Simple Undirected Two-Commodity Integral Flow

with a Unitary Demand

Alexsander A. Melo! Celina M. H. Figueiredo! Uéverton S. Souza?

"Federal University of Rio de Janeiro, Brazil
2Federal Fluminense University, Brazil

LA&OS 2013

/’\/

0-‘

September 15, 2017

September 2017 1/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

¥ <>

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

m Multiple commodities: {s;, t;};

/X\/\
W\/

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

m Multiple commodities: {s;, t;};

m Each commodity has a different flow demand; A(\ /\

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

m Multiple commodities: {s;, t;};

m Each commodity has a different flow demand; A(\« A

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

m Multiple commodities: {s;, t;};

m Each commodity has a different flow demand; />(\ A

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

m Multiple commodities: {s;, t;};

m Each commodity has a different flow demand; A<'\ /\

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

m Multiple commodities: {s;, t;};

m Each commodity has a different flow demand; A(\ /\

m The capacities of the edges are shared between the

flows of each commodity. W \/

Introduction September 2017 2/20

Introduction

m The classical single-commodity flow problem is well-known as MAXIMUM FLOW

B The goal is to send the maximum possible flow from
the source s into the sink t;

m The edge capacity and flow conservation constraints
must be satisfied. <

X <>

\
-/

= A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW
problem

m Multiple commodities: {s;, t;};

m Each commodity has a different flow demand; A(\ /\

m The capacities of the edges are shared between the

flows of each commodity. W \/

m Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2/20

Introduction: complexity

= The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

m Even if the flow must be integral, i.e. an integer-valued function

Introduction September 2017 3/20

Introduction: complexity

= The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

m Even if the flow must be integral, i.e. an integer-valued function

= By using linear programming, the MULTICOMMODITY FLOW problem can be
solved in polynomial-time if the flows are real-valued functions

Introduction September 2017 3/20

Introduction: complexity

= The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

m Even if the flow must be integral, i.e. an integer-valued function

= By using linear programming, the MULTICOMMODITY FLOW problem can be
solved in polynomial-time if the flows are real-valued functions

= On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is a
NP-complete problem if the flows must be integral.

Introduction September 2017 3/20

Introduction: simple two-commodity integral instances

= An instance of a network flow problem is called simple if the capacity of all edges
of the input graph are unitary.

Introduction September 2017 4/20

Introduction: simple two-commodity integral instances

= An instance of a network flow problem is called simple if the capacity of all edges
of the input graph are unitary.

= A particular case of MULTICOMMODITY INTEGRAL FLOW is the SIMPLE
TWO-COMMODITY INTEGRAL FLOW problem

m Simple instances
® Only two-commodities

= Integral flows.

Introduction September 2017 4/20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

= In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE
TWO-COMMODITY INTEGRAL FLOW

m Both in the directed and undirected cases.

Introduction September 2017 5/20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

= In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE
TWO-COMMODITY INTEGRAL FLOW

m Both in the directed and undirected cases.

m For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

Introduction September 2017 5/20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

= In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE
TWO-COMMODITY INTEGRAL FLOW

m Both in the directed and undirected cases.

m For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

= Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

Introduction September 2017 5/20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

= In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE
TWO-COMMODITY INTEGRAL FLOW

m Both in the directed and undirected cases.

m For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

= Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

= The main goal of our work is to close this forty-year complexity gap.

Introduction September 2017 5/20

Introduction: SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

Input: An undirected graph G, two commodities {s1, t } and {sz, t>}, where sy, t;,
s and t, are vertices of G, and two demands Dy, D, € Z7.

Question: Are there two flow functions f;, f>: {W, v | uv € E(G)} — Zg such that
foreach uv € E(G)andi € {1,2},
fi(av) = 0 or f;(vli) = 0;

for each uv € E(G), the total flow through uv does not exceed its
unitary capacity, i.e.

max {f,(UV), £ (V) } + max {f(aV), f(V0)} < 1;

foreachi € {1,2} and v € V' \ {s;, i}, the flow function f; is
conserved at v, i.e.

