Ramsey for complete graphs with a dropped edge or a triangle

Ramsey for complete graphs with a dropped edge or a triangle

Luis Pedro Montejano

Centro de Investigación en Matemáticas CIMAT, México

Join work with J. Chappelon and J. Ramírez-Alfonsín

IX Latin and American Algorithms, Graphs and Optimization Symposium LAGOS CIRM, Marseille, September 2017.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Typical problems in Ramsey Theory

Determine or estimate the maximum or minimum possible size of a collection of finite objects (e.g., graphs, sets, vectors, numbers) satisfying certain restrictions.

General Philosophy of Ramsey Theory

Every large system contains a well organized subsystem

(日) (日) (日) (日) (日) (日) (日)

Ramsey for complete graphs with a dropped edge or a triangle

Typical problems in Ramsey Theory

Determine or estimate the maximum or minimum possible size of a collection of finite objects (e.g., graphs, sets, vectors, numbers) satisfying certain restrictions.

General Philosophy of Ramsey Theory

Every large system contains a well organized subsystem

Question

How many elements of some structure must there be to guarantee that a particular property will hold?

(日) (日) (日) (日) (日) (日) (日)

Ramsey for complete graphs with a dropped edge or a triangle

One fundamental theorem of Ramsey Theory is Van der Waerden's Theorem.

Van der Waerden's Theorem, 1927.

For any given positive integers t and n, there exists some integer W such that if the integers 1, 2, ..., W are colored with t colors, then there are at least n integers in arithmetic progression all of the same color.

The smallest number W is the Van der Waerden number W(t, n).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle One fundamental theorem of Ramsey Theory is Van der Waerden's Theorem.

Van der Waerden's Theorem, 1927.

For any given positive integers t and n, there exists some integer W such that if the integers 1, 2, ..., W are colored with t colors, then there are at least n integers in arithmetic progression all of the same color.

The smallest number *W* is the Van der Waerden number W(t, n). Example: t = 2 and n = 3.

w(2,3)>8

(ロ) (同) (三) (三) (三) (○) (○)

Ramsey for complete graphs with a dropped edge or a triangle In 1935, P. Erdős and G. Szekeres posed the following question:

Happy Ending problem, 1935.

For any positive integer *n*, there exists an integer N(n) such that for any set containing N(n) points in the plane, it is possible to select *n* points forming a convex polygon

It is known that N(3) = 3, N(4) = 5, N(5) = 9 and N(6) = 17.

(日) (日) (日) (日) (日) (日) (日)

Erdős and G. Szekeres conjecture

 $N(n) = 2^{n-2} + 1$

Classical Ramsey Theorem

Ramsey for complete graphs with a dropped edge or a triangle Let K_r be the complete graph with r vertices.

Ramsey Theorem

For any integers n, m > 0 there exists an integer r such that any 2-edge-coloring (red-blue) of K_r contains either a K_n red or a K_m blue.

Question

What is the smallest number r = r(n, m) such that any 2-edge-coloring (red-blue) of K_r contains a red K_n or a blue K_m ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ramsey for complete graphs with a dropped edge or a triangle

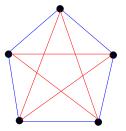
What is known?

- r(n,2) = n.
- r(3,3) = 6.
- r(3,4) = 9, in 1955.
- *r*(3,5) = 14, in 1955.
- *r*(3,6) = 18, in 1964.
- *r*(3,7) = 23, in 1968.
- *r*(3,8) = 28, in 1992.
- *r*(3,9) = 36, in 1982.
- r(4,4) = 18, in 1955.
- r(4,5) = 25, in 1995.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ramsey for complete graphs with a dropped edge or a triangle

r(3,3) = 6Proof. r(3,3) > 5.

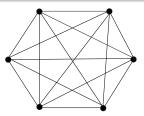


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ramsey for complete graphs with a dropped edge or a triangle

r(3,3)=6

Proof. Consider any 2-edge-coloring of K_6 .

