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Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.
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Introduction: complexity

The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

Even if the flow must be integral, i.e. an integer-valued function

By using linear programming, the MULTICOMMODITY FLOW problem can be
solved in polynomial-time if the flows are real-valued functions

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is a
NP-complete problem if the flows must be integral.
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Introduction: simple two-commodity integral instances

An instance of a network flow problem is called simple if the capacity of all edges
of the input graph are unitary.

A particular case of MULTICOMMODITY INTEGRAL FLOW is the SIMPLE

TWO-COMMODITY INTEGRAL FLOW problem

Simple instances

Only two-commodities

Integral flows.
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Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE

TWO-COMMODITY INTEGRAL FLOW

Both in the directed and undirected cases.

For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

The main goal of our work is to close this forty-year complexity gap.
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Introduction: SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

Input: An undirected graph G, two commodities {s1, t1} and {s2, t2}, where s1, t1,
s2 and t2 are vertices of G, and two demands D1, D2 2 Z+.

Question: Are there two flow functions f1, f2 : {
�!uv ,�!vu | uv 2 E(G)} ! Z+

0 such that

1 for each uv 2 E(G) and i 2 {1, 2},

fi (
�!uv) = 0 or fi (

�!vu) = 0;

2 for each uv 2 E(G), the total flow through uv does not exceed its
unitary capacity , i.e.

max {f1(
�!uv), f1(

�!vu)} + max {f2(
�!uv), f2(

�!vu)}  1;

3 for each i 2 {1, 2} and v 2 V \ {si , ti}, the flow function fi is
conserved at v , i.e.

X

x2NG(v)

fi (
�!xv) =

X

y2NG(v)

fi (
�!vy); and

4 for each i 2 {1, 2},

Fi =
X

v2NG(ti )

fi (
�!
vti ) � Di ?
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NP-completeness of SIMPLE U2CIF with a unitary demand

We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

So, let I = (X , C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of I.

We construct from I an instance g(I) = (G, {s1, t1}, {s2, t2},D1,D2) of SIMPLE

U2CIF as follows.
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SIMPLE U2CIF: construction of the instance g(I)

We define D1 = 1 and D2 = 5m, where m = |C|.

For each variable xi 2 X , we create the gadget Gxi :

pi : the number of occurrences of the positive literal xi ;

qi : the number of occurrences of the negative literal xi .
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SIMPLE U2CIF: construction of the instance g(I)

We connect the gadgets Gxi to one another in series:
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SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆

, and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20
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An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)
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SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [ V (Gx1 ) [ · · · [ V (Gxn ).

↵(xi ) = true. ↵(xi ) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20



SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [ V (Gx1 ) [ · · · [ V (Gxn ).

↵(xi ) = true. ↵(xi ) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20



SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [ V (Gx1 ) [ · · · [ V (Gxn ).

↵(xi ) = true. ↵(xi ) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20



SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [ V (Gx1 ) [ · · · [ V (Gxn ).

↵(xi ) = true. ↵(xi ) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20



SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [ V (Gx1 ) [ · · · [ V (Gxn ).

↵(xi ) = true. ↵(xi ) = false.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.

Simple U2CIF with a unitary demand September 2017 12 / 20



SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [ V (Gx1 ) [ · · · [ V (Gxn ).

↵(xi ) = true. ↵(xi ) = false.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.

Simple U2CIF with a unitary demand September 2017 12 / 20



SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [ V (Gx1 ) [ · · · [ V (Gxn ).

↵(xi ) = true. ↵(xi ) = false.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.

Simple U2CIF with a unitary demand September 2017 12 / 20



An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

↵(x1) = true ↵(x2) = true ↵(x3) = false.
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K+1 VERTEX-DISJOINT PATHS
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Disjoint paths problems

SIMPLE U2CIF is closely related to disjoint paths problems

It can be reduced to the k -EDGE-DISJOINT PATHS

problem.

Thus, k -EDGE-DISJOINT PATHS is NP-complete.

In 1975, Karp proved the NP-completeness of k -VERTEX-DISJOINT PATHS.

On the other hand, in 1995, Robertson and Seymour gave an O(n3
)-time

algorithm for k -VERTEX-DISJOINT PATHS, for fixed k .

In 2011, Kawarabayashi et al. proposed an O(n2
)-time algorithm for

k -VERTEX-DISJOINT PATHS and k -EDGE-DISJOINT PATHS, for fixed k .

Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.
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The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k -EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT

PATHS problem.
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that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT

PATHS problem.

k + 1 VERTEX-DISJOINT PATHS (k + 1 VDP)

Input: An undirected graph G, two unordered pairs {s1, t1} and {s2, t2} of vertices
of G and k 2 Z+.

Question: Does G admit k + 1 vertex-disjoint paths, such that one path is between
s1 and t1 and k paths are between s2 and t2?
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The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k -EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT

PATHS problem.

Similarly to SIMPLE U2CIF, we prove that k + 1 VERTEX-DISJOINT PATHS is a
NP-complete problem

By a polynomial-time reduction from 3-SAT.
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k + 1 VDP: construction of the instance g(I)

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

k = |C| paths between s2 and t2 and 1 path between s1 and t1.
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Conclusion

In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

As future work, we intend to analyse the complexity of these problems when they
are restricted to some specific graphs, e.g. planar graphs.
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Thank you for your attention!

Alexsander A. Melo
aamelo@cos.ufrj.br
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