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Introduction

Definitions

A directed star is a star with all its arcs oriented towards its center.
A galaxy is a set of vertex-disjoint stars.

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 3 / 17



Introduction

Definitions

A directed star is a star with all its arcs oriented towards its center.
A galaxy is a set of vertex-disjoint stars.

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 3 / 17



Introduction

Definitions

A directed star is a star with all its arcs oriented towards its center.
A galaxy is a set of vertex-disjoint stars.

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 3 / 17



Introduction

Definitions

A directed star is a star with all its arcs oriented towards its center.
A galaxy is a set of vertex-disjoint stars.

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 3 / 17



Introduction

Definitions

Directed star k-coloring problem:
Deciding whether or not there exists a partition of the arcs of a digraph D
into k galaxies.

NP-complete for k ≥ 3 even when restricted to different classes of
digraphs (Amini et al. 2010, Baïou et al. 2013).

The directed star arboricity, dst(D), of a digraph D, is the minimum
number of galaxies needed to cover all the arcs of D.
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Known results and Conjectures

Known results and Conjectures

O. Amini, F. Havet, F. Huc, and S. Thomassé (2010)
For every digraph D, dst(D) ≤ 2∆+ + 1.

D. Gonçalves, F. Havet, A. Pinlou, and S. Thomassé (2012)
For every digraph D, dst(D) ≤ ∆ + 1.

Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))
1 dst(D) ≤ 2∆+, if ∆+ ≥ 2
2 dst(D) ≤ ∆, if ∆ ≥ 3

∆(D) = max{d+(x) + d−(x), x ∈ V (D)}
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Known results and Conjectures

Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))
1 dst(D) ≤ 2∆+, if ∆+ ≥ 2
2 dst(D) ≤ ∆, if ∆ ≥ 3

Both conjectures are true when restricted to acyclic digraphs.
Both conjectures (if true) are tight.
Conjecture 2 is true for ∆ = 3.
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k-degenerate digraphs

k-degenerate digraphs

k-degenerate graph
G is empty, or
There is some x with degree at most k such that (G − x) is k-degenerate.

A digraph D is k-degenerate if its underlying graph is k-degenerate.
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k-degenerate digraphs

Theorem 1

Let D be a k-degenerate digraph, dst(D) ≤ ∆+ + k.

Sketch of proof
Proof by induction on the number of vertices of D.

Hn : all k-degenerate oriented graphs on n vertices are (∆+ + k)-colorable
with at most k colors entering each vertex.

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 10 / 17



k-degenerate digraphs

Theorem 1

Let D be a k-degenerate digraph, dst(D) ≤ ∆+ + k.

Sketch of proof
Proof by induction on the number of vertices of D.

Hn : all k-degenerate oriented graphs on n vertices are (∆+ + k)-colorable
with at most k colors entering each vertex.

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 10 / 17



k-degenerate digraphs

Illustration for ∆+ = 2 and k = 2.
x

D\x

{1, 4}

1 1

2 2

3

3

4

{4}

d+(x) = 1

yz

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 11 / 17



Tournaments

1 Introduction

2 Known results and Conjectures

3 k-degenerate digraphs

4 Tournaments

5 Conclusion

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 12 / 17



Tournaments

Tournaments

A Tournament is an orientation of a complete graph.

Theorem 2

Let T be a tournament on n vertices, n ≥ 4, then dst(T ) ≤ ∆.

Corollary: if n ≥ 4, then dst(T ) ≤ 2∆+.
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Tournaments

Tournaments

A Tournament is an orientation of a complete graph.

Theorem 2

Let T be a tournament on n vertices, n ≥ 4, then dst(T ) ≤ ∆.

Corollary: if n ≥ 4, then dst(T ) ≤ 2∆+.

If n is even there is nothing to prove (partition
in n − 1 perfect matchings).
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Tournaments

Proof

Theorem 2
Let T be a tournament on n vertices, n ≥ 4, then dst(T ) ≤ ∆.

Sketch of the proof:
remove one vertex,
color the resulting even sub-tournament.
extend the coloring using only one additional color.
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Tournaments

Proof

Theorem 2
Let T be a tournament on n vertices, n ≥ 4, then dst(T ) ≤ ∆.

u

N+N−

We color the arc entering u
with the new color.

d+(u) ≥ d−(u)
d−(u) > 0
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Tournaments

Proof

Theorem 2
Let T be a tournament on n vertices, n ≥ 4, then dst(T ) ≤ ∆.

cn−1

u

N+N−

cn−1

cn−1

Goal : color the arcs leaving u.

d+(u) ≥ d−(u)
d−(u) > 0
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Tournaments

Assign a color to each arc leaving u.

N+
c1

cn−2

Find a maximum matching.
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Tournaments

Color the remaining arcs.

N+

M
u

x y

|N+| = k
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Tournaments

Color the remaining arcs.

N+

M
u

x ycn−1

ci

|N+| = k
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Conclusion

Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))
1 dst(D) ≤ 2∆+, if ∆+ ≥ 2
2 dst(D) ≤ ∆, if ∆ ≥ 3

Conclusions of both conjectures are valid for tournaments.
k-degenerate oriented graphs verify Conjecture (1) if k ≤ ∆+.
The main conjectures remain open.

Thanks for your attention
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O. Amini, F. Havet, F. Huc, et S. Thomassé. WDM and directed star
arboricity. Combinatorics, Probability & Computing, 2010.
D. Gonçalves, F. Havet, A. Pinlou, et S. Thomassé. On spanning
galaxies in digraphs. Discrete Applied Mathematics, 2012.

Henri Perret du Cray (LIMOS) DST in some digraph classes LAGOS 2017 17 / 17


	Introduction
	Known results and Conjectures
	k-degenerate digraphs
	Tournaments
	Conclusion

