Simple Undirected Two-Commodity Integral Flow with a Unitary Demand

Alexsander A. Melo¹ Celina M. H. Figueiredo¹ Uéverton S. Souza²

¹Federal University of Rio de Janeiro, Brazil ²Federal Fluminense University, Brazil

September 15, 2017

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem
 - Multiple commodities: $\{s_i, t_i\}$;

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem
 - Multiple commodities: $\{s_i, t_i\}$;
 - Each commodity has a different flow demand;

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem
 - Multiple commodities: $\{s_i, t_i\}$;
 - Each commodity has a different flow demand;

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem
 - Multiple commodities: $\{s_i, t_i\}$;
 - Each commodity has a different flow demand;

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem
 - Multiple commodities: $\{s_i, t_i\}$;
 - Each commodity has a different flow demand;

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem
 - Multiple commodities: $\{s_i, t_i\}$;
 - Each commodity has a different flow demand;
 - The capacities of the edges are shared between the flows of each commodity.

- The classical single-commodity flow problem is well-known as MAXIMUM FLOW
 - The goal is to send the maximum possible flow from the source s into the sink t;
 - The edge capacity and flow conservation constraints must be satisfied.

- A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW problem
 - Multiple commodities: $\{s_i, t_i\}$;
 - Each commodity has a different flow demand;
 - The capacities of the edges are shared between the flows of each commodity.
 - Again, the edge capacity and flow conservation constraints must be satisfied.

■ The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

Even if the flow must be integral, *i.e.* an integer-valued function

- The MAXIMUM FLOW problem is a classical polynomial-time solvable problem
 - Even if the flow must be integral, *i.e.* an integer-valued function
- By using linear programming, the MULTICOMMODITY FLOW problem can be solved in polynomial-time if the flows are real-valued functions

- The MAXIMUM FLOW problem is a classical polynomial-time solvable problem
 - Even if the flow must be integral, *i.e.* an integer-valued function
- By using linear programming, the MULTICOMMODITY FLOW problem can be solved in polynomial-time if the flows are real-valued functions
- On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is a NP-complete problem if the flows must be integral.

An instance of a network flow problem is called *simple* if the capacity of all edges of the input graph are **unitary**.

- An instance of a network flow problem is called *simple* if the capacity of all edges of the input graph are **unitary**.
- A particular case of MULTICOMMODITY INTEGRAL FLOW is the SIMPLE TWO-COMMODITY INTEGRAL FLOW problem
 - Simple instances
 - Only two-commodities
 - Integral flows.

- In 1976, Even, Itai and Shamir proved the <u>NP-completeness</u> of SIMPLE TWO-COMMODITY INTEGRAL FLOW
 - Both in the directed and undirected cases.

- In 1976, Even, Itai and Shamir proved the <u>NP-completeness</u> of SIMPLE TWO-COMMODITY INTEGRAL FLOW
 - Both in the directed and undirected cases.
- For the directed case, they proved that the problem is still <u>NP-complete</u> if the demand of one commodity is unitary.

- In 1976, Even, Itai and Shamir proved the <u>NP-completeness</u> of SIMPLE TWO-COMMODITY INTEGRAL FLOW
 - Both in the directed and undirected cases.
- For the directed case, they proved that the problem is still <u>NP-complete</u> if the demand of one commodity is unitary.
- Nevertheless, for the undirected case, the hard instance constructed by them does not satisfy the condition of a demand to be unitary or even bounded by a constant.

- In 1976, Even, Itai and Shamir proved the <u>NP-completeness</u> of SIMPLE TWO-COMMODITY INTEGRAL FLOW
 - Both in the directed and undirected cases.
- For the directed case, they proved that the problem is still <u>NP-complete</u> if the demand of one commodity is unitary.
- Nevertheless, for the undirected case, the hard instance constructed by them does not satisfy the condition of a demand to be unitary or even bounded by a constant.

The main goal of our work is to close this forty-year complexity gap.

