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Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
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m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <
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= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

m Multiple commodities: {s;, t;};

m Each commodity has a different flow demand; A(\ /\

m The capacities of the edges are shared between the

flows of each commodity. W \/

m Again, the edge capacity and flow conservation
constraints must be satisfied.
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Introduction: complexity

= The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

m Even if the flow must be integral, i.e. an integer-valued function
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Introduction: complexity

= The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

m Even if the flow must be integral, i.e. an integer-valued function

= By using linear programming, the MULTICOMMODITY FLOW problem can be
solved in polynomial-time if the flows are real-valued functions

= On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is a
NP-complete problem if the flows must be integral.
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Introduction: simple two-commodity integral instances

= An instance of a network flow problem is called simple if the capacity of all edges
of the input graph are unitary.
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Introduction: simple two-commodity integral instances

= An instance of a network flow problem is called simple if the capacity of all edges
of the input graph are unitary.

= A particular case of MULTICOMMODITY INTEGRAL FLOW is the SIMPLE
TWO-COMMODITY INTEGRAL FLOW problem

m Simple instances
® Only two-commodities

= Integral flows.
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Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

= In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE
TWO-COMMODITY INTEGRAL FLOW

m Both in the directed and undirected cases.
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Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

= In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE
TWO-COMMODITY INTEGRAL FLOW

m Both in the directed and undirected cases.

m For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

= Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

= The main goal of our work is to close this forty-year complexity gap.
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Introduction: SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

Input: An undirected graph G, two commodities {s1, t } and {sz, t>}, where sy, t;,
s and t, are vertices of G, and two demands Dy, D, € Z7.

Question: Are there two flow functions f;, f>: {W, v | uv € E(G)} — Zg such that
foreach uv € E(G)andi € {1,2},
fi(av) = 0 or f;(vli) = 0;

for each uv € E(G), the total flow through uv does not exceed its
unitary capacity, i.e.

max {f,(UV), £ (V) } + max {f(aV), f(V0)} < 1;

foreachi € {1,2} and v € V' \ {s;, i}, the flow function f; is
conserved at v, i.e.

ST oG = > #(W):and
XxENgG(V) yENg(v)
foreach i € {1,2},
Fi= 3 #()>D?

veNg(t)
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NP-completeness of SIMPLE U2CIF with a unitary demand

= We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary
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NP-completeness of SIMPLE U2CIF with a unitary demand

= We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

® By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

m So, let | = (X, C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of /.

m We construct from / an instance g(/) = (G, {s1, t1 }, {S2, &2}, D1, D>) of SIMPLE
U2CIF as follows.
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SIMPLE U2CIF: construction of the instance g(/)

= We define Dy = 1 and D, = 5m, where m = |C|.
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SIMPLE U2CIF: construction of the instance g(/)

= We define Dy = 1 and D, = 5m, where m = |C|.

= For each variable x; € X, we create the gadget Gy;:

m p;: the number of occurrences of the positive literal x;;

®m ¢;: the number of occurrences of the negative literal x;.
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SIMPLE U2CIF: construction of the instance g(/)

= We connect the gadgets Gy, to one another in series:
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SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,
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SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;
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SIMPLE U2CIF: construction of the instance g(/)
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SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;
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SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !
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SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
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m we create the clause vertices ue, and we,, and we add five parallel edges
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= we create the vertices y;, y5 and z;, z5, and we add the following edges;
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SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z;, z5, and we add the following edges;

= Finally, we add the edges uj véj_1 and vé'jw,; if the «-th literal in C, corresponds
to the j-th occurrence of the positive literal x;;
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SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z;, z5, and we add the following edges;

= Finally, we add the edges uj véj_1 and vé'jw,; if the «-th literal in C, corresponds
to the j-th occurrence of the positive literal x;;

= And, we add the edges v} V5; ; and Viw; if the s-th literal in C, corresponds to
the j-th occurrence of the negative literal x;.
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SIMPLE U2CIF: relation between the g(/) and / instances