ST oG = > #(W):and
XxENgG(V) yENg(v)
foreach i € {1,2},
Fi= 3 #()>D?

veNg(t)

Introduction September 2017 6/20

NP-completeness of SIMPLE U2CIF with a unitary demand

= We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

Simple U2CIF with a unitary demand September 2017 7/20

NP-completeness of SIMPLE U2CIF with a unitary demand

= We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

® By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

Simple U2CIF with a unitary demand September 2017 7/20

NP-completeness of SIMPLE U2CIF with a unitary demand

= We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

® By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

m So, let | = (X, C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of /.

Simple U2CIF with a unitary demand September 2017 7/20

NP-completeness of SIMPLE U2CIF with a unitary demand

= We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

® By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

m So, let | = (X, C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of /.

m We construct from / an instance g(/) = (G, {s1, t1 }, {S2, &2}, D1, D>) of SIMPLE
U2CIF as follows.

Simple U2CIF with a unitary demand September 2017 7/20

SIMPLE U2CIF: construction of the instance g(/)

= We define Dy = 1 and D, = 5m, where m = |C|.

Simple U2CIF with a unitary demand September 2017 8/20

SIMPLE U2CIF: construction of the instance g(/)

= We define Dy = 1 and D, = 5m, where m = |C|.

= For each variable x; € X, we create the gadget Gy;:

m p;: the number of occurrences of the positive literal x;;

®m ¢;: the number of occurrences of the negative literal x;.

Simple U2CIF with a unitary demand September 2017 8/20

SIMPLE U2CIF: construction of the instance g(/)

= We connect the gadgets Gy, to one another in series:

1 1
Vap,—1 V2p,

1
h

11
vy vy

n
vl

n—1 n n n
V2p_1—1 U1 V2p,, ~1V2p,,

—n—1 zn—1 zn-1
ot ! g,

o

sn o own i
Uy Uy V2,102, 1

Simple U2CIF with a unitary demand September 2017

9/20

SIMPLE U2CIF: construction of the instance g(/)

= We connect the gadgets Gy, to one another in series:

1 1
Vap,—1 V2p,

n—1

v

n on n 7
UL V2 V2p,1V2p,

nl i1 o1

vty V2pn_1-1

—n—1 —n-1 gn—1 [—

] vy T 1 U Ty v

i

~=n—1
Y201

September 2017

Simple U2CIF with a unitary demand

9/20

SIMPLE U2CIF: construction of the instance g(/)

= We connect the gadgets Gy, to one another in series:

1 1
Vap,—1 V2p,

n—1

v

"

i

~=n—1
Y201

Simple U2CIF with a unitary demand

" "
V2p,~1V2p,,

T
R V2pn_1-1
Zn—1 zn—1 zn—1 i
1TV T 1 vl

September 2017

9/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices uc, and we,

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices uc, and we,

OQWe; QWey -+ OWe,,
Oue, Otue, - Ou,,

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

OQWe; QWey -+ OWe,,
Oue, Otue, - Ou,,

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

52
@)
QWe; QWep --- QWe,,
Oue, Otue, - Ou,,
(@)
ta

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

S2
m We, QWe, --- We,,
Uey DUey ~7° Uey,
ta

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

1 Ll 20 202 o m
Wi, W, Wi, WiW;, Wi, wy, Wy, Wiy

Lolul w2u2u? My ma,m
(RO ARTATAT upug gy

Simple U2CIF with a unitary demand September 2017

10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z{, z;

My g

1001001 200200.20,2))
Wi, W, Wi, WiW;, Wi, wy, Wy, Wiy

mym,m

Lol w2202
wy gy, UG UL upugyugy

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z{, z;

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z;, z5, and we add the following edges;