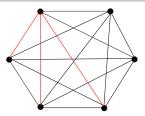


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Ramsey for complete graphs with a dropped edge or a triangle

r(3,3)=6

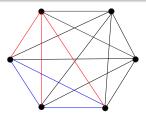
Proof. Consider any 2-edge-coloring of K_6 .



Ramsey for complete graphs with a dropped edge or a triangle

r(3,3)=6

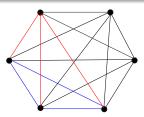
Proof. Consider any 2-edge-coloring of K_6 .



Ramsey for complete graphs with a dropped edge or a triangle

r(3,3) = 6

Proof. Consider any 2-edge-coloring of K_6 .



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

It is known the value r(n, n) for $n \le 4$.

Theorem [Exoo, 1989. Angeltveit and McKay, 2017] $43 \le r(5,5) \le 48.$

Bounds for Ramsey Numbers

Ramsey for complete graphs with a dropped edge or a triangle The best recursive upper bound for r(n,m) is the following.

Theorem [Greenwood and Gleason, 1955].

 $r(n,m) \le r(n-1,m) + r(n,m-1)$ with strict inequality when both terms on the right hand side are even.

(ロ) (同) (三) (三) (三) (○) (○)

Bounds for Ramsey Numbers

Ramsey for complete graphs with a dropped edge or a triangle The best recursive upper bound for r(n,m) is the following.

Theorem [Greenwood and Gleason, 1955].

 $r(n,m) \le r(n-1,m) + r(n,m-1)$ with strict inequality when both terms on the right hand side are even.

In 2010, Conlon obtained the best to date upper bound for the diagonal case:

Theorem [Conlon, 2010].

 $r(n+1, n+1) \le \binom{2n}{n} n^{-c \log n / \log \log n}.$

In 1947, Erdős gave a simple probabilistic proof of the following lower bound for r(n, n).

Theorem [Erdős, 1947].

 $cn2^{n/2} \leq r(n,n)$ (Spencer improved the constant *c* to $\sqrt{2}/e$).

Generalizations to any Graph

Ramsey for complete graphs with a dropped edge or a triangle

The problem $r(G_1, G_2)$

For any graphs G_1 and G_2 , what is the smallest number $r = r(G_1, G_2)$ such that any 2-edge-coloring (red-blue) of K_r contains a red G_1 or a blue G_2 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Generalizations to any Graph

Ramsey for complete graphs with a dropped edge or a triangle

The problem $r(G_1, G_2)$

For any graphs G_1 and G_2 , what is the smallest number $r = r(G_1, G_2)$ such that any 2-edge-coloring (red-blue) of K_r contains a red G_1 or a blue G_2 .

It is known all the ramsey numbers r(G, H) for all graphs *G* and *H* on 4 vertices. For graphs with 5 vertices without isolates, Hendry presented in 1989 a table of r(G, H) except 7 entries.

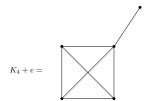
Ramsey for complete graphs with a dropped edge or a triangle Five of the open entries have been solved:

- $r(K_5, K_4 + e) = r(5, 4) = 25$ [McKay and Radziszowski, 1995]
- $r(K_5, K_5 K_{1,2}) = 25$ [Boza, 2011]
- $r(K_5, B_3) = 20$ [Kung-Kuen, Babak and Radziszowski, 2004]
- $r(W_5, K_5 e) = 17$ [Yuansheng and Hendry, 1995]
- $r(W_5, K_5) = 27$ [Kung-Kuen, Radziszowski and Stinehour, 2006]

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Ramsey for complete graphs with a dropped edge or a triangle Five of the open entries have been solved:

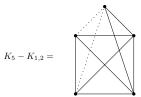
- $r(K_5, K_4 + e) = r(5, 4) = 25$ [McKay and Radziszowski, 1995]
- $r(K_5, K_5 K_{1,2}) = 25$ [Boza, 2011]
- $r(K_5, B_3) = 20$ [Kung-Kuen, Babak and Radziszowski, 2004]
- $r(W_5, K_5 e) = 17$ [Yuansheng and Hendry, 1995]
- $r(W_5, K_5) = 27$ [Kung-Kuen, Radziszowski and Stinehour, 2006]



