
Simple Undirected Two-Commodity Integral Flow
with a Unitary Demand

Alexsander A. Melo

1 Celina M. H. Figueiredo1 Uéverton S. Souza2

1Federal University of Rio de Janeiro, Brazil
2Federal Fluminense University, Brazil

September 15, 2017

September 2017 1 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction

The classical single-commodity flow problem is well-known as MAXIMUM FLOW

The goal is to send the maximum possible flow from
the source s into the sink t ;

The edge capacity and flow conservation constraints
must be satisfied.

A natural generalisation of MAXIMUM FLOW is the MULTICOMMODITY FLOW

problem

Multiple commodities: {si , ti};

Each commodity has a different flow demand;

The capacities of the edges are shared between the
flows of each commodity.

Again, the edge capacity and flow conservation
constraints must be satisfied.

Introduction September 2017 2 / 20

Introduction: complexity

The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

Even if the flow must be integral, i.e. an integer-valued function

By using linear programming, the MULTICOMMODITY FLOW problem can be
solved in polynomial-time if the flows are real-valued functions

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is a
NP-complete problem if the flows must be integral.

Introduction September 2017 3 / 20

Introduction: complexity

The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

Even if the flow must be integral, i.e. an integer-valued function

By using linear programming, the MULTICOMMODITY FLOW problem can be
solved in polynomial-time if the flows are real-valued functions

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is a
NP-complete problem if the flows must be integral.

Introduction September 2017 3 / 20

Introduction: complexity

The MAXIMUM FLOW problem is a classical polynomial-time solvable problem

Even if the flow must be integral, i.e. an integer-valued function

By using linear programming, the MULTICOMMODITY FLOW problem can be
solved in polynomial-time if the flows are real-valued functions

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is a
NP-complete problem if the flows must be integral.

Introduction September 2017 3 / 20

Introduction: simple two-commodity integral instances

An instance of a network flow problem is called simple if the capacity of all edges
of the input graph are unitary.

A particular case of MULTICOMMODITY INTEGRAL FLOW is the SIMPLE

TWO-COMMODITY INTEGRAL FLOW problem

Simple instances

Only two-commodities

Integral flows.

Introduction September 2017 4 / 20

Introduction: simple two-commodity integral instances

An instance of a network flow problem is called simple if the capacity of all edges
of the input graph are unitary.

A particular case of MULTICOMMODITY INTEGRAL FLOW is the SIMPLE

TWO-COMMODITY INTEGRAL FLOW problem

Simple instances

Only two-commodities

Integral flows.

Introduction September 2017 4 / 20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE

TWO-COMMODITY INTEGRAL FLOW

Both in the directed and undirected cases.

For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

The main goal of our work is to close this forty-year complexity gap.

Introduction September 2017 5 / 20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE

TWO-COMMODITY INTEGRAL FLOW

Both in the directed and undirected cases.

For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

The main goal of our work is to close this forty-year complexity gap.

Introduction September 2017 5 / 20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE

TWO-COMMODITY INTEGRAL FLOW

Both in the directed and undirected cases.

For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

The main goal of our work is to close this forty-year complexity gap.

Introduction September 2017 5 / 20

Introduction: SIMPLE TWO-COMMODITY INTEGRAL FLOW complexity

In 1976, Even, Itai and Shamir proved the NP-completeness of SIMPLE

TWO-COMMODITY INTEGRAL FLOW

Both in the directed and undirected cases.

For the directed case, they proved that the problem is still NP-complete if the
demand of one commodity is unitary.

Nevertheless, for the undirected case, the hard instance constructed by them
does not satisfy the condition of a demand to be unitary or even bounded by a
constant.

The main goal of our work is to close this forty-year complexity gap.

Introduction September 2017 5 / 20

Introduction: SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

Input: An undirected graph G, two commodities {s1, t1} and {s2, t2}, where s1, t1,
s2 and t2 are vertices of G, and two demands D1, D2 2 Z+.