S2

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z;, z5, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z;, z5, and we add the following edges;

= Finally, we add the edges uj véj_1 and vé'jw,; if the «-th literal in C, corresponds
to the j-th occurrence of the positive literal x;;

Simple U2CIF with a unitary demand September 2017 10/20

SIMPLE U2CIF: construction of the instance g(/)

For each clause C, € C,

m we create the clause vertices ue, and we,, and we add five parallel edges
between s, and uc, and five parallel edges between w;, and &;

m we create the literal vertices u;1 , u;2 R u,L3 and w,ﬁ , w;2 , w,; , and we add the edges
upue, and wiwe,, for1 < i < 3;
1 !

= we create the vertices y;, y5 and z;, z5, and we add the following edges;

= Finally, we add the edges uj véj_1 and vé'jw,; if the «-th literal in C, corresponds
to the j-th occurrence of the positive literal x;;

= And, we add the edges v} V5; ; and Viw; if the s-th literal in C, corresponds to
the j-th occurrence of the negative literal x;.

Simple U2CIF with a unitary demand September 2017 10/20

o
o
(S
©
X
()
c

<

Qo
[oX
S
©
x
()
c

<

V X2 V X3)

I=(x1V X2V X3) A (X1

o
o
(S
©
X
()
c

<

X1V Xo V

/\(71\/X2\/X3)A(

)

V Xo V X3

II(X1

o
o
(S
©
X
()
c

<

SIMPLE U2CIF: relation between the g(/) and / instances

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

Simple U2CIF with a unitary demand September 2017 12/20

SIMPLE U2CIF: relation between the g(/) and / instances

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

vy vy vy

i i i
P Vip,—1 Vap,

S omi om i =i i
vy Uy, Ty Ty Tsg,—1 Vg,

Simple U2CIF with a unitary demand September 2017 12/20

SIMPLE U2CIF: relation between the g(/) and / instances

Lemma

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

i i i i i
vy vy v Vhp—1 Uy,
Ty Ty T Ty Vg, 1 Vag vl

i i
Vdp,—1 Vap,

- =i
V2g;—1 V2g,

Simple U2CIF with a unitary demand September 2017 12/20

SIMPLE U2CIF: relation between the g(/) and / instances

Lemma

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

i i i i i i
v V2 Uz Uy Vdp,—1 Vap,

DT U T Va1 Tl

- =i
V2g;—1 V2g,
[— — — — - - — — JUSE = ~

ac, € {uc,,we, }

Simple U2CIF with a unitary demand September 2017 12/20

SIMPLE U2CIF: relation between the g(/) and / instances

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

i i i i
V2p,—1 V2p, Vb1 Uy,
i a5 ot ot i a5t a5 i
vy U U2g,-1 Vag v} U2g,—1 V2g, 0}

— — — — . - —

g(/) is Yes instance of SIMPLE U2CIF ifand only if | is a YES instance of 3-SAT.

Simple U2CIF with a unitary demand September 2017 12/20

SIMPLE U2CIF: relation between the g(/) and / instances

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

i i i i i i i i
vp vy vy vy Vb1 Uy, Vb1 Uy,
i i i i ot ot i a5t a5 i
vy Uy Uy U Vg, 1 Vag Wl vl U2gi—1 Vg, v}

— — — — . - —

a(x;) = true. a(x;) = false.

g(/) is Yes instance of SIMPLE U2CIF ifand only if | is a YES instance of 3-SAT.

Simple U2CIF with a unitary demand September 2017 12/20

SIMPLE U2CIF: relation between the g(/) and / instances

If g(1) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1,t;} U V(Gx,) U - - - U V(Gxy,)-

i i i b
V2p,—1 V2p, Vb1 Vb,
ot a5t
Vag,—1 V2q v} Vag,—1 Vg

a(x;) = true. a(x;) = false.

g(/) is Yes instance of SIMPLE U2CIF ifand only if | is a YES instance of 3-SAT.

