \in V(G)}$ of a host tree T
- $uv \in E(G) \Leftrightarrow S_u \cap S_v \neq \emptyset$

(h,s,t)-representation

A graph G has an (h, s, t)-representation if \exists a family of subtrees $\{S_v\}_{v \in V(G)}$ of a host tree T, such that:

- $\Delta(T) \leq h$
- $\Delta(S_v) \leq s$
- $uv \in E(G) \Leftrightarrow |S_u \cap S_v| \geq t$

We denote the class of graphs having an (h, s, t)-representation by [h, s, t].

(h,s,t)-representation

(3 , 3 , 1)-representation

5 / 37

(h,s,t)-representation

(3, 3, 3)-representation

orthodox (h, s, t)-representation

- The leaves of each subtree S_v must be leaves of T
- The vertices $u, v \in G$ are adjacent iff: S_u, S_v have at least t vertices in common, iff S_u, S_v share a leaf of T.

orthodox (h, s, t)-representation

- The leaves of each subtree S_v must be leaves of T
- The vertices $u, v \in G$ are adjacent iff: S_u, S_v have at least t vertices in common, iff S_u, S_v share a leaf of T.

orthodox (h, s, t)-representation

We denote the class of graphs having an orthodox (h, s, t)-representation by ORTH[h, s, t].

Theorem

Let G be a connected, twin-free graph with $|V(G)| \ge 4$. If G is ORTH[h,2,t] with $h \ge 3$ then G is the line graph of a connected graph H.

イロト イポト イヨト イヨト

Theorem

Let G be a connected, twin-free graph with $|V(G)| \ge 4$. If G is ORTH[h,2,t] with $h \ge 3$ then G is the line graph of a connected graph H.

Theorem

Let G be a connected, twin-free graph with $|V(G)| \ge 4$. If G is ORTH[h,2,t] with $h \ge 3$ then G is the line graph of a connected graph H.

Theorem

Let G be a connected, twin-free graph with $|V(G)| \ge 4$. If G is ORTH[h,2,t] with $h \ge 3$ then G is the line graph of a connected graph H.

H is unique up to isomorphism

Theorem

Let G be a connected, twin-free graph with $|V(G)| \ge 4$. If G is ORTH[h,2,t] with $h \ge 3$ then G is the line graph of a connected graph H.

H is unique up to isomorphism

Theorem

Let G be a connected, twin-free graph with $|V(G)| \ge 4$. If G is ORTH[h,2,t] with $h \ge 3$ then G is the line graph of a connected graph H.

there is a bijection $\phi: V(H) \rightarrow \mathcal{L}(T)$, and

Theorem

Let G be a connected, twin-free graph with $|V(G)| \ge 4$. If G is ORTH[h,2,t] with $h \ge 3$ then G is the line graph of a connected graph H.

two distinct vertices x and y are adjacent in H if and only if exist a path in T between $\phi(x)$ and $\phi(y)$.

Tree layout

Let H be a graph.

If \exists a tree T and two integers $h \ge 3$ and $t \ge 1$, s.t.

- $\Delta(T) \leq h$,
- $V(H) = \mathcal{L}(T)$, and
- for every two independent edges xy and x'y' of H, the two paths x y and x' y' in T share at most t 1 vertices.

Then, T is an (h, t)-tree layout of H.

ORTH[h, 2, t] and (h, t)-tree layout

Theorem

Let G be a connected twin-free line graph of order at least 4, H a connected graph with L(H) = G, and $h \ge 3$, $t \ge 1$ integers. Then

 $G \in ORTH[h, 2, t] \Leftrightarrow H$ has an (h, t)-tree layout.

The Question

Golumbic, Lipshteyn and Stern asked if $ORTH[\infty, 2, t]$ and ORTH[3, 2, t] coincide or there is a separating example between these families.

M.C. Golumbic, M. Lipshteyn, M. Stern, *Equivalences and the complete hierarchy of intersection graphs of paths in a tree*, **Discrete Applied Mathematics**, 156, pp. 3203–3215, 2008.

The Question

Golumbic, Lipshteyn and Stern asked if $ORTH[\infty, 2, t]$ and ORTH[3, 2, t] coincide or there is a separating example between these families.

We find some of these examples.

M.C. Golumbic, M. Lipshteyn, M. Stern, *Equivalences and the complete hierarchy of intersection graphs of paths in a tree*, **Discrete Applied Mathematics**, 156, pp. 3203–3215, 2008.

The Question

Golumbic, Lipshteyn and Stern asked if $ORTH[\infty, 2, t]$ and ORTH[3, 2, t] coincide or there is a separating example between these families.

We find some of these examples.

For each pair $h, t \ge 3$, we exhibit a graph $G \in (ORTH[h+1,2,t] \setminus ORTH[h,2,t])$.

M.C. Golumbic, M. Lipshteyn, M. Stern, *Equivalences and the complete hierarchy of intersection graphs of paths in a tree*, **Discrete Applied Mathematics**, 156, pp. 3203–3215, 2008.

Let H be a complete graph K_n , and T an (h, t)-tree layout of H.

≣ • २ ९ २ २ 22 / 37

Let *H* be a complete graph K_n , and *T* an (h, t)-tree layout of *H*. Since *H* is complete, there is a path between each pair of leaves.