Question: Are there two flow functions f1, f2 : {
�!uv ,�!vu | uv 2 E(G)} ! Z+

0 such that

1 for each uv 2 E(G) and i 2 {1, 2},

fi (
�!uv) = 0 or fi (

�!vu) = 0;

2 for each uv 2 E(G), the total flow through uv does not exceed its
unitary capacity , i.e.

max {f1(
�!uv), f1(

�!vu)} + max {f2(
�!uv), f2(

�!vu)}  1;

3 for each i 2 {1, 2} and v 2 V \ {si , ti}, the flow function fi is
conserved at v , i.e.

X

x2NG(v)

fi (
�!xv) =

X

y2NG(v)

fi (
�!vy); and

4 for each i 2 {1, 2},

Fi =
X

v2NG(ti)

fi (
�!
vti) � Di ?

Introduction September 2017 6 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

So, let I = (X , C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of I.

We construct from I an instance g(I) = (G, {s1, t1}, {s2, t2},D1,D2) of SIMPLE

U2CIF as follows.

Simple U2CIF with a unitary demand September 2017 7 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

So, let I = (X , C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of I.

We construct from I an instance g(I) = (G, {s1, t1}, {s2, t2},D1,D2) of SIMPLE

U2CIF as follows.

Simple U2CIF with a unitary demand September 2017 7 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

So, let I = (X , C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of I.

We construct from I an instance g(I) = (G, {s1, t1}, {s2, t2},D1,D2) of SIMPLE

U2CIF as follows.

Simple U2CIF with a unitary demand September 2017 7 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

We prove that SIMPLE U2CIF remains NP-complete when the capacity of one
commodity is unitary

By a polynomial-time reduction from 3-SAT, where each clause has exactly three distinct
literals.

So, let I = (X , C) be a such instance of 3-SAT, where X is the variable set and C is
the clause set of I.

We construct from I an instance g(I) = (G, {s1, t1}, {s2, t2},D1,D2) of SIMPLE

U2CIF as follows.

Simple U2CIF with a unitary demand September 2017 7 / 20

SIMPLE U2CIF: construction of the instance g(I)

We define D1 = 1 and D2 = 5m, where m = |C|.

For each variable xi 2 X , we create the gadget Gxi :

pi : the number of occurrences of the positive literal xi ;

qi : the number of occurrences of the negative literal xi .

Simple U2CIF with a unitary demand September 2017 8 / 20

SIMPLE U2CIF: construction of the instance g(I)

We define D1 = 1 and D2 = 5m, where m = |C|.

For each variable xi 2 X , we create the gadget Gxi :

pi : the number of occurrences of the positive literal xi ;

qi : the number of occurrences of the negative literal xi .

Simple U2CIF with a unitary demand September 2017 8 / 20

SIMPLE U2CIF: construction of the instance g(I)

We connect the gadgets Gxi to one another in series:

Simple U2CIF with a unitary demand September 2017 9 / 20

SIMPLE U2CIF: construction of the instance g(I)

We connect the gadgets Gxi to one another in series:

Simple U2CIF with a unitary demand September 2017 9 / 20

SIMPLE U2CIF: construction of the instance g(I)

We connect the gadgets Gxi to one another in series:

Simple U2CIF with a unitary demand September 2017 9 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆

, and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆

, and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆

, and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2

, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2, and we add the following edges;

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2, and we add the following edges;

Finally, we add the edges u◆
l

v i
2j�1 and v i

2j w
◆
l

if the -th literal in C◆ corresponds
to the j-th occurrence of the positive literal x

i

;

And, we add the edges u◆
l

v i
2j�1 and v i

2j w◆
l

if the -th literal in C◆ corresponds to
the j-th occurrence of the negative literal x

i

.

Simple U2CIF with a unitary demand September 2017 10 / 20

SIMPLE U2CIF: construction of the instance g(I)

For each clause C◆ 2 C,

we create the clause vertices uc◆ and wc◆ , and we add five parallel edges
between s2 and uc◆ and five parallel edges between wc◆ and t2;

we create the literal vertices u◆
l1
, u◆

l2
, u◆

l3
and w◆

l1
,w◆

l2
,w◆

l3
, and we add the edges

u◆
li
uc◆ and w◆

li
wc◆ , for 1  i  3;

we create the vertices y◆
1 , y

◆
2 and z◆

1, z
◆
2, and we add the following edges;

Finally, we add the edges u◆
l

v i
2j�1 and v i

2j w
◆
l

if the -th literal in C◆ corresponds
to the j-th occurrence of the positive literal x

i

;

And, we add the edges u◆
l

v i
2j�1 and v i

2j w◆
l

if the -th literal in C◆ corresponds to
the j-th occurrence of the negative literal x

i

.