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.

Simple U2CIF with a unitary demand September 2017 12/20

o
o
(S
©
X
()
c

<

X1V X2V X3)A (X1 VX2 VX

)/\(X1

V Xo V X3

(x4

o
o
(S
©
X
()
c

<

X1V X2V X3)A (X1 VX2 VX

)/\(X1

V Xo V X3

o
o
(S
©
X
()
c

<

X1V X2V X3)A (X1 VX2 VX

)/\(X1

V Xo V X3

o
o
(S
©
X
()
c

<

X1V X2V X3)A (X1 VX2 VX

)/\(X1

V Xo V X3

o
o
(S
©
X
()
c

<

X1V X2V X3)A (X1 VX2 VX

)/\(X1

V Xo V X3

o
o
(S
©
X
()
c

<

X1V X2V X3)A (X1 VX2 VX

)/\(X1

V Xo V X3

o
o
(S
©
X
()
c

<

Qo
[oX
S
©
x
()
c

<

VX2V X3) A (X1 VX2V X3)

X1

(

(X1 V Xo \/X3) A\

/

Qo
[oX
S
©
x
()
c

<

)A (X1 VX2V X3)

X1V X2V X3

(

/:(X1\/X2\/X3)/\

Qo
[oX
S
©
x
()
c

<

)A (X1 VX2V X3)

X1V X2V X3

(

/:(X1\/X2\/X3)/\

K+1 VERTEX-DISJOINT PATHS

k+1 vertex-disjoint paths September 2017 14/20

Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

S1 S92 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.

t1 ta ty

k+1 vertex-disjoint paths September 2017 15/20

Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

S1 S92 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

k+1 vertex-disjoint paths September 2017 15/20

Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

S1 S92 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

m In 1975, Karp proved the NP-completeness of k-VERTEX-DISJOINT PATHS.

k+1 vertex-disjoint paths September 2017 15/20

Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

51 S2 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

m In 1975, Karp proved the NP-completeness of k-VERTEX-DISJOINT PATHS.

= On the other hand, in 1995, Robertson and Seymour gave an O(n®)-time
algorithm for k-VERTEX-DISJOINT PATHS, for fixed k.

k+1 vertex-disjoint paths September 2017 15/20

Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

51 S2 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

m In 1975, Karp proved the NP-completeness of k-VERTEX-DISJOINT PATHS.

= On the other hand, in 1995, Robertson and Seymour gave an O(n®)-time
algorithm for k-VERTEX-DISJOINT PATHS, for fixed k.

= In 2011, Kawarabayashi et al. proposed an O(n?)-time algorithm for
k-VERTEX-DISJOINT PATHS and k-EDGE-DISJOINT PATHS, for fixed k.

k+1 vertex-disjoint paths September 2017 15/20

Disjoint paths problems

m SIMPLE U2CIF is closely related to disjoint paths problems

51 S2 Sk
m It can be reduced to the k-EDGE-DISJOINT PATHS
problem.
m Thus, K-EDGE-DISJOINT PATHS is NP-complete.
t1 to tk

m In 1975, Karp proved the NP-completeness of k-VERTEX-DISJOINT PATHS.

= On the other hand, in 1995, Robertson and Seymour gave an O(n®)-time
algorithm for k-VERTEX-DISJOINT PATHS, for fixed k.

= In 2011, Kawarabayashi et al. proposed an O(n?)-time algorithm for
k-VERTEX-DISJOINT PATHS and k-EDGE-DISJOINT PATHS, for fixed k.

m Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.

k+1 vertex-disjoint paths September 2017 15/20

The k + 1 disjoint paths problems

m Besides SiMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

k+1 vertex-disjoint paths September 2017 16/20

The k + 1 disjoint paths problems

m Besides SiMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

m In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT
PATHS problem.

k+1 vertex-disjoint paths September 2017 16/20

The k + 1 disjoint paths problems

m Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

m In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT
PATHS problem.

k + 1 VERTEX-DISJOINT PATHS (k + 1 VDP)

Input: An undirected graph G, two unordered pairs {s1, t } and {sz, t,} of vertices

of Gand k € Z™.

