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size of a collection of finite objects (e.g., graphs, sets,
vectors, numbers) satisfying certain restrictions.

General Philosophy of Ramsey Theory
Every large system contains a well organized subsystem
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How many elements of some structure must there be to
guarantee that a particular property will hold?
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Van der Waerden’s Theorem, 1927.

For any given positive integers r and n, there exists some
integer W such that if the integers 1,2, ..., W are colored with
t colors, then there are at least n integers in arithmetic
progression all of the same color.

The smallest number W is the Van der Waerden number
W(t,n).
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or a triangle

For any given positive integers r and n, there exists some
integer W such that if the integers 1,2, ..., W are colored with
t colors, then there are at least n integers in arithmetic
progression all of the same color.

The smallest number W is the Van der Waerden number
W(t,n).
Example: r =2 and n = 3.

w(2,3)>8
12345678
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Happy Ending problem, 1935.

For any positive integer n, there exists an integer N(n) such
that for any set containing N(n) points in the plane, it is
possible to select n points forming a convex polygon

It is known that N(3) = 3, N(4) =5, N(5) = 9 and N(6) = 17.
Erdds and G. Szekeres conjecture
N(n) =2""72+1
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Ramsey for Let K, be the complete graph with r vertices.
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Ramsey Theorem

For any integers n,m > 0 there exists an integer r such that
any 2-edge-coloring (red-blue) of K, contains either a K, red
or a K,, blue.

Question

What is the smallest number r = r(n, m) such that any
2-edge-coloring (red-blue) of K, contains a red K, or a blue

Ky ?
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What is known?

Known values of r(n, m)

r(n,2) = n.

r(3,3) = 6.

r(3,4) =9, in 1955.
r(3,5) = 14, in 1955.
r(3,6) = 18, in 1964.
r(3,7) = 23, in 1968.
r(3,8) =28, in 1992.
r(3,9) = 36, in 1982.
r(4,4) =18, in 1955.
r(4,5) = 25,in 1995.
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Known values of r(n, m)

Proof. Consider any 2-edge-coloring of K. l

It is known the value r(n,n) for n < 4.
Theorem [Exoo0, 1989. Angeltveit and McKay, 2017 ]

43 < r(5,5) < 48.
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GWESAl  The best recursive upper bound for r(n, m) is the following.
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Theorem [Greenwood and Gleason, 1955].

r(n,m) < r(n—1,m)+ r(n,m — 1) with strict inequality when
both terms on the right hand side are even.
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Theorem [Greenwood and Gleason, 1955].

r(n,m) < r(n—1,m)+ r(n,m — 1) with strict inequality when
both terms on the right hand side are even.

In 2010, Conlon obtained the best to date upper bound for
the diagonal case:

Theorem [Conlon, 2010].
r(n +1,n+ 1) < (Znn)n—clogn/loglogn_

In 1947, Erdbs gave a simple probabilistic proof of the
following lower bound for r(n,n).

Theorem [Erdds, 1947].

cn2"? < r(n,n) (Spencer improved the constant c to v/2/e).
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Generalizations to any Graph

R fi
compes [ The problem (G, G,)

graphs with a

Do For any graphs G, and G,, what is the smallest number
r = r(Gy, G,) such that any 2-edge-coloring (red-blue) of K,
contains a red G; or a blue G.

It is known all the ramsey numbers (G, H) for all graphs G
and H on 4 vertices. For graphs with 5 vertices without
isolates, Hendry presented in 1989 a table of (G, H) except
7 entries.



