
Reconstructing perfect phylogenies via
binary matrices, branchings in DAGs, and

a generalization of Dilworth’s theorem

Martin Milanič
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A perfect phylogeny is a rooted tree
representing the evolutionary history
of a set of m objects such that:

I The objects bijectively label the
leaves of the tree.

I There are n binary characters,
each labeling exactly one edge of
the tree.

I For each leaf, the set of
characters that appear on the
unique root-to-leaf path is the set
of characters taking value 1 at
the object labeling the leaf.
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Every perfect phylogeny naturally corresponds to an m × n
binary matrix having objects as rows and characters as
columns:
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The perfect phylogeny problem asks the opposite question:
Does a given binary matrix correspond to a perfect phylogeny?
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The perfect phylogeny problem is solved:

a binary matrix corresponds to a perfect phylogeny if and only if
it is conflict-free. [Estabrook et al. 1975, Gusfield 1991].



Two columns i and j of a binary matrix M are said to be
in conflict if there exist rows r , r ′, r ′′ of M such that

M[(r , r ′, r ′′), (i , j)] =

 1 1
1

1

 .

A binary matrix M is conflict-free if no two columns of M are in
conflict.

The perfect phylogeny problem and various generalizations of it
have been extensively studied in computational biology.



We look at two generalizations, first considered by
Hajirasouliha and Raphael (WABI 2014)
and motivated by applications in cancer genomics.
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We look at two generalizations, first considered by
Hajirasouliha and Raphael (WABI 2014)
and motivated by applications in cancer genomics.
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How can a given binary matrix be explained in the simplest
possible way?

This question leads to two optimization problems.



1. The minimum conflict-free row split (MCRS) problem:

Split each row of a given binary matrix into a bitwise OR of a
set of rows so that the resulting matrix is conflict-free

(that is, it corresponds to a perfect phylogeny)

and has the minimum number of rows among all matrices
with this property.
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1. The minimum conflict-free row split (MCRS) problem:

Split each row of a given binary matrix into a bitwise OR of a
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2. The minimum distinct conflict-free row split (MDCRS)
problem:

the variant of the problem in which the task is to minimize the
number of distinct rows of the resulting matrix.
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2. The minimum distinct conflict-free row split (MDCRS)
problem:

the variant of the problem in which the task is to minimize the
number of distinct rows of the resulting matrix.
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2. The minimum distinct conflict-free row split (MDCRS)
problem:

the variant of the problem in which the task is to minimize the
number of distinct rows of the resulting matrix.
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Previous result: a chromatic lower bound



Given a binary matrix M and a row r of M, let us denote by
GM,r the so-called row-conflict graph, where:

I we associate a vertex to each entry 1 in r ,
I edges represent conflicting column pairs.
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Given a binary matrix M and a row r of M, let us denote by
GM,r the so-called row-conflict graph, where:

I we associate a vertex to each entry 1 in r ,
I edges represent conflicting column pairs.
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Given a binary matrix M and a row r of M, let us denote by
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In the paper introducing the problem,
Hajirasouliha and Raphael (WABI 2014)
proved that in order to resolve conflicts, each row of M needs to
be split into at least χ(GM,r ) rows.

Hence,
OPTMCRS(M) ≥

∑
r

χ(GM,r ) .
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A characterization of row-conflict graphs



Hajirasouliha and Raphael claimed that every graph G is a
row-conflict graph.

Well, not really . . .

We show:

Proposition
A graph G is a row-conflict graph if and only if its complement is
transitively orientable.



Transitively orientable graphs are also called comparability
graphs.

⇒ row-conflict graphs are exactly the cocomparability graphs.

The list of forbidden induced subgraphs for cocomparability
graphs is known (Gallai, 1967):

Cn, n ≥ 6

C2n+1, n ≥ 2

Figure source: http://graphclasses.org



The chromatic number of a cocomparability graph can be
computed efficiently using Dilworth’s theorem.

It follows that the lower bound∑
r

χ(GM,r )

can be computed in polynomial time.



Let us recall: Dilworth’s theorem (1950)



Consider an arbitrary DAG (directed acyclic graph) D = (V ,A).

A chain in D is a set {v1, . . . , vt} of vertices such that there is a
path from vi to vi+1 in D, for all i = 1, . . . , t − 1.

A chain partition of D is a family of vertex-disjoint chains
P = {C1, . . . ,Cp} covering V .

An antichain in D is a set of vertices that are unreachable from
each other.
(Equivalently, an independent set in the transitive closure of D.)

The width of D is the maximum size of an antichain.



Theorem (Dilworth, 1950)
In every DAG, the minimum size of a chain partition equals the
width of D.

antichain of size 2

chain partition of size 2

chain



Remark:
Dilworth’s theorem is equivalent to the statement that every
cocomparability graph is perfect.

I Minimum chain partitions of the DAG correspond to optimal colorings of
the complement of the underlying graph of its transitive closure (which
is a cocomparability graph).

An optimal chain partition can be computed in time O(|V |5/2)
by a solving a matching problem in a derived bipartite graph.