(日) (日) (日) (日) (日) (日) (日)

Ramsey for complete graphs with a dropped edge or a triangle Five of the open entries have been solved:

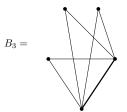
- $r(K_5, K_4 + e) = r(5, 4) = 25$ [McKay and Radziszowski, 1995]
- $r(K_5, K_5 K_{1,2}) = 25$ [Boza, 2011]
- $r(K_5, B_3) = 20$ [Kung-Kuen, Babak and Radziszowski, 2004]
- $r(W_5, K_5 e) = 17$ [Yuansheng and Hendry, 1995]
- $r(W_5, K_5) = 27$ [Kung-Kuen, Radziszowski and Stinehour, 2006]



(日) (日) (日) (日) (日) (日) (日)

Ramsey for complete graphs with a dropped edge or a triangle Five of the open entries have been solved:

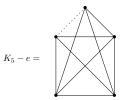
- $r(K_5, K_4 + e) = r(5, 4) = 25$ [McKay and Radziszowski, 1995]
- $r(K_5, K_5 K_{1,2}) = 25$ [Boza, 2011]
- $r(K_5, B_3) = 20$ [Kung-Kuen, Babak and Radziszowski, 2004]
- $r(W_5, K_5 e) = 17$ [Yuansheng and Hendry, 1995]
- $r(W_5, K_5) = 27$ [Kung-Kuen, Radziszowski and Stinehour, 2006]



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ramsey for complete graphs with a dropped edge or a triangle Five of the open entries have been solved:

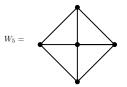
- $r(K_5, K_4 + e) = r(5, 4) = 25$ [McKay and Radziszowski, 1995]
- $r(K_5, K_5 K_{1,2}) = 25$ [Boza, 2011]
- $r(K_5, B_3) = 20$ [Kung-Kuen, Babak and Radziszowski, 2004]
- $r(W_5, K_5 e) = 17$ [Yuansheng and Hendry, 1995]
- $r(W_5, K_5) = 27$ [Kung-Kuen, Radziszowski and Stinehour, 2006]



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Ramsey for complete graphs with a dropped edge or a triangle Five of the open entries have been solved:

- $r(K_5, K_4 + e) = r(5, 4) = 25$ [McKay and Radziszowski, 1995]
- $r(K_5, K_5 K_{1,2}) = 25$ [Boza, 2011]
- $r(K_5, B_3) = 20$ [Kung-Kuen, Babak and Radziszowski, 2004]
- $r(W_5, K_5 e) = 17$ [Yuansheng and Hendry, 1995]
- $r(W_5, K_5) = 27$ [Kung-Kuen, Radziszowski and Stinehour, 2006]



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ramsey for complete graphs with a dropped edge or a triangle Five of the open entries have been solved:

- $r(K_5, K_4 + e) = r(5, 4) = 25$ [McKay and Radziszowski, 1995]
- $r(K_5, K_5 K_{1,2}) = 25$ [Boza, 2011]
- $r(K_5, B_3) = 20$ [Kung-Kuen, Babak and Radziszowski, 2004]
- $r(W_5, K_5 e) = 17$ [Yuansheng and Hendry, 1995]
- $r(W_5, K_5) = 27$ [Kung-Kuen, Radziszowski and Stinehour, 2006]

There still two open cases for graphs with 5 vertices:

- $30 \le r(K_5, K_5 e) \le 34$ [Exoo, 1992]
- 43 ≤ r(5,5) ≤ 48 [Exoo, 1989. Angeltveit and McKay, 2017]

A D F A 同 F A E F A E F A Q A

Cycles, Paths and Trees

Ramsey for complete graphs with a dropped edge or a triangle

For $m \leq n$, it is known:

Paths. [Gerencser and Gyarfas, 1967]

 $r(P_m, P_n) = m + n/2$

Cycles. [Karolyi and Rosta, 2001]

•
$$r(C_m, C_n) = 2n - 1$$
 for *m* odd.