Graphs with at most 5 vertices

Ramsey for Five of the open entries have been solved:

complete

bl @ r(Ks, K4 + e) = r(5,4) = 25 [McKay and Radziszowski, 1995]
eraliA r(Ks, Ks — K1.,) = 25 [Boza, 2011]

r(Ks, B3) = 20 [Kung-Kuen, Babak and Radziszowski, 2004 ]
r(Ws,Ks — e) = 17 [Yuansheng and Hendry, 1995]
r(Ws, Ks) = 27 [Kung-Kuen, Radziszowski and Stinehour,2006 ]
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Graphs with at most 5 vertices

Ramsey for Five of the open entries have been solved:

complete

bl @ r(Ks, K4 + e) = r(5,4) = 25 [McKay and Radziszowski, 1995]
AR r(Ks,Ks — K1 2) = 25 [Boza, 2011]
r(Ks, B3) = 20 [Kung-Kuen, Babak and Radziszowski, 2004 ]
@ r(Ws,Ks — e) = 17 [Yuansheng and Hendry, 1995]
r(Ws, Ks) = 27 [Kung-Kuen, Radziszowski and Stinehour,2006 ]

There still two open cases for graphs with 5 vertices:

@ 30 < r(Ks,Ks — e) < 34 [Exoo, 1992 ]
@ 43 < r(5,5) < 48 [Ex00, 1989. Angeltveit and McKay, 2017 ]
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Paths. [Gerencser and Gyarfas, 1967]
r(Pp,Py) =m-+n/2

Cycles. [Karolyi and Rosta, 2001]

@ r(Cp,C,) =2n— 1 for m odd.
@ r(Cp,Cy) =n—1+m/2formand m even.
® r(Cp,Cy) = max{n — 1+ m/2,2m — 1} for m even, n odd.

Conjecture Trees. [Burr and Erdds, 1976]
r(Ty,Ty) <n+m—2
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Dropping one edge from complete graph

Known values for r(K,, — e, K, — ¢) and r(K,,, K, — e).

G, K€ | Ka€ |Kqe Kee | K7€| Kg€| Kg-€ | K e
Ks-e 3 5 7 9 1 | 13 | 15 17
Ks 5 7 11 | 17 | 21 | 25 | 31 ?
Kge 5 | 10 | 93 | 17 | 28 |? |2

Ky 7 11 19 ?

Kg-e 7 13 | 22

Ksg 9 16 | 2

K€ 9 ?

Kg 11 | 2

K,-€ 1 | 2
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Dropping one edge from complete graph

Known values for r(K,, — e, K, — ¢) and r(K,,, K, — e).

G, Gp| Ka® | Ky® |Kge | Kee | Ky @ | Kg® | Kg-e K e
Kg-e 3| 5 7 9 1 | 13 | 15 17
Ks 5 7 11 | 17 | 21 |25 | 31 ?
K€ 5 10 13 17 28 ? ?

Ky 7 11 19 ?

K,-e 7 13 | 22

Ks 9 16 | ?

K€ 9 ?

Kg 1 | 2

K;-€ 1 | 2

r(K3 —e,K,) =r(Ks —e,K,+1 —e) =2n — 1.




Ramsey for
complete
graphs with a
dropped edge
or a triangle

Dropping one edge from complete graph

Known values for r(K,, — e, K, — ¢) and r(K,,, K, — e).

G, Kge | K4® K -e Kse K;€| Kg® | Kg-e | K e
Ks-€ 3 7 9 1 | 13 | 15 17
Ks 5 11 17 | 21 | 25 | 31 ?
Ky€ 5 10 13 17 28 | 72 ?

Ky 7 11 19 ?

K;-e 7 13 22

Ks 9 16 ?

Kge 9

Kg 11

K;-€ 11

r(K;-e, K, )=2n-1

/.
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Dropping one edge from complete graph

r(K;-e, Koy -K1’S)=2n-1
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(K, K,)=25



Ramsey numbers for graphs with a dropped

clique

Sy We are interested in study the Ramsey numbers of (G, G,)
e ipe when G, G, are graphs with a dropped clique.
or a triangle

Definition

Let K|, ;) be the complete graph on » vertices from which a
set of edges, induced by a clique of order k, has been
dropped.