[Fulkerson 1956, Hopcroft-Karp 1973].



Back to the MCRS problem
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Hajirasouliha and Raphael claimed that the MCRS problem is
NP-hard.

The proof was based on a reduction from the chromatic number
problem in graphs and relied on the (erroneous) claim that
every graph is a row-conflict graph.

They also presented an exponential-time algorithm based on
graph coloring that, if correct, would imply that the
lower bound is always attained with equality.

This is not the case.



We show:

Given a binary matrix M, it is NP-hard to determine whether
OPTMCRS(M) =

∑
r χ(GM,r ).

Corollary: The MCRS problem is NP-hard.

We also showed that the MDCRS problem is NP-hard.

Reductions are from 3-edge-colorability in cubic graphs.



A heuristic for MCRS



The lower bound OPTMCRS(M) ≥
∑

r χ(GM,r ) follows from the
fact that

in every conflict-free row split of the input matrix M,

the rows replacing row r
can be used to produce a valid vertex coloring of GM,r .



The difficulty in reversing this argument is due to the fact that

we cannot independently combine the splits of rows r of M
according to optimal colorings of their conflict graphs,
as new conflicts may arise.
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Given a binary matrix M, let us denote by GM its
conflict graph:

I we associate a vertex to each column of M
I edges represent conflicting column pairs.
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Given a binary matrix M, let us denote by GM its
conflict graph:

I we associate a vertex to each column of M
I edges represent conflicting column pairs.
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Given a binary matrix M, let us denote by GM its
conflict graph:

I we associate a vertex to each column of M
I edges represent conflicting column pairs.
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Can we color the graph GM instead?

Difficulty:

Every graph G = (V ,E) of minimum degree at least 2 has

G ∼= GM ,

where M ∈ {0,1}E×V is the edge-vertex incidence matrix of G.

It follows that optimally coloring conflict graphs is NP-hard.



Observation:
If two columns are not in conflict, then their support sets
are either disjoint or comparable (contained in one another).

Thus, GM = Hd ∪ Hc ,

“disjointness graph” ∪ “containment graph”.

I If we keep only the “containment” part of it, then
Hc is a comparability graph

and an optimal coloring of Hc (a supergraph of GM )
can be found efficiently (using Dilworth’s theorem).

I The subgraphs of Hc induced by V (GM,ri ) are exactly the
GM,ri graphs (hence the coloring of Hc gives rise to a valid
row split).

So we have a heuristic algorithm for the MCRS problem
based on coloring cocomparability graphs.
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Formulations in terms of
branchings in DAGs



A given binary matrix M is transformed into its
containment digraph DM :

I vertices = support sets of the columns
I arcs = containment relation
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By construction, DM is always a DAG (directed acyclic graph).



Definition
A branching in a DAG D = (V ,A) is a subset B of A such that
in the digraph (V ,B) for each vertex v there is at most one arc
leaving v .

Two branchings of DM :

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}



Given a branching B of DM , we can count two quantities:

1. The number of uncovered pairs:

A pair (r , v) is uncovered if r ∈ v ∈ V and
r 6∈ ∪{w : w ∈ N−B (v)}

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}



2. The number of irreducible vertices:

A vertex v ∈ V is irreducible if v 6= ∪{w : w ∈ N−B (v)}

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}



Theorem
The MCRS problem on a given binary matrix M
is equivalent to the problem of finding a branching in DM

minimizing the number of uncovered pairs.
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Theorem
The MDCRS problem on a given binary matrix M
is equivalent to the problem of finding a branching in DM

minimizing the number of irreducible vertices.
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Theorem
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Theorem
The MCRS problem on a given binary matrix M
is equivalent to the problem of finding a branching in DM

minimizing the number of uncovered pairs.
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(r4, v2)

column indices

columns of M=
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1 1 10 0 0



(In)approximability issues



Theorem
The MCRS and the MDCRS problems are APX-hard,
even for instances of height 2.

In other words, the two problems do not admit a PTAS
(polynomial-time approximation scheme) unless P = NP .



Reductions are from vertex cover in cubic graphs,

For MCRS:

v1

v2v3

v4

E(v1) ∪ {x, y} E(v2) ∪ {x, y} E(v3) ∪ {x, y} E(v4) ∪ {x, y}

E(v1) ∪ {y} E(v2) ∪ {y} E(v3) ∪ {y} E(v4) ∪ {y}E(v1) ∪ {x} E(v2) ∪ {x} E(v3) ∪ {x} E(v4) ∪ {x}

E ∪ {x}G DM

For MDCRS:

G DM

e1 e2
e3

e4 e5

e6 e1 e2 e3 e4 e5 e6

{e1, e2, e3} {e1, e4, e6} {e2, e4, e5} {e3, e5, e6}



Initial transformations:

For MCRS:
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A 2-approximation to the MDCRS problem can be obtained
using a connection with laminar families.

A hypergraph H is said to be laminar if every two hyperedges
e, f ∈ E(H) satisfy e ∩ f = ∅, e ⊆ f , or f ⊆ e.