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

- Input: An undirected graph *G*, two *commodities* $\{s_1, t_1\}$ and $\{s_2, t_2\}$, where s_1, t_1 , s_2 and t_2 are vertices of *G*, and two *demands* $D_1, D_2 \in \mathbb{Z}^+$.
- *Question:* Are there two flow functions $f_1, f_2 : \{ \overrightarrow{uv}, \overrightarrow{vu} \mid uv \in E(G) \} \rightarrow \mathbb{Z}_0^+$ such that

1 for each
$$uv \in E(G)$$
 and $i \in \{1, 2\}$,

$$f_i(\overrightarrow{uv}) = 0 \text{ or } f_i(\overrightarrow{vu}) = 0;$$

2 for each $uv \in E(G)$, the total flow through uv does not exceed its *unitary capacity*, *i.e.*

$$\max\left\{ \mathit{f}_{1}(\overrightarrow{\mathit{uv}}),\mathit{f}_{1}(\overrightarrow{\mathit{vu}})\right\} + \max\left\{ \mathit{f}_{2}(\overrightarrow{\mathit{uv}}),\mathit{f}_{2}(\overrightarrow{\mathit{vu}})\right\} \leq 1;$$

If for each $i \in \{1, 2\}$ and $v \in V \setminus \{s_i, t_i\}$, the flow function f_i is *conserved* at v, *i.e.*

$$\sum_{\mathbf{x}\in N_{G}(v)}f_{i}(\overrightarrow{xv})=\sum_{\mathbf{y}\in N_{G}(v)}f_{i}(\overrightarrow{vy});\text{ and }$$

4 for each $i \in \{1, 2\}$,

$$F_i = \sum_{v \in N_G(t_i)} f_i(\overrightarrow{vt_i}) \ge D_i?$$

We prove that SIMPLE U2CIF remains <u>NP-complete</u> when the capacity of one commodity is unitary

- We prove that SIMPLE U2CIF remains **NP-complete** when the capacity of one commodity is unitary
 - By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct literals.

- We prove that SIMPLE U2CIF remains **NP-complete** when the capacity of one commodity is unitary
 - By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct literals.
- So, let I = (X, C) be a such instance of 3-SAT, where X is the variable set and C is the clause set of I.

- We prove that SIMPLE U2CIF remains **NP-complete** when the capacity of one commodity is unitary
 - By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct literals.
- So, let I = (X, C) be a such instance of 3-SAT, where X is the variable set and C is the clause set of I.
- We construct from *I* an instance $g(I) = (G, \{s_1, t_1\}, \{s_2, t_2\}, D_1, D_2)$ of SIMPLE U2CIF as follows.

• We define $D_1 = 1$ and $D_2 = 5m$, where m = |C|.

• We define $D_1 = 1$ and $D_2 = 5m$, where m = |C|.

For each variable $x_i \in X$, we create the gadget G_{x_i} :

- **p**_{*i*}: the number of occurrences of the **positive literal** x_i ;
- **q***i*: the number of occurrences of the negative literal \overline{x}_i .

• We connect the gadgets G_{x_i} to one another in series:

• We connect the gadgets G_{x_i} to one another in series:

• We connect the gadgets G_{x_i} to one another in series:

• we create the *clause vertices* $u_{c_{\iota}}$ and $w_{c_{\iota}}$

• we create the *clause vertices* $u_{c_{\iota}}$ and $w_{c_{\iota}}$

 $\bigcirc w_{c_1} \bigcirc w_{c_2} \cdots \bigcirc w_{c_m}$

 $Ou_{c_1} Ou_{c_2} \cdots Ou_{c_m}$

Simple U2CIF with a unitary demand

 $Ou_{c_1} Ou_{c_2} \cdots Ou_{c_m}$

For each clause $C_{\iota} \in C$,

• we create the *clause vertices* u_{c_i} and w_{c_i} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;

 $\bigcirc w_{c_1} \bigcirc w_{c_2} \ldots \bigcirc w_{c_m}$

Simple U2CIF with a unitary demand

• we create the *clause vertices* u_{c_i} and w_{c_i} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;

• we create the *clause vertices* u_{c_i} and w_{c_i} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;

- we create the *clause vertices* u_{c_i} and w_{c_i} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;

- we create the *clause vertices* u_{c_i} and w_{c_u} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;

- we create the *clause vertices* u_{c_i} and w_{c_u} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;

• we create the vertices y_1^{ι}, y_2^{ι} and z_1^{ι}, z_2^{ι}

- we create the *clause vertices* u_{c_i} and w_{c_i} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;

• we create the vertices y_1^{ι}, y_2^{ι} and z_1^{ι}, z_2^{ι}

- we create the *clause vertices* u_{c_i} and w_{c_u} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;
- we create the vertices y_1^{ι}, y_2^{ι} and z_1^{ι}, z_2^{ι} , and we add the following edges;

- we create the *clause vertices* u_{c_i} and w_{c_u} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;
- we create the vertices y_1^{ι}, y_2^{ι} and z_1^{ι}, z_2^{ι} , and we add the following edges;

