Adjacent Vertex Distinguishing Edge Coloring on Powers of Paths

Mayara Midori Omai Sheila Morais de Almeida Diana Sasaki Nobrega

Federal University of Technology - Paraná Rio de Janeiro State University

September, 2017

Apoio ao Desenvolvimento Científico e Tecnológico do Paraná

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

AVD-edge coloring

Set of colors of a vertex

For any vertex v, the **set of colors** of v is composed by the colors of the edges incident to v and, it is denoted by C(v).

AVD-edge coloring

Adjacent vertex distinguishing edge coloring

An adjacent vertex distinguishing edge coloring (AVD-edge coloring) is a proper edge coloring of G, such that $C(u) \neq C(v)$ for any two adjacent vertices, u and v.

AVD-Edge Coloring Problem

AVD-Edge Coloring Problem

The AVD-Edge Coloring Problem is to determine the least number of colors for which G has an AVD-edge coloring. This number is called **AVD-chromatic index** and it is denoted by $\chi'_a(G)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

Theorem (Zhang; Liu; Whang, 2002)

If the degree of any two adjacent vertices of a graph G are different, then $\chi_a'(G)=\Delta(G).$

Theorem (Zhang; Liu; Whang, 2002)

If G is a graph which has two adjacent maximum degree vertices, then $\chi'_a(G) \ge \Delta(G) + 1.$

Conjecture (Zhang; Liu; Whang, 2002)

For any connected graph G with at least 3 vertices, $G \ncong C_5$, then $\chi'_a(G) \leq \Delta(G) + 2$.

Powers of paths

A power of a path, denoted by P_n^k , is a graph $V(P_n^k) = \{v_0, v_1, \dots, v_{n-1}\}$ and there is an edge $v_i v_j$ if, and only if, $|j - i| \leq k$, $0 \leq i, j < n$.

Corolary (OMAI; ALMEIDA; SASAKI, 2017)

Let P_n^k be a power of a path not isomorphic to P_2^1 with exactly q vertices of maximum degree. So,

$$\chi_a'(P_n^k) = \begin{cases} \Delta(P_n^k), & \text{if } n = 2k+1, \\ \Delta(P_n^k) + 2, & \text{if } k+1 < n < 2k, n \text{ is even, } q > \frac{n}{2} \text{ and } |E(\overline{P_n^k})| < q - \frac{n}{2}, \\ \Delta(P_n^k) + 2, & \text{if } n \leqslant k+1 \text{ and } n \text{ is even,} \\ \Delta(P_n^k) + 1, & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Parcial results

If n = 2k + 1 and k is odd, then $\chi'_a(P_n^k) = \Delta(P_n^k)$.

1. Partite the set of vertices in $L = \{v_0, v_1, \dots, v_{\lfloor \frac{k}{2} \rfloor}\};$ $C = \{v_{\lfloor \frac{k}{2} \rfloor + 1}, v_{\lfloor \frac{k}{2} \rfloor + 2}, \dots, v_{\lfloor \frac{k}{2} \rfloor + k}\};$ and $R = \{v_{\lfloor \frac{k}{2} \rfloor + k + 1}, \dots, v_{n-1}\}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Parcial results

If n = 2k + 1 and k is odd, then $\chi'_a(P^k_n) = \Delta(P^k_n)$. 2. G[L], G[C] and G[R] are subgraphs of K_k . 3. G[L], G[C] and G[R] are colored with k colors.

Parcial Results

If n = 2k + 1 and k is odd, then $\chi'_a(P_n^k) = \Delta(P_n^k)$. 4. $B = [C, L \cup R, E]$ is a bipartite graph.

B

▲山 ▶ ▲西 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

Parcial Results

If n = 2k + 1 and k is odd, then $\chi'_a(P_n^k) = \Delta(P_n^k)$. 5. $B \setminus \{v_0 v_k\}$ is colored with k new colors.

Parcial Results

If n = 2k + 1 and k is odd, then $\chi'_a(P_n^k) = \Delta(P_n^k)$.

 $\chi_a'(G) = 2k = 2.3 = 6$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

If $k + 1 < n \leq 2k$ even and $q > \frac{n}{2}$, so $\chi'_a(P_n^k) = \Delta(P_n^k) + 1$ when $|E(\overline{P_n^k})| \ge q - \frac{n}{2}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

1. Build a graph G^* by adding the vertex v^* .

2. Label the vertices of $G^* - v^*$ according to increase order of their degrees.

Let Y be the set of vertices with degree less than $\Delta(G^*)$. So, $Y = \{v_1, v_2\}$ and y = |Y| = 2.

3. Build a multigraph G' by adding a vertex v'_i and connecting it with v_{2i-1} and v_{2i} by $n - d_{G^*}(v_{2i-1})$ edges each one, $1 \le i \le \frac{y}{2}$.

4. Add y edges between v'_1 and v^* .

5. Let $V' = \{v'_1, v'_2, \dots, v'_{\frac{V}{2}}\}$. Make the coloring of the edges incidents to V' using n colors.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Let $G'_y = G'[Y \cup V' \cup \{v^*\}]$. We extend the coloring of $G'_y = G'_2$ for coloring $G'_{y+1} = G_3$, using the same *n* colors, until G'_n be colored.

6. Build a bipartite graph B with partition (A_1, A_2) , where $A_1 = \{u_1, u_2, \ldots, u_y, u^*\}$ and $A_2 = \{c'_1, c'_2, \ldots, c'_n\}$.

7. Make the coloring of G'_3 using the bipartite graph B obtained from G'_2 .

7. Make the coloring of G'_3 using the bipartite graph B obtained from G'_2 .

Result of the edge coloring of G'_6 .

We only need to remove the vertices v^* and v'_i , $1 \le i \le \frac{y}{2}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ◆

We used *n* colors, then $\chi'_a(P_n^k) = \Delta(P_n^k) + 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Thank you ;)