Question: Does G admit k + 1 vertex-disjoint paths, such that one path is between

sy and t; and k paths are between s, and £,?

k+1 vertex-disjoint paths September 2017 16/20

The k + 1 disjoint paths problems

m Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

m In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT
PATHS problem.

= Similarly to SIMPLE U2CIF, we prove that k + 1 VERTEX-DISJOINT PATHS is a
NP-complete problem

m By a polynomial-time reduction from 3-SAT.

k+1 vertex-disjoint paths September 2017 16/20

k + 1 VDP: construction of the instance g(/)

IZ(X1 \/X2\/X3)/\(Y1 \/X2\/X3)/\(X1 VYQVY;;)

k+1 vertex-disjoint paths September 2017 17720

k + 1 VDP: construction of the instance g(/)

I=(1 VX2V X3)A(X1V X2V X3)A (X1 VXV X3)

k+1 vertex-disjoint paths September 2017 17720

k + 1 VDP: construction of the instance g(/)

/:(X1 \/X2\/X3)/\(71 VX2VX3)/\(X1 \/Xig\/Ys)

k+1 vertex-disjoint paths September 2017 17720

k + 1 VDP: construction of the instance g(/)

IZ(X1 \/X2VX3)/\(71 \/Xg\/X3)/\(X1 V)TzVYs)

k+1 vertex-disjoint paths September 2017 17720

k + 1 VDP: construction of the instance g(/)

| = (X1 \/X2VX3)/\(71 \/X2VX3)/\(X1 V72V73)

m k = |C| paths between s, and t, and 1 path between s; and ¢;.

k+1 vertex-disjoint paths September 2017 17720

Conclusion

Conclusion September 2017 18/20

Conclusion

= In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

Conclusion September 2017 18/20

Conclusion

= In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

= Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

Conclusion September 2017 18/20

Conclusion

= In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

= Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

= As future work, we intend to analyse the complexity of these problems when they
are restricted to some specific graphs, e.g. planar graphs.

Conclusion September 2017 18/20

Thank you for your attention!

Alexsander A. Melo
aamelo@cos.ufrj.br

Conclusion September 2017 19/20

References |

Cormen, H. T,, Leiserson, E. C., Rivest, L. R and Stein, C., Introduction to Algorithms, MIT
Press, third edition, 2009.

Even, S., Itai, A. and Shamir, A., On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput. 5:4 (1976), 691-703.

Edmonds, J. and Karp, R. M., Theoretical improvements in algorithmic efficiency for network
flow problems, J. ACM 19:2 (1972), 248—-264.

Fortune, S., Hopcroft, J. and Wyllie, J., The directed subgraph homeomorphism problem,
Theoret. Comput. Sci. 10 (1980), 111-121.

Karp, R. M., On the computational complexity of combinatorial problems, Networks 5 (1975),
45-68.

Kawarabayashi, K., Kobayashi, Y. and Reed, B., The disjoint paths problem in quadratic time,
J. Combin. Theory Ser. B 102 (2012), 424-435

Perl, Y. and Shiloach, Y., Finding two disjoint paths between two pairs of vertices in a graph, J.
ACM 25:1 (1978), 1-9.

Roberson, N. and Seymour, P. D., Graph minors. XlII. The disjoint paths problem, J. Combin.
Theory Ser. B 63:1 (1995), 651-10.

Tali, E., The disjoint shortest paths problem, Discrete Appl. Math. 85 (1998), 113—-138.

T T T 1 7 A P A 1

Conclusion September 2017 20/20

	Introduction
	Simple U2CIF with a unitary demand
	k+1 vertex-disjoint paths
	Conclusion