- we create the *clause vertices* $u_{c_{\iota}}$ and $w_{c_{\iota}}$, and we add five parallel edges between s_2 and $u_{c_{\iota}}$ and five parallel edges between $w_{c_{\iota}}$ and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;
- we create the vertices y_1^{ι}, y_2^{ι} and z_1^{ι}, z_2^{ι} , and we add the following edges;
- Finally, we add the edges $u_{l_{\kappa}}^{t} v_{2j-1}^{i}$ and $v_{2j}^{i} w_{l_{\kappa}}^{t}$ if the κ -th literal in C_{ι} corresponds to the *j*-th occurrence of the **positive** literal \mathbf{x}_{i} ;

- we create the *clause vertices* u_{c_i} and w_{c_i} , and we add five parallel edges between s_2 and u_{c_i} and five parallel edges between w_{c_i} and t_2 ;
- we create the *literal vertices* $u_{l_1}^\iota, u_{l_2}^\iota, u_{l_3}^\iota$ and $w_{l_1}^\iota, w_{l_2}^\iota, w_{l_3}^\iota$, and we add the edges $u_{l_1}^\iota u_{c_\iota}$ and $w_{l_1}^\iota w_{c_\iota}$, for $1 \le i \le 3$;
- we create the vertices y_1^{ι}, y_2^{ι} and z_1^{ι}, z_2^{ι} , and we add the following edges;
- Finally, we add the edges $u_{l_{\kappa}}^{t} v_{2j-1}^{i}$ and $v_{2j}^{i} w_{l_{\kappa}}^{t}$ if the κ -th literal in C_{ι} corresponds to the *j*-th occurrence of the **positive** literal \mathbf{x}_{i} ;
- And, we add the edges $u_{l_{\kappa}}^{\iota} \overline{v}_{2j-1}^{i}$ and $\overline{v}_{2j}^{i} w_{l_{\kappa}}^{\iota}$ if the κ -th literal in C_{ι} corresponds to the *j*-th occurrence of the negative literal \overline{x}_{j} .

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $I = (\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{\mathbf{x}}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land (x_1 \lor \overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3})$

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

Lemma

Lemma

Lemma

Lemma

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only edges whose endpoints belong to $\{s_1, t_1\} \cup V(G_{x_1}) \cup \cdots \cup V(G_{x_n})$.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only edges whose endpoints belong to $\{s_1, t_1\} \cup V(G_{x_1}) \cup \cdots \cup V(G_{x_n})$.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only edges whose endpoints belong to $\{s_1, t_1\} \cup V(G_{x_1}) \cup \cdots \cup V(G_{x_n})$.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

The SIMPLE U2CIF problem is <u>NP-complete</u> even if the **demand** of one commodity is **unitary**.

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\overline{\mathbf{x}_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\mathbf{x_1} \lor \overline{\mathbf{x_2}} \lor \overline{\mathbf{x_3}})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\overline{\mathbf{x}_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\mathbf{x_1} \lor \overline{\mathbf{x_2}} \lor \overline{\mathbf{x_3}})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\overline{\mathbf{x}_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\mathbf{x_1} \lor \overline{\mathbf{x_2}} \lor \overline{\mathbf{x_3}})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

 $I = (\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\overline{\mathbf{x}_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\mathbf{x_1} \lor \overline{\mathbf{x_2}} \lor \overline{\mathbf{x_3}})$

 $\alpha(x_1) = true$ $\alpha(x_2) = true$ $\alpha(x_3) = false.$

K+1 VERTEX-DISJOINT PATHS

SIMPLE U2CIF is closely related to *disjoint paths* problems

It can be reduced to the k-EDGE-DISJOINT PATHS problem.

- It can be reduced to the k-EDGE-DISJOINT PATHS problem.
- Thus, *k*-EDGE-DISJOINT PATHS is NP-complete.

SIMPLE U2CIF is closely related to *disjoint paths* problems

- It can be reduced to the k-EDGE-DISJOINT PATHS problem.
- Thus, *k*-EDGE-DISJOINT PATHS is NP-complete.

■ In 1975, Karp proved the NP-completeness of *k*-VERTEX-DISJOINT PATHS.

- It can be reduced to the k-EDGE-DISJOINT PATHS problem.
- Thus, *k*-EDGE-DISJOINT PATHS is NP-complete.