- $r(C_m, C_n) = n 1 + m/2$ for *m* and *m* even.
- $r(C_m, C_n) = max\{n 1 + m/2, 2m 1\}$ for *m* even, *n* odd.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjecture Trees. [Burr and Erdős, 1976]

 $r(T_m,T_n) \le n+m-2$

Ramsey for complete graphs with a dropped edge or a triangle

Known values for
$$r(K_m - e, K_n - e)$$
 and $r(K_m, K_n - e)$.

G_1 G_2	K ₃ -e	K ₄ -e	к ₅ -е	К _, -е	к ₇ -е	K ⁸ -e	к ₉ -е	к _{_10} -е
K ₃ -e	3	5	7	9	11	13	15	17
K ₃	5	7	11	17	21	25	31	?
K ₄ -e	5	10	13	17	28	?	?	
K ₄	7	11	19	?	?			
K ₅ -e K ₅	7	13	22	?				
K ₅	9	16	?					
к ₆ -е	9	?						
K ₆	11	?						
К ₇ -е	11	?						

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Ramsey for complete graphs with a dropped edge or a triangle

Known values for
$$r(K_m - e, K_n - e)$$
 and $r(K_m, K_n - e)$.

G_1 G_2	K ₃ -e	K ₄ -e	к ₅ -е	K ₆ -e	K ⁷ -e	K ⁸ -e	К ₉ -е	К ₁₀ -е
K ₃ -e	3	5	7	9	11	13	15	17
K ₃	5	7	11	17	21	25	31	?
K ₄ -e	5	10	13	17	28	?	?	
K ₄	7	11	19	?	?			
K ₅ -e	7	13	22	?				
K ₅	9	16	?					
к ₆ -е	9	?						
K ₆	11	?						
К ₇ -е	11	?						

 $r(K_3 - e, K_n) = r(K_3 - e, K_{n+1} - e) = 2n - 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Ramsey for complete graphs with a dropped edge or a triangle

Known values for
$$r(K_m - e, K_n - e)$$
 and $r(K_m, K_n - e)$.

G_1 G_2	к ₃ -е	K ₄ -e	K ₅ -e	К _. -е	K ₇ -e	K ⁸ -e	К ₉ -е	К ₁₀ -е
K ₃ -e	3	5	7	9	11	13	15	17
K ₃	5	7	11	17	21	25	31	?
K ₄ -e	5	10	13	17	28	?	?	
K ₄	7	11	19	?	?			
K ₅ -e	7	13	22	?				
K ₅	9	16	?					
к ₆ -е	9	?						
K ₆	11	?						
К ₇ -е	11	?						

 $r(K_3-e, K_n)=2n-1$

(a)

Ramsey for complete graphs with a dropped edge or a triangle

G ₁ G ₂	K ₃ -e	K ₄ -e	К ₅ -е	К _. -е	K ₇ -e	K ⁸ -e	K ⁹ -e	К ₁₀ -е
K ₃ -e	3	5	7	9	11	13	15	17
K ₃	5	7	11	17	21	25	31	?
K ₄ -e	5	10	13	17	28	?	?	
K ₄	7	11	19	?	?			
К ₅ -е	7	13	22	?				
K ₅	9	16	?					
к ₆ -е	9	?						
K ₆	11	?						
К ₇ -е	11	?						

r(K₃-e, K_{n+1}-K_{1,n-1})=2n-1 $\left(\kappa_{n} \right)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ramsey for complete graphs with a dropped edge or a triangle

G_1 G_2	К ₃ -е	K ₄ -e	К ₅ -е	К _. -е	K ₇ -e	K ⁸ -e	K ⁹ -e	К ₁₀ -е
K ₃ -e	3	5	7	9	11	13	15	17
K ₃	5	7	11	17	21	25	31	?
K ₄ -e	5	10	13	17	28	?	?	
K ₄	7	11	19	?	?			
К ₅ -е	7	13	22	?				
K ₅	9	16	?					
к _е -е	9	?						
K ₆	11	?						
қ ₇ -е	11	?						

r(K₃-e, K_{n+1}-K_{1,s})=2n-1 K_n -

Ramsey for complete graphs with a dropped edge or a triangle

Question.