K53 Kz

We denote r(Kj,, k), Kjn, ko)) @8 r([n1, k1], [n2, ka]).
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2 forn=2

r([n,2],[4,3]){ 5 forn=3

3n—5 forn>4

3 forn=3

6 forn=4

° r([”? 3]7 [473]) - 8 forl’l =35

11 forn==6

3n—8 forn>7
=2 forn =2
°V([”72],[573]){ =7 forn =3
<3("t") —sn+4 forn>4
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2 forn=2
r([n,2],[4,3]){ 5 forn=3
3n—5 forn>4
3 forn=23
6 forn =4
@ r([n,3],[4,3) =< 8 forn=>5
11 forn =26
3n—8 forn>7
=2 forn=2
° r([n,2],[5,3]){ =7 forn=23
<3("f")—5n+4 forn>4
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6 forn=4
r([n,3],14,3])) = ¢ 8 forn=>5
11 forn=06
3n—8 forn>7

Proof.
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Kp 3 forn =6 Kug
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r([n,3],14,3])) = ¢ 8 forn=>5
11 forn=06
3n—8 for n>7

Proof (Lower bound).
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6 forn=4
r([n,3],14,3])) = ¢ 8 forn=>5
11 forn=06
3n—8 for n>7

Proof (Lower bound).
We note that K|,_; 5 is a subgraph of K, 3;:

Kin-12 K3

&7

Example forn =6
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Proof (Lower bound).
We note that K, ) is a subgraph of K|, 3, hence

r([n’3]7 [473]) > r([n - 172}7 [473])'
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Ramsey for
complete Theorem

graphs with a
dgr:;;p::g ;egl%e 3 forn=3
6 forn=4
r([n,3],14,3])) = ¢ 8 forn=>5
11 forn=06
3n—8 for n>7

Proof (Lower bound).
We note that K, ) is a subgraph of K|, 3, hence

r([n’3]7 [473]) > r([n - 172}7 [473])'

By our previous result, we know that
r(n—1,2],[4,3])) =3(n—1)—5=3n-28.
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Ramsey for
complete Theorem

graphs with a
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r([n,3],[4,3])) =< 8
11
3n—8

forn =23
forn=4
forn=>5
forn==6
for n>7

Proof (Lower bound).

Hence

We note that K, ) is a subgraph of K|, 3, hence
r([n,3],[4,3]) > r([n—1,2],[4,3]).

By our previous result, we know that

r([n—1,2],[4,3]) =3(n—1) — 5 = 3n — 8. For this, we use some
ideas used to study the Ramsey number of K, — e and some
results given by Chvatal in 1977.

r([n,3],[4,3]) >3n—38
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Ramsey for
complete Theorem

graphs with a
dgr:;;p::g ;egl%e 3 forn=3
6 forn=4
r([n,3],14,3])) = ¢ 8 forn=>5
11 forn=06
3n—8 for n>7

Proof (Upper bound).
We use induction and adapt the recursive formula for this kind of
graphs. The proof it's very technical.



Ramsey for complete graphs with a dropped
edge or a triangle

Lemma

el Letr >2andletk,... k- and r,...,t be positive integers
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with k; > 1, + 1 > 2 for all i. Then,
R([k, 1], [k t]) < R([kn — 1,11, [ka, 12], - - -, [Kirs 14])
+R([klvtl]7 [kz - 17 t2]7 ceey [kr,tr])

+R([k1,.t1], k2, 12), ... [kr — 1,8])
(r—2).
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof.
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Lower bound).
Consider the following red-blue edge-coloring of Ky:

1 2

K3 10 3
W 9 '

8

5
7 6
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Lower bound).
Consider the following red-blue edge-coloring of Ky:

Kie3)
I 10 3
g k 9 1




Ramsey for complete graphs with a dropped
edge or a triangle

Ramsey for

complete Theorem
graphs with a

dropped edge 3 forn =3
or a triangle

6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Lower bound).
Consider the following red-blue edge-coloring of Ky:

1 2

—
w
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Lower bound).
Hence r([6,3], [4,3]) > 11.
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Upper bound).



