Bounds on Directed star arboricity in some digraph classes

Mourad Baïou, Laurent Beaudou, Vincent Limouzy, Henri Perret du Cray

LIMOS, Université Clermont Auvergne

LAGOS 2017

3 *k*-degenerate digraphs

Directed star k-coloring problem:

Deciding whether or not there exists a partition of the arcs of a digraph D into k galaxies.

NP-complete for $k \ge 3$ even when restricted to different classes of digraphs (Amini et al. 2010, Baïou et al. 2013).

The **directed star arboricity**, dst(D), of a digraph D, is the minimum number of galaxies needed to cover all the arcs of D.

3 k-degenerate digraphs

4 Tournaments

O. Amini, F. Havet, F. Huc, and S. Thomassé (2010)

For every digraph *D*, $dst(D) \le 2\Delta^+ + 1$.

D. Gonçalves, F. Havet, A. Pinlou, and S. Thomassé (2012)

For every digraph D, $dst(D) \leq \Delta + 1$.

Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))

•
$$dst(D) \leq 2\Delta^+$$
, if $\Delta^+ \geq 2$

2 $dst(D) \leq \Delta$, if $\Delta \geq 3$

 $\Delta(D) = max\{d^+(x) + d^-(x), x \in V(D)\}$

- Both conjectures are true when restricted to acyclic digraphs.
- Both conjectures (if true) are tight.
- Conjecture 2 is true for $\Delta = 3$.

3 *k*-degenerate digraphs

4 Tournaments

k-degenerate graph

G is empty, or There is some x with degree at most k such that (G - x) is k-degenerate.

k-degenerate graph

G is empty, or

There is some x with degree at most k such that (G - x) is k-degenerate.

k-degenerate graph

G is empty, or

There is some x with degree at most k such that (G - x) is k-degenerate.

k-degenerate graph

G is empty, or

There is some x with degree at most k such that (G - x) is k-degenerate.

k-degenerate graph

G is empty, or

There is some x with degree at most k such that (G - x) is k-degenerate.

k-degenerate graph

G is empty, or

There is some x with degree at most k such that (G - x) is k-degenerate.

k-degenerate graph

G is empty, or

There is some x with degree at most k such that (G - x) is k-degenerate.

k-degenerate graph

G is empty, or

There is some x with degree at most k such that (G - x) is k-degenerate.

Theorem 1

Let D be a k-degenerate digraph, $dst(D) \leq \Delta^+ + k$.

Sketch of proof

Proof by induction on the number of vertices of D.

Theorem 1

Let D be a k-degenerate digraph, $dst(D) \leq \Delta^+ + k$.

Sketch of proof

Proof by induction on the number of vertices of *D*.

 H_n : all k-degenerate oriented graphs on n vertices are $(\Delta^+ + k)$ -colorable with at most k colors entering each vertex.

Illustration for $\Delta^+ = 2$ and k = 2.

 $d^+(x) = 1$

3 k-degenerate digraphs

Tournaments

A **Tournament** is an orientation of a complete graph.

Theorem 2

Let T be a tournament on n vertices, $n \ge 4$, then $dst(T) \le \Delta$.

Corollary: if $n \ge 4$, then $dst(T) \le 2\Delta^+$.

Tournaments

A **Tournament** is an orientation of a complete graph.

Theorem 2

Let T be a tournament on n vertices, $n \ge 4$, then $dst(T) \le \Delta$.

Corollary: if $n \ge 4$, then $dst(T) \le 2\Delta^+$.

If *n* is even there is nothing to prove (partition in n - 1 perfect matchings).

Proof

Theorem 2

Let T be a tournament on n vertices, $n \ge 4$, then $dst(T) \le \Delta$.

Sketch of the proof:

- remove one vertex,
- color the resulting even sub-tournament.
- extend the coloring using only one additional color.

Proof

Theorem 2

Let T be a tournament on n vertices, $n \ge 4$, then $dst(T) \le \Delta$.

We color the arc entering *u* with the new color.

 $d^+(u) \ge d^-(u)$ $d^-(u) > 0$

Proof

Theorem 2

Let T be a tournament on n vertices, $n \ge 4$, then $dst(T) \le \Delta$.

Goal : color the arcs leaving u.

 $d^+(u) \ge d^-(u)$ $d^-(u) > 0$

Assign a color to each arc leaving u.

Assign a color to each arc leaving u.

Find a maximum matching.

Color the remaining arcs.

 $|N^{+}| = k$

Color the remaining arcs.

 $|N^{+}| = k$

Color the remaining arcs.

 $|N^{+}| = k$

- 2 Known results and Conjectures
- 3 k-degenerate digraphs
- 4 Tournaments

Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))

- $dst(D) \leq 2\Delta^+$, if $\Delta^+ \geq 2$
- **2** $dst(D) \leq \Delta$, if $\Delta \geq 3$
 - Conclusions of both conjectures are valid for tournaments.
 - k-degenerate oriented graphs verify Conjecture (1) if k ≤ Δ⁺.
 - The main conjectures remain open.

Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))

- $dst(D) \leq 2\Delta^+$, if $\Delta^+ \geq 2$
- **2** $dst(D) \leq \Delta$, if $\Delta \geq 3$
 - Conclusions of both conjectures are valid for tournaments.
 - k-degenerate oriented graphs verify Conjecture (1) if k ≤ Δ⁺.
 - The main conjectures remain open.

Thanks for your attention

- O. Amini, F. Havet, F. Huc, et S. Thomassé. WDM and directed star arboricity. Combinatorics, Probability & Computing, 2010.
- D. Gonçalves, F. Havet, A. Pinlou, et S. Thomassé. On spanning galaxies in digraphs. Discrete Applied Mathematics, 2012.