For which *s* the equality $r(G, K_{n+1} - K_{1,s}) = r(G, K_n)$ holds?

Ramsey for complete graphs with a dropped edge or a triangle

Question.

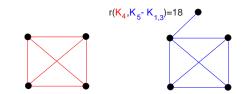
For which *s* the equality $r(G, K_{n+1} - K_{1,s}) = r(G, K_n)$ holds?

r(4,4)=18

Ramsey for complete graphs with a dropped edge or a triangle

Question.

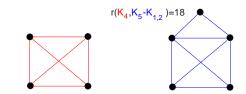
For which *s* the equality $r(G, K_{n+1} - K_{1,s}) = r(G, K_n)$ holds?



Ramsey for complete graphs with a dropped edge or a triangle

Question.

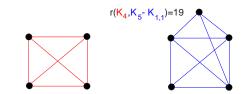
For which *s* the equality $r(G, K_{n+1} - K_{1,s}) = r(G, K_n)$ holds?



Ramsey for complete graphs with a dropped edge or a triangle

Question.

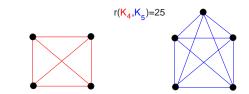
For which *s* the equality $r(G, K_{n+1} - K_{1,s}) = r(G, K_n)$ holds?



Ramsey for complete graphs with a dropped edge or a triangle

Question.

For which *s* the equality $r(G, K_{n+1} - K_{1,s}) = r(G, K_n)$ holds?

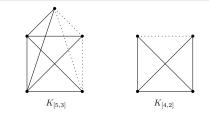


Ramsey numbers for graphs with a dropped clique

Ramsey for complete graphs with a dropped edge or a triangle We are interested in study the Ramsey numbers of $r(G_1, G_2)$ when G_1, G_2 are graphs with a dropped clique.

Definition

Let $K_{[n,k]}$ be the complete graph on *n* vertices from which a set of edges, induced by a clique of order *k*, has been dropped.



(ロ) (同) (三) (三) (三) (○) (○)

We denote $r(K_{[n_1,k_1]}, K_{[n_2,k_2]})$ as $r([n_1,k_1], [n_2,k_2])$.

Now reculte

Ramsey for complete graphs with a dropped edge or a triangle

	new re	suits	
• $r([n,2],[4,3]) = \begin{cases} \end{cases}$	253n-5	for $n = 2$ for $n = 3$ for $n \ge 4$	
• $r([n,3],[4,3]) = \begin{cases} \\ \end{cases}$	3 6 8 11 3 <i>n</i> - 8	for $n = 3$ for $n = 4$ for $n = 5$ for $n = 6$ for $n \ge 7$	
• $r([n,2],[5,3]) = \begin{cases} \end{cases}$	= 2 = 7 $\leq 3\binom{n+1}{2}$) - 5n + 4	for $n = 2$ for $n = 3$ for $n \ge 4$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Now require

Ramsey for complete graphs with a dropped edge or a triangle

	new re	suits	
• $r([n,2],[4,3]) = \begin{cases} \end{cases}$	253n-5	for $n = 2$ for $n = 3$ for $n \ge 4$	
• $r([n,3],[4,3]) = \begin{cases} \\ \end{cases}$	3 6 8 11 3 <i>n</i> - 8	for $n = 3$ for $n = 4$ for $n = 5$ for $n = 6$ for $n \ge 7$	
• $r([n,2],[5,3]) = \begin{cases} \end{cases}$	= 2 = 7 $\leq 3 \binom{n+1}{2}$)-5n+4	for $n = 2$ for $n = 3$ for $n \ge 4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

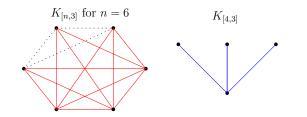
Proof.

Ramsey for complete graphs with a dropped edge or a triangle

Theorem



Proof.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ramsey for complete graphs with a dropped edge or a triangle

Theorem



Proof (Lower bound).

