
Reducing the Chromatic Number by Vertex or Edge
Deletions

Authors:
Daniel Paulusma (Durham University), Christophe Picouleau (CNAM-PARIS), Bernard Ries

(University of Fribourg)

September 14st 2017

B.C.D. () Chromatic-EV-Deletion September 14st 2017 1 / 23



Definitions

Let G = (V ,E ) be an undirected graph.

A k-coloring of G is a mapping c : V ⇒ {1, 2, . . . k} such that
c(u) 6= c(v) for all uv ∈ E .

The chromatic number of G is the smallest integer k such that G
admits a k-coloring. It is denoted by χ(G ).
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Definitions

The contraction of an edge uv in G removes the vertices u and v from
G , and replaces them by a new vertex made adjacent to precisely those
vertices that were adjacent to u or v in G .
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Definitions

A vertex or edge is critical if its removal reduces χ(G ) by 1.

An edge is contraction-critical if its contraction reduces χ(G ) by 1.
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Result

Proposition

An edge is critical if and only if it is contraction-critical.

Proof.

Let e = uv ∈ E .

⇒ e is critical: χ(G − e) = χ(G )− 1. Then u and v are colored alike
in any coloring of G − e with χ(G − e) colors.Hence G ′ obtained
from contracting e in G can also be colored with χ(G − e) colors. As
χ(G − e) = χ(G )− 1, e is contraction-critical.

⇐ e is contraction-critical: G ′ obtained from contracting e has
χ(G ′) = χ(G )− 1.Coloring u and v alike, we obtain a coloring of
G − e from any coloring of G ′.So χ(G − e) ≤ χ(G ′).As
χ(G ′) = χ(G )− 1, e is critical.
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Problems

Critical Vertex
I: A graph G = (V ,E ).
Q: Is there a critical vertex ?

Critical Edge
I: A graph G = (V ,E ).
Q: Is there a critical edge ?
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Result

Theorem

Critical Vertex and Critical Edge are both co-NP-hard for
(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
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Proof

From a restriction of Monotone 1-in-3-SAT which is NP-complete.
(C. Moore and J. M. Robson (2001) )

m clauses,

n variables,

each clause consists of three distinct positive literals,

each variable occurs in exactly three clauses.

Note that m = n
Is there a truth assignment such that each clause is satisfied by exactly
one variable ?
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Proof

Consider the Critical Vertex problem.

We prove that the problem of deciding whether a graph has a vertex
whose deletion reduces σ(G ) the clique-covering number by 1 is
co-NP-hard for (C4,C5,K4, 2P1 + P2)-free graphs.

The complements of (C4,C5,K4, 2P1 + P2)-free graphs are
(C5, 4P1, 2P1 + P2, 2P2)-free

The two problems are equivalent.
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Proof

Construction of G = (V ,E ) from a boolean formula Φ

c(x)

c(z)

c(y)

a1
c a2

c

a3
ca4

c
c'(x)

c"(x)

c'(z) c''(z)

c'(y)

c''(y)

Each clause C : a 7-cycle

Each variable x : a triangle
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Proof

c(x)

c(z)

c(y)

a1
c a2

c

a3
ca4

c
c'(x)

c"(x)

c'(z) c''(z)

c'(y)

c''(y)

|V | = 7n = 7m

(C4,C5,K4, 2P1 + P2)-free

σ(G ) ≥ 10

3
n
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Proof

c(x)

c(z)

c(y)

a1
c a2

c

a3
ca4

c
c'(x)

c"(x)

c'(z) c''(z)

c'(y)

c''(y)

Φ is satisfiable if and only if σ(G ) =
10

3
n;

If G has a clique cover K = {K1, . . . ,K 10
3

n}, then each Ki ∈ K
consists of either two or three vertices (no isolated vertices);

If σ(G ) >
10

3
n, then G has a minimum clique cover K that contains

a clique of size 1.
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Proof

It follows:

If Φ is a yes-instance there is no vertex u with σ(G − u) ≤ σ(G )− 1;

If Φ is a no-instance there exists a vertex u with σ(G −u) = σ(G )−1.