Ramsey for complete graphs with a dropped
edge or a triangle

Ramsey for
complete Theorem
graphs with a
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6 forn =4
r([n, 3], [4,3])= 8 forn=>5
11 for n==6

3n—8 forn>7

Proof (Upper bound).
Consider any red-blue edge-coloring of G = Ki;.
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Upper bound).

Consider any red-blue edge-coloring of G = K. If G does
not contain a blue K, 3 it follows that dz(v) < 2 for all
vertices v € V(G).
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6 forn=14
r([n,3],[4,3))= ¢ 8 forn=>5
11 for n==6

3n—8 forn>7

Proof (Upper bound).
Consider any red-blue edge-coloring of G = K. If G does
not contain a blue K, 3 it follows that dz(v) < 2 for all
vertices v € V(G). Hence

dR(V) 2 8

for all vertices v € V(G).
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6 forn =4
r([n, 3], [4,3])= 8 forn=>5
11 for n==6

3n—8 forn>7

Proof (Upper bound).
Letv e V(G) and {vy,...,vs} C N(v) such that the edges vv;
arered foreveryi=1,...,8.
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Upper bound).

Letv e V(G) and {vy,...,vs} C N(v) such that the edges vv;
arered foreveryi=1,...,8.

Since r([5,3],[4,3]) = 8 it follows that {v;,...,vs} contains a
red K[573].
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Upper bound).

Letv e V(G) and {vy,...,vs} C N(v) such that the edges vv;
arered foreveryi=1,...,8.

Since r([5,3],[4,3]) = 8 it follows that {v;,...,vs} contains a
red K|s 3. Suppose that the vertices of this red K5 3 are

{vl,...,vS}.
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6 forn=14
r([n,3],[4,3))=1< 8 forn=>5
11 for n=06

3n—8 forn>7

Proof (Upper bound).

Letv e V(G) and {vy,...,vs} C N(v) such that the edges vv;
arered foreveryi=1,...,8.

Since r([5,3],[4,3]) = 8 it follows that {v;,...,vs} contains a
red K|s 3. Suppose that the vertices of this red K5 3 are
{vi,...,vs}. Then the subgraph induced by {v,vi,...,vs}
contains a red K¢ 3. Therefore r([6,3],[4,3]) < 11.
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(b) Exact value for r([n,2],[5,3]) ?

Y. Li, C.C. Rousseau (1996) and B. Sudakov (2005) studied
the ramsey numbers r(K,, B,).
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graphs with a
dropped edge

ey (a) Exact value for r([n, 4], [4,3]) ?

(b) Exact value for r([n,2],[5,3]) ?
Y. Li, C.C. Rousseau (1996) and B. Sudakov (2005) studied
the ramsey numbers r(K,, B,,). By considering K|s 3 as the
book graph Bs, it was proved by Y. Li, C.C. Rousseau that

3n?
(i 11,05.3) < oo

for all positive integers n.
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ey (a) Exact value for r([n, 4], [4,3]) ?

(b) Exact value for r([n,2],[5,3]) ?
Y. Li, C.C. Rousseau (1996) and B. Sudakov (2005) studied
the ramsey numbers r(K,, B,,). By considering K|s 3 as the
book graph Bs, it was proved by Y. Li, C.C. Rousseau that

3n?
(i 11,05.3) < oo

for all positive integers n.
Is it true that r([n, 1], [5,3]) = r([n, 2], [5,3]) ?
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UCHETE (a) Exact value for r([n,4],[4,3]) ?
(b) Exact value for r([n,2],[5,3]) ?
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complete Future Work

graphs with a
dropped edge

UCHETE (a) Exact value for r([n,4],[4,3]) ?
(b) Exact value for r([n,2],[5,3]) ?
(¢) Good upper bound for r([ny, ki], [n2, ka]) ?
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MERCI!!