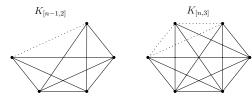
Ramsey for complete graphs with a dropped edge or a triangle

Theorem

$$r([n,3],[4,3]) = \begin{cases} 3 & \text{for } n = 3 \\ 6 & \text{for } n = 4 \\ 8 & \text{for } n = 5 \\ 11 & \text{for } n = 6 \\ 3n - 8 & \text{for } n \ge 7 \end{cases}$$

Proof (Lower bound).

We note that $K_{[n-1,2]}$ is a subgraph of $K_{[n,3]}$:



Example for n = 6, the set of n = 9

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

$$r([n,3],[4,3]) = \begin{cases} 3 & \text{for } n = 3 \\ 6 & \text{for } n = 4 \\ 8 & \text{for } n = 5 \\ 11 & \text{for } n = 6 \\ 3n - 8 & \text{for } n \ge 7 \end{cases}$$

Proof (Lower bound).

We note that $K_{[n-1,2]}$ is a subgraph of $K_{[n,3]}$, hence $r([n,3], [4,3]) \ge r([n-1,2], [4,3]).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

ſ	3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Lower bound).

We note that $K_{[n-1,2]}$ is a subgraph of $K_{[n,3]}$, hence $r([n,3],[4,3]) \ge r([n-1,2],[4,3]).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

By our previous result, we know that

r([n-1,2],[4,3]) = 3(n-1) - 5 = 3n - 8.

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Lower bound).

We note that $K_{[n-1,2]}$ is a subgraph of $K_{[n,3]}$, hence $r([n,3], [4,3]) \ge r([n-1,2], [4,3]).$

By our previous result, we know that r([n-1,2], [4,3]) = 3(n-1) - 5 = 3n - 8. For this, we use some ideas used to study the Ramsey number of $K_n - e$ and some results given by Chvátal in 1977. Hence

 $r([n,3],[4,3]) \geq 3n \underset{\text{constant}}{-8} \underset{\text{consta$

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Upper bound).

We use induction and adapt the recursive formula for this kind of graphs. The proof it's very technical.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Ramsey for complete graphs with a dropped edge or a triangle

Lemma

Let $r \ge 2$ and let k_1, \ldots, k_r and t_1, \ldots, t_r be positive integers with $k_i \ge t_i + 1 \ge 2$ for all *i*. Then,

 $R([k_1, t_1], \dots, [k_r, t_r]) \leq R([k_1 - 1, t_1], [k_2, t_2], \dots, [k_r, t_r]) \\ + R([k_1, t_1], [k_2 - 1, t_2], \dots, [k_r, t_r]) \\ \vdots \\ + R([k_1, t_1], [k_2, t_2], \dots, [k_r - 1, t_r]) \\ (r - 2).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof.

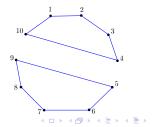
Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Lower bound).

Consider the following red-blue edge-coloring of K_{10} :



うくぐ

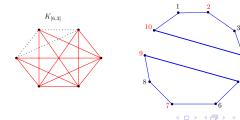
Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Lower bound).

Consider the following red-blue edge-coloring of K_{10} :



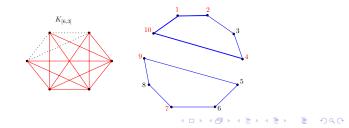
Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Lower bound).

Consider the following red-blue edge-coloring of K_{10} :



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Lower bound). Hence $r([6,3], [4,3]) \ge 11$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Upper bound).

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Upper bound).

Consider any red-blue edge-coloring of $G = K_{11}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Upper bound).

Consider any red-blue edge-coloring of $G = K_{11}$. If *G* does not contain a blue $K_{[4,3]}$ it follows that $d_B(v) \le 2$ for all vertices $v \in V(G)$.

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Upper bound).

Consider any red-blue edge-coloring of $G = K_{11}$. If *G* does not contain a blue $K_{[4,3]}$ it follows that $d_B(v) \le 2$ for all vertices $v \in V(G)$. Hence

 $d_{\boldsymbol{R}}(v) \geq 8$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

for all vertices $v \in V(G)$.