Simple U2CIF with a unitary demand September 2017 10 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

Simple U2CIF with a unitary demand September 2017 11 / 20

An example

I = (x
1

_ x

2

_ x

3

) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

Simple U2CIF with a unitary demand September 2017 11 / 20

An example

I = (x1 _ x2 _ x3) ^ (x
1

_ x

2

_ x

3

) ^ (x1 _ x2 _ x3)

Simple U2CIF with a unitary demand September 2017 11 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x
1

_ x

2

_ x

3

)

Simple U2CIF with a unitary demand September 2017 11 / 20

SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [V (Gx1) [· · · [V (Gxn).

↵(xi) = true. ↵(xi) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20

SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [V (Gx1) [· · · [V (Gxn).

↵(xi) = true. ↵(xi) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20

SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [V (Gx1) [· · · [V (Gxn).

↵(xi) = true. ↵(xi) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20

SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [V (Gx1) [· · · [V (Gxn).

↵(xi) = true. ↵(xi) = false.

Simple U2CIF with a unitary demand September 2017 12 / 20

SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [V (Gx1) [· · · [V (Gxn).

↵(xi) = true. ↵(xi) = false.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.

Simple U2CIF with a unitary demand September 2017 12 / 20

SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [V (Gx1) [· · · [V (Gxn).

↵(xi) = true. ↵(xi) = false.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.

Simple U2CIF with a unitary demand September 2017 12 / 20

SIMPLE U2CIF: relation between the g(I) and I instances

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow uses only
edges whose endpoints belong to {s1, t1} [V (Gx1) [· · · [V (Gxn).

↵(xi) = true. ↵(xi) = false.

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

The SIMPLE U2CIF problem is NP-complete even if the demand of one commodity is
unitary.

Simple U2CIF with a unitary demand September 2017 12 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x
1

_ x2 _ x3) ^ (x1 _ x

2

_ x3) ^ (x1 _ x2 _ x

3

)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x
1

_ x2 _ x3) ^ (x1 _ x

2

_ x3) ^ (x1 _ x2 _ x

3

)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x
1

_ x2 _ x3) ^ (x1 _ x

2

_ x3) ^ (x1 _ x2 _ x

3

)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

An example

I = (x
1

_ x2 _ x3) ^ (x1 _ x

2

_ x3) ^ (x1 _ x2 _ x

3

)

↵(x1) = true ↵(x2) = true ↵(x3) = false.

Simple U2CIF with a unitary demand September 2017 13 / 20

K+1 VERTEX-DISJOINT PATHS

k+1 vertex-disjoint paths September 2017 14 / 20

Disjoint paths problems

SIMPLE U2CIF is closely related to disjoint paths problems

It can be reduced to the k -EDGE-DISJOINT PATHS

problem.

Thus, k -EDGE-DISJOINT PATHS is NP-complete.

In 1975, Karp proved the NP-completeness of k -VERTEX-DISJOINT PATHS.

On the other hand, in 1995, Robertson and Seymour gave an O(n3
)-time

algorithm for k -VERTEX-DISJOINT PATHS, for fixed k .

In 2011, Kawarabayashi et al. proposed an O(n2
)-time algorithm for

k -VERTEX-DISJOINT PATHS and k -EDGE-DISJOINT PATHS, for fixed k .

Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.

k+1 vertex-disjoint paths September 2017 15 / 20

Disjoint paths problems

SIMPLE U2CIF is closely related to disjoint paths problems

It can be reduced to the k -EDGE-DISJOINT PATHS

problem.

Thus, k -EDGE-DISJOINT PATHS is NP-complete.

In 1975, Karp proved the NP-completeness of k -VERTEX-DISJOINT PATHS.