- In 1975, Karp proved the NP-completeness of *k*-VERTEX-DISJOINT PATHS.
- On the other hand, in 1995, Robertson and Seymour gave an $\mathcal{O}(n^3)$ -time algorithm for *k*-VERTEX-DISJOINT PATHS, for **fixed** *k*.

- It can be reduced to the k-EDGE-DISJOINT PATHS problem.
- Thus, *k*-EDGE-DISJOINT PATHS is NP-complete.

- In 1975, Karp proved the NP-completeness of *k*-VERTEX-DISJOINT PATHS.
- On the other hand, in 1995, Robertson and Seymour gave an $\mathcal{O}(n^3)$ -time algorithm for *k*-VERTEX-DISJOINT PATHS, for **fixed** *k*.
- In 2011, Kawarabayashi et al. proposed an $O(n^2)$ -time algorithm for *k*-VERTEX-DISJOINT PATHS and *k*-EDGE-DISJOINT PATHS, for **fixed** *k*.

- It can be reduced to the k-EDGE-DISJOINT PATHS problem.
- Thus, *k*-EDGE-DISJOINT PATHS is NP-complete.

- In 1975, Karp proved the NP-completeness of *k*-VERTEX-DISJOINT PATHS.
- On the other hand, in 1995, Robertson and Seymour gave an $\mathcal{O}(n^3)$ -time algorithm for *k*-VERTEX-DISJOINT PATHS, for **fixed** *k*.
- In 2011, Kawarabayashi et al. proposed an $O(n^2)$ -time algorithm for *k*-VERTEX-DISJOINT PATHS and *k*-EDGE-DISJOINT PATHS, for **fixed** *k*.
- Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are bounded by constants.

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT PATHS problem.

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT PATHS problem.

k + 1 VERTEX-DISJOINT PATHS (k + 1 VDP)

Input:	An undirected graph <i>G</i> , two unordered pairs $\{s_1, t_1\}$ and $\{s_2, t_2\}$ of vertices of <i>G</i> and $k \in \mathbb{Z}^+$.
Question:	Does G admit $k + 1$ vertex-disjoint paths, such that one path is between

Question: Does G admit k + 1 vertex-disjoint paths, such that one path is between s_1 and t_1 and k paths are between s_2 and t_2 ?

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k-EDGE-DISJOINT PATHS problem, note that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

- In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT PATHS problem.
- Similarly to SIMPLE U2CIF, we prove that k + 1 VERTEX-DISJOINT PATHS is a NP-complete problem
 - By a polynomial-time reduction from **3-SAT**.

 $I = (\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

• k = |C| paths between s_2 and t_2 and 1 path between s_1 and t_1 .

Conclusion

In this work, we have proved that SIMPLE U2CIF is NP-complete even if the demand of one commodity is unitary, closing a forty-year complexity gap.

- In this work, we have proved that SIMPLE U2CIF is NP-complete even if the demand of one commodity is unitary, closing a forty-year complexity gap.
- Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a NP-complete problem.

- In this work, we have proved that SIMPLE U2CIF is NP-complete even if the demand of one commodity is unitary, closing a forty-year complexity gap.
- Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a NP-complete problem.
- As future work, we intend to analyse the complexity of these problems when they are restricted to some specific graphs, *e.g.* planar graphs.

Thank you for your attention!

Alexsander A. Melo aamelo@cos.ufrj.br

References I

- Cormen, H. T., Leiserson, E. C., Rivest, L. R and Stein, C., Introduction to Algorithms, MIT Press, third edition, 2009.
- Even, S., Itai, A. and Shamir, A., On the complexity of timetable and multicommodity flow problems, SIAM J. Comput. 5:4 (1976), 691–703.
- Edmonds, J. and Karp, R. M., Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM 19:2 (1972), 248–264.
- Fortune, S., Hopcroft, J. and Wyllie, J., *The directed subgraph homeomorphism problem*, Theoret. Comput. Sci. **10** (1980), 111–121.
- Karp, R. M., On the computational complexity of combinatorial problems, Networks 5 (1975), 45–68.
- Kawarabayashi, K., Kobayashi, Y. and Reed, B., The disjoint paths problem in quadratic time, J. Combin. Theory Ser. B 102 (2012), 424–435
- Perl, Y. and Shiloach, Y., Finding two disjoint paths between two pairs of vertices in a graph, J. ACM 25:1 (1978), 1–9.
- Roberson, N. and Seymour, P. D., Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63:1 (1995), 651–10.
- Tali, E., *The disjoint shortest paths problem*, Discrete Appl. Math. **85** (1998), 113–138.