≣ • २ २ २ 23 / 37

Let H be a complete graph K_n , and T an (h, t)-tree layout of H.

Since H is complete, there is a path between each pair of leaves.

Let x - y be the longest path between two internal vertices. Then, x - y has at most (t - 1) vertices.

≣ • २ २ २ 24 / 37

Let H be a complete graph K_n , and T an (h, t)-tree layout of H.

Since H is complete, there is a path between each pair of leaves.

Let x - y be the longest path between two internal vertices. Then, x - y has at most (t - 1) vertices.

This implies that the diameter of the tree T is at most t.

Lemma

Let T be a tree of maximum degree $\leq h$, such that every two leaves are at distance $\leq t$. Then

$$|\mathcal{L}(T)| \leq \begin{cases} 2(h-1)^{\left(\frac{t-1}{2}\right)} & \text{, if } t \text{ is odd,} \\ h(h-1)^{\left(\frac{t}{2}-1\right)} & \text{, if } t \text{ is even.} \end{cases}$$

ORTH[h + 1, 2, t] and ORTH[h, 2, t]

We describe some graphs $G \in (\mathsf{ORTH}[h+1,2,t] \setminus \mathsf{ORTH}[h,2,t])$

Which are line graphs of complete graphs, whose orders depend on h and t.

ORTH[h+1, 2, t] and ORTH[h, 2, t]

We describe some graphs $G \in (\mathsf{ORTH}[h+1,2,t] \setminus \mathsf{ORTH}[h,2,t])$

Which are line graphs of complete graphs, whose orders depend on h and t.

Theorem

Let h and t be integers with $h \ge 3$ and $t \ge 3$. If $N = \left\{ n \in \mathbb{N}^* : L(K_n) \in \text{ORTH}[h+1,2,t] \setminus \text{ORTH}[h,2,t] \right\}$, then

$$N = \begin{cases} \left[2(h-1)^{\left(\frac{t-1}{2}\right)} + 1 , 2h^{\left(\frac{t-1}{2}\right)} \right] & \text{, if t is odd, and} \\ \left[h(h-1)^{\left(\frac{t}{2}-1\right)} + 1 , (h+1)h^{\left(\frac{t}{2}-1\right)} \right] & \text{, if t is even.} \end{cases}$$

The largest value of *n* such that $L(K_n) \in ORTH[h, 2, t]$

n		t									
		3	4	5	6	7	8	9	10		
	3	4	6	8	12	16	24	32	48		
	4	6	12	18	36	54	108	162	324		
	5	8	20	32	80	128	320	512	1.280		
	6	10	30	50	150	250	750	1.250	3.750		
h	7	12	42	72	252	432	1.512	2.592	9.072		
	8	14	56	98	392	686	2.744	4.802	19.208		
	9	16	72	128	576	1.024	4.608	8.192	36.864		
	10	18	90	162	810	1.458	7.290	13.122	65.610		

The largest value of *n* such that $L(K_n) \in ORTH[h, 2, t]$

n		t									
		3	4	5	6	7	8	9	10		
h	3	4	6	8	12	16	24	32	48		
	4	6	12	18	36	54	108	162	324		
	5	8	20	32	80	128	320	512	1.280		
	6	10	30	50	150	250	750	1.250	3.750		
	7	12	42	72	252	432	1.512	2.592	9.072		
	8	14	56	98	392	686	2.744	4.802	19.208		
	9	16	72	128	576	1.024	4.608	8.192	36.864		
	10	18	90	162	810	1.458	7.290	13.122	65.610		

Example: $L(K_5) \in (\mathsf{ORTH}[4,2,3] \setminus \mathsf{ORTH}[3,2,3])$

ORTH[3, 2, 3] and planar graphs

Lemma

If H is a subdivision of K_5 and G = L(H) then $G \notin ORTH[3,2,3]$

ORTH[3,2,3] and planar graphs

Lemma

If H is a subdivision of K_5 and G = L(H) then $G \notin ORTH[3,2,3]$

Lemma

If H is a subdivision of $K_{3,3}$ and G = L(H) then $G \notin ORTH[3,2,3]$

ORTH[3, 2, 3] and planar graphs

Lemma

If H is a subdivision of K_5 and G = L(H) then $G \notin ORTH[3,2,3]$

Lemma

If H is a subdivision of $K_{3,3}$ and G = L(H) then $G \notin ORTH[3,2,3]$

Theorem

If a connected twin-free graph G of order \geq 4 is in ORTH[3,2,3], then G is the line graph of a planar graph.

ORTH[3,2,3] and planar graphs

Lemma

If H is a subdivision of K_5 and G = L(H) then $G \notin ORTH[3,2,3]$

Lemma

If H is a subdivision of $K_{3,3}$ and G = L(H) then $G \notin ORTH[3,2,3]$

Theorem

If a connected twin-free graph G of order \geq 4 is in ORTH[3,2,3], then G is the line graph of a planar graph.

Such necessary condition is not sufficient. Example: $K_5 - e$ is planar, but $L(K_5 - e) \notin ORTH[3, 2, 3]$

Open questions

- Recognition of the graphs $G \in ORTH[3, 2, 3]$
- Characterize and determine the complexity of recognizing graphs G ∈ ORTH[3, 3, 3]

Merci beaucoup !!!

<ロ> (四) (四) (三) (三) (三) (三)

37 / 37