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Total coloring

Total coloring of a graph G (simple and connected):

C : V (G)→ C, where C is a set with k colors

Convex total coloring

C is convex if G[C−1(c)] is connected ∀ c ∈ C
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Partial coloring

Partial coloring

C : V (G)→ C ∪ {∅}, where ∅ denotes no color

Convex partial coloring

if C can be extended to a convex total coloring
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The convex recoloring problem

Input:

Partially colored graph (G,C) and weights w : V (G)→ Q≥
Objective:

Find a convex partial recoloring C ′ : V → C ∪ {∅} of G

Minimize ∑
v∈R(C′)

w(v)

R(C ′) := {v ∈ V (G) | C(v) 6= ∅ and C(v) 6= C ′(v)}
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Known results

Complexity

NP-hard on paths even if each color appears at most twice
[Kanj and Kratsch, 2009]

NP-hard on k-colored grids for each k ≥ 2
[Campêlo et al., 2014]

Approximation algorithms

Ratio 2 for paths [Moran and Snir, 2007]

Ratio (2 + ε) for trees [Bar-Yehuda et al., 2008]

Ratio 3
2 for general graphs in which each color appears at

most twice [Bar-Yehuda et al., 2016]
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Known results

Approximation threshold

O(log n) on n-vertex bipartite graphs [Campêlo et al., 2014]

FPT algorithms (param. k = number of color changes)

Kernel of size O(k2) on trees [Bodlaender et al., 2011]

O(E(G)) + 2O(k log k) on graphs in which each color appears
at most twice [Bar-Yehuda et al., 2016]
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Applications

Applications

Study of perfect phylogenetic trees [Moran and Snir, 2008]

Routing problems and transportation networks
[Kammer and Tholey, 2012]
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Connected Coloring Completion (CCC) [Chor et al., 2007]

Input:

Graph G and partial coloring C : V (G)→ C ∪ {∅}
Question:

Is it possible to extend the initial coloring C to a total convex
coloring ? is C a convex partial coloring?

Theorem [Chor et al., 2007]

CCC is NP-complete even on bipartite graphs with only two colors
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Reduction from 3SAT to CCC by [Chor et al., 2007]

Given a 3CNF formula F (e.g. (x ∨ ȳ ∨ z) ∧ (x̄ ∨ y ∨ z))

x̄ y ȳ z z̄x
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Reduction from 3SAT to CCC by [Chor et al., 2007]

Given a 3CNF formula F (e.g. (x ∨ ȳ ∨ z) ∧ (x̄ ∨ y ∨ z))
F is satisfiable iff the coloring is convex

x̄ y ȳ z z̄x

c1 c2
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Inapproximability of convex recoloring (unweighted version)

Theorem

For every ε > 0, there is no n1−ε-approximation algorithm for the
Convex Recoloring problem on bipartite graphs, unless P = NP.
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Inapproximability of convex recoloring (unweighted version)

Theorem

For every ε > 0, there is no n1−ε-approximation algorithm for the
Convex Recoloring problem on bipartite graphs, unless P = NP.

Idea of proof

Suppose the existence of a polynomial-time
n1−ε-approximation algorithm A

Using A, we decide CCC in polynomial time
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Generalized convex recoloring

r-Convex coloring

C is r-convex if G[C−1(c)] has at most r components ∀ c ∈ C
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Generalized convex recoloring

r-Convex coloring

C is r-convex if G[C−1(c)] has at most r components ∀ c ∈ C

The r-convex recoloring problem
Input:

Partially colored graph (G,C) and weights w : V (G)→ Q≥
Objective:

Find an r-convex recoloring C ′ : V → C ∪ {∅} of G

Minimize ∑
v∈R(C′)

w(v)
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Generalized Connected Coloring Completion

The r-CCC problem
Input:

Graph G and partial coloring C : V (G)→ C ∪ {∅}
Question:

Is it possible to extend the initial coloring C to a total
r-convex coloring ? is C an r-convex partial coloring?

Lemma

For every r and k ≥ 2, r-CCC is NP-complete on k-colored
bipartite graphs.
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Inapproximability of r-convex recoloring

Theorem (unweighted version)

For every r and k ≥ 2, and positive ε < 1, there is no
n1−ε-approximation for the (unweighted) r-convex recoloring
problem on k-colored n-vertex bipartite graphs, unless P = NP.

Theorem (weighted version)

For every r and k ≥ 2, there is no 2poly(n)-approximation for the
r-convex recoloring problem on k-colored n-vertex bipartite graphs,
unless P = NP.



13/19

Definitions Motivation A decision version Hardness of approximation Parameterized intractability

Inapproximability of r-convex recoloring

Theorem (unweighted version)

For every r and k ≥ 2, and positive ε < 1, there is no
n1−ε-approximation for the (unweighted) r-convex recoloring
problem on k-colored n-vertex bipartite graphs, unless P = NP.

Theorem (weighted version)

For every r and k ≥ 2, there is no 2poly(n)-approximation for the
r-convex recoloring problem on k-colored n-vertex bipartite graphs,
unless P = NP.



14/19

Definitions Motivation A decision version Hardness of approximation Parameterized intractability

Parameterized intractability

Theorem

For every r and k ≥ 2, r-CR (unweighted) problem parameterized
by the number of colors changes is W[2]-hard on k-colored
bipartite graphs.
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Parameterized intractability

Theorem

For every r and k ≥ 2, r-CR (unweighted) problem parameterized
by the number of colors changes is W[2]-hard on k-colored
bipartite graphs.

FPT-reduction from Bounded CNF Satisfiability problem
(W[2]-complete [Dantchev et al., 2011])
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Parameterized intractability

Theorem

For every r and k ≥ 2, r-CR (unweighted) problem parameterized
by the number of colors changes is W[2]-hard on k-colored
bipartite graphs.

FPT-reduction from Bounded CNF Satisfiability problem
(W[2]-complete [Dantchev et al., 2011])

Input: A CNF formula F and a positive integer p
Parameter: p
Question: Does there exist a satisfying truth assignment for F
that assigns true to at most p variables?
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That’s all folks

Thank you for your attention! :-)

phablo@ic.unicamp.br
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