Critical Vertex is co-NP-hard for (C5, 4P1, 2P1 + P2, 2P2)-free graphs.
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Proof

For the Critical Edge problem:

Slight modification in the construction:

change each C7 into C11

consider clique of size two (edges) instead of clique of size one (vertex)
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Result

Theorem

Critical Vertex, Critical Edge and Contraction-Critical Edge restricted to
H-free graphs are polynomial-time solvable if H ⊆i P1 + P3 or H ⊆i P4,
and NP-hard or co-NP-hard otherwise.
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Proof

Theorem : If a graph H ⊆i P4 or H ⊆i P1 + P3, then Coloring is
polynomial-time solvable for H-free graphs, otherwise it is NP-complete.
D. Král’, J. Kratochv́ıl, Z. Tuza, and G.J. Woeginger (2001)

H ⊆i P1 + P3 or H ⊆i P4: Let G be H-free.
Test if there exists v ∈ V such that χ(G − v) < χ(G ).

(P1 + P3)-free and P4-free graphs are closed under edge contraction.
same approach for Contraction-Critical Edge, and for
Critical Edge.
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Proof

H 6⊆i P1 + P3 and H 6⊆i P4:

Theorem : Critical Vertex and Critical Edge are NP-hard
for H-free graphs if H ⊇i K1,3 or H ⊇i Cr for some r ≥ 3.
D. Paulusma, Ch. P. and B. Ries (2016)
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Proof

H is a disjoint union of r paths for some r ≥ 1:

I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for
(C5, 4P1, 2P1 + P2, 2P2)-free graphs.

I r = 3:
F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4:

we proved Critical Vertex and Critical Edge are co-NP-hard for
(C5, 4P1, 2P1 + P2, 2P2)-free graphs.

I r = 3:
F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.

I r = 3:
F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;

F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:

F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above

F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4
then 2P1 + P2 ⊆i H: use the result above

F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the
result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk :

if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4
then 2P1 + P2 ⊆i H: use the result above

F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the
result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded.

If k ≥ 4
then 2P1 + P2 ⊆i H: use the result above

F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the
result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above

F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the
result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk :

k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the
result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded,

then k ≥ 5 so 2P2 ⊆i H and use the
result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

H is a disjoint union of r paths for some r ≥ 1:
I r ≥ 4: we proved Critical Vertex and Critical Edge are co-NP-hard for

(C5, 4P1, 2P1 + P2, 2P2)-free graphs.
I r = 3:

F H = 3P1 ⊆i P1 + P3: case excluded;
F H ⊇i 2P1 + P2: use the result above

I r = 2:
F both paths contain an edge: H ⊇i 2P2, use the result above
F H ⊆i P1 + Pk : if k ≤ 3 then H ⊆i P1 + P3: case excluded. If k ≥ 4

then 2P1 + P2 ⊆i H: use the result above
F r = 1, H = Pk : k ≤ 4 is excluded, then k ≥ 5 so 2P2 ⊆i H and use the

result above.

B.C.D. () Chromatic-EV-Deletion September 14st 2017 18 / 23



Proof

Since Critical Edge and Contraction-Critical Edge are equivalent we have
the dichotomy:

Critical Vertex, Critical Edge and Contraction-Critical Edge restricted to
H-free graphs are polynomial-time solvable if H ⊆i P1 + P3 or H ⊆i P4,
and NP-hard or co-NP-hard otherwise.
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Blocker

Contraction Blocker(χ)
I: G = (V ,E ) and two integers d , k ≥ 0
Q: can G be k-contracted into G ′ such that χ(G ′) ≤ χ(G )− d ?

d = k = 1 corresponds to Contraction-Critical Edge
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Blocker

Vertex Deletion Blocker(χ)
I: G = (V ,E ) and two integers d , k ≥ 0
Q: can G be k-vertex-deleted into G ′ such that χ(G ′) ≤ χ(G )− d ?

d = k = 1 corresponds to Critical Vertex

B.C.D. () Chromatic-EV-Deletion September 14st 2017 21 / 23



Blocker

Vertex Deletion Blocker(χ)
I: G = (V ,E ) and two integers d , k ≥ 0
Q: can G be k-vertex-deleted into G ′ such that χ(G ′) ≤ χ(G )− d ?

d = k = 1 corresponds to Critical Vertex

B.C.D. () Chromatic-EV-Deletion September 14st 2017 21 / 23



Blocker

Theorem

If H ⊆i P4 Contraction Blocker(χ) is polynomial-time solvable
for H-free graphs, it is NP-hard otherwise.

If H ⊆i P1 + P3 or P4 Vertex Deletion Blocker(χ) for H-free
graphs is polynomial-time solvable, it is NP-hard or co-NP-hard
otherwise.
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Merci beaucoup pour votre attention

B.C.D. () Chromatic-EV-Deletion September 14st 2017 23 / 23