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-
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SIMPLE U2CIF: relation between the g(/) and / instances

Lemma

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-
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SIMPLE U2CIF: relation between the g(/) and / instances

Lemma

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-
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If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-
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a(x;) = true. a(x;) = false.

g(/) is Yes instance of SIMPLE U2CIF ifand only if | is a YES instance of 3-SAT.
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SIMPLE U2CIF: relation between the g(/) and / instances

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

i i i b
V2p,—1 V2p, Vb1 Vb,
ot a5t
Vag,—1 V2q v} Vag,—1 Vg

a(x;) = true. a(x;) = false.

g(/) is Yes instance of SIMPLE U2CIF ifand only if | is a YES instance of 3-SAT.

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.
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Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

S1 S92 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.

t1 ta ty
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Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

51 S2 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

m In 1975, Karp proved the NP-completeness of k-VERTEX-DISJOINT PATHS.

= On the other hand, in 1995, Robertson and Seymour gave an O(n®)-time
algorithm for k-VERTEX-DISJOINT PATHS, for fixed k.
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Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

51 S2 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

m In 1975, Karp proved the NP-completeness of k-VERTEX-DISJOINT PATHS.

= On the other hand, in 1995, Robertson and Seymour gave an O(n®)-time
algorithm for k-VERTEX-DISJOINT PATHS, for fixed k.

= In 2011, Kawarabayashi et al. proposed an O(n?)-time algorithm for
k-VERTEX-DISJOINT PATHS and k-EDGE-DISJOINT PATHS, for fixed k.
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Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

51 S2 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

m In 1975, Karp proved the NP-completeness of k-VERTEX-DISJOINT PATHS.

= On the other hand, in 1995, Robertson and Seymour gave an O(n®)-time
algorithm for k-VERTEX-DISJOINT PATHS, for fixed k.

= In 2011, Kawarabayashi et al. proposed an O(n?)-time algorithm for
k-VERTEX-DISJOINT PATHS and k-EDGE-DISJOINT PATHS, for fixed k.

m Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.
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The k + 1 disjoint paths problems

m Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

m In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT
PATHS problem.

k + 1 VERTEX-DISJOINT PATHS (k + 1 VDP)

Input: An undirected graph G, two unordered pairs {s1, t } and {sz, t,} of vertices

of Gand k € Z™.

Question: Does G admit k + 1 vertex-disjoint paths, such that one path is between

sy and t; and k paths are between s, and £,?
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The k + 1 disjoint paths problems

m Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

m In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT
PATHS problem.

= Similarly to SIMPLE U2CIF, we prove that k + 1 VERTEX-DISJOINT PATHS is a
NP-complete problem

m By a polynomial-time reduction from 3-SAT.
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k + 1 VDP: construction of the instance g(/)

IZ(X1 \/X2\/X3)/\(Y1 \/X2\/X3)/\(X1 VYQVY;;)
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k + 1 VDP: construction of the instance g(/)

I=(1 VX2V X3)A(X1V X2V X3)A (X1 VXV X3)
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k + 1 VDP: construction of the instance g(/)

/:(X1 \/X2\/X3)/\(71 VX2VX3)/\(X1 \/Xig\/Ys)
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k + 1 VDP: construction of the instance g(/)

IZ(X1 \/X2VX3)/\(71 \/Xg\/X3)/\(X1 V)TzVYs)
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k + 1 VDP: construction of the instance g(/)

| = (X1 \/X2VX3)/\(71 \/X2VX3)/\(X1 V72V73)

m k = |C| paths between s, and t, and 1 path between s; and ¢;.
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Conclusion

= In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

= Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

= As future work, we intend to analyse the complexity of these problems when they
are restricted to some specific graphs, e.g. planar graphs.
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Thank you for your attention!

Alexsander A. Melo
aamelo@cos.ufrj.br
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