Facts:

1. A binary matrix M is conflict-free if and only if its column
hypergraph HM is laminar.
1.1 vertices = rows
1.2 hyperedges = support sets of the columns

 1 1
1

1



2. (Schrijver, 2003)
Every laminar hypergraph H satisfies |E(H)| ≤ 2|V (H)|.

⇒ the trivial row splitting operation 2-approximates MDCRS



Constant-factor approximation algorithm for MCRS? Open.

Theorem
There is an h-approximation algorithm for the MCRS problem,
where h is the height of DM .

The algorithm: Return any branching.

I Fix an optimal branching B. Every pair (r , v) can be
reached from some uncovered pair (r , v ′) of B.

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}

At most h pairs can be reached from any (r , v ′).



Theorem
There is a w-approximation algorithm for the MCRS problem,
where w is the width of DM .

The algorithm:
Return any branching arising from an optimal chain partition of
DM .

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}
[Use Dilworth’s theorem.]

[Use Dilworth’s theorem.]

I ∀r , there are ≤ w uncovered pairs of the form (r , v)
(at most one in each path)

⇒ total # of uncovered pairs is ≤ w · number of ri ’s



A generalization of Dilworth’s theorem



antichain of size 2

chain partition of size 2

chain partition of size 2

The heuristic to the MCRS problem based on optimal colorings
of the corresponding cocomparability graph

returned the solution corresponding to any minimum chain
partition of DM .



We show that it is possible to compute in polynomial time a
chain partition P of DM
minimizing the number of uncovered pairs.

In addition, #chains in P = width(DM).

This improves on the previous heuristic.

The result is a consequence of a more general min-max result,
which is a weighted generalization of Dilworth’s theorem.
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price of a chain C: Π(C) = maxv∈C πv .

price of a chain partition P = {C1, . . . ,Cp}:
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I a monotone weight function π : V → Z+
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price of a chain C: Π(C) = maxv∈C πv .
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Given:
I a DAG D = (V ,A),
I a monotone weight function π : V → Z+

(monotone: πu ≤ πv for every (u, v) ∈ A)

price of a chain C: Π(C) = maxv∈C πv

price of a chain partition P = {C1, . . . ,Cp}:

Π(P) =

p∑
i=1

Π(Ci) .

v2 = {r1, r3, r4}

v6 = {r1}
1

2

3

1

2

3

Π({C1, C2}) = 6

C1 C2

πv = |v|Π({C1, C2}) = 6



Goal: given (D, π), find a chain partition of minimum price.

Why does this solve our problem?

Number of uncovered pairs = the price of the chain partition

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}

v1 = {r1, r2, r3}

v3 = {r2, r3}

v5 = {r3}

v2 = {r1, r3, r4}

v4 = {r1, r3}

v6 = {r1}

v4 = {r1, r3}



A tower of antichains of D is a sequence

T = (N1,N2, . . . ,Nwidth(D))

of antichains with |Ni | = i .

value of an antichain N is val(N) = minv∈N πv

value of a tower T = (N1,N2, . . . ,Nwidth(D)):

val(T ) =

width(D)∑
i=1

val(Ni) .

π(v) = |v|

1

2

3

1

2

3

val(N1, N2) = 2 + 3 = 5

val(N2) = 3

val(N1) = 2



Easy fact:
∀ chain partition P and ∀ tower of antichains T :

Π(P) ≥ val(T ) .

Theorem
Every DAG D with a monotone weight function π has a chain
partition

P = {C1, . . . ,Cwidth(D)}

and a tower of antichains T such that Π(P) = val(T ). Moreover,
such a pair (P,T ) can be computed in time O(|V (D)|7/2).

The proof is by induction.
The inductive step uses Dilworth’s theorem.



The unit weight case?

In the case of unit weights, we have:
I Π(P) = number of chains in P
I val(T ) = width of D

So we get Dilworth’s theorem.

Remarks:
The minimum price partition problem becomes:

I NP-hard for non-monotone weight functions

This follows from the fact that Weighted Coloring is
NP-hard in interval graphs.

[Escoffier, Monnot, and Paschos 2006]

I APX-hard if there is a bound on the length of the chains in
the partition. [Moonen and Spieksma 2008]



Summary

optimal branching

equivalent to

special case of

restrict the solution space

MCRS

optimal linear branching

min price chain partition

APX-hard

min price bounded chain partition

polynomial

polynomial

APX-hard

[Moonen-Spieksma, 2008]
pallet-loading
(from a Dutch manufacturing company)

cancer genomics

APX-hard

APPLICATION:

restrict the solution space

?

APPLICATION:

“XOR” row splits

(“OR” row splits)

APPLICATION:



Open questions:

1. (In)approximability of MCRS?
I How bad is the lower bound

∑
r χ(GM,r )?

2. Complexity of MCRS and MDCRS for instances of
bounded width?

3. (Suggested by Ekki Köhler:)
Minimize maxr |{(r , v) : (r , v) is uncovered}|

4. Applications of the min price partition problem?



Thank you!

Merci!