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Upper bound).

Let $v \in V(G)$ and $\{v_1, \ldots, v_8\} \subseteq N(v)$ such that the edges vv_i are red for every $i = 1, \ldots, 8$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n - 8	for $n \ge 7$

Proof (Upper bound).

Let $v \in V(G)$ and $\{v_1, \ldots, v_8\} \subseteq N(v)$ such that the edges vv_i are red for every $i = 1, \ldots, 8$. Since r([5,3], [4,3]) = 8 it follows that $\{v_1, \ldots, v_8\}$ contains a red $K_{[5,3]}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n-8	for $n \ge 7$

Proof (Upper bound).

Let $v \in V(G)$ and $\{v_1, \ldots, v_8\} \subseteq N(v)$ such that the edges vv_i are red for every $i = 1, \ldots, 8$. Since r([5,3], [4,3]) = 8 it follows that $\{v_1, \ldots, v_8\}$ contains a red $K_{[5,3]}$. Suppose that the vertices of this red $K_{[5,3]}$ are $\{v_1, \ldots, v_5\}$.

Ramsey for complete graphs with a dropped edge or a triangle

Theorem

	(3	for $n = 3$
	6	for $n = 4$
$r([n,3],[4,3]) = \langle$	8	for $n = 5$
	11	for $n = 6$
	3n-8	for $n \ge 7$

Proof (Upper bound).

Let $v \in V(G)$ and $\{v_1, \ldots, v_8\} \subseteq N(v)$ such that the edges vv_i are red for every $i = 1, \ldots, 8$. Since r([5,3], [4,3]) = 8 it follows that $\{v_1, \ldots, v_8\}$ contains a red $K_{[5,3]}$. Suppose that the vertices of this red $K_{[5,3]}$ are $\{v_1, \ldots, v_5\}$. Then the subgraph induced by $\{v, v_1, \ldots, v_5\}$ contains a red $K_{[6,3]}$. Therefore $r([6,3], [4,3]) \leq 11$.

Future Work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(a) Exact value for r([n, 4], [4, 3]) ?

Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(*a*) Exact value for r([n,4],[4,3]) ?
(*b*) Exact value for r([n,2],[5,3]) ?

Future Work

- (a) Exact value for r([n, 4], [4, 3]) ?
- (b) Exact value for r([n, 2], [5, 3]) ?

Y. Li, C.C. Rousseau (1996) and B. Sudakov (2005) studied the ramsey numbers $r(K_n, B_m)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Future Work

- (a) Exact value for r([n, 4], [4, 3]) ?
- (b) Exact value for r([n, 2], [5, 3]) ?

Y. Li, C.C. Rousseau (1996) and B. Sudakov (2005) studied the ramsey numbers $r(K_n, B_m)$. By considering $K_{[5,3]}$ as the book graph B_3 , it was proved by Y. Li, C.C. Rousseau that

$$r([n,1],[5,3]) \le \frac{3n^2}{\log(n/e)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

for all positive integers *n*.

Ramsey for

Future Work

- (a) Exact value for r([n, 4], [4, 3]) ?
- (b) Exact value for r([n, 2], [5, 3]) ?

Y. Li, C.C. Rousseau (1996) and B. Sudakov (2005) studied the ramsey numbers $r(K_n, B_m)$. By considering $K_{[5,3]}$ as the book graph B_3 , it was proved by Y. Li, C.C. Rousseau that

$$r([n,1],[5,3]) \le \frac{3n^2}{\log(n/e)}$$

for all positive integers *n*.

Is it true that r([n, 1], [5, 3]) = r([n, 2], [5, 3])?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(*a*) Exact value for r([n,4],[4,3]) ?
(*b*) Exact value for r([n,2],[5,3]) ?

Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- (*a*) Exact value for r([n, 4], [4, 3]) ?
- (b) Exact value for r([n, 2], [5, 3]) ?
- (c) Good upper bound for $r([n_1, k_1], [n_2, k_2])$?

MERCI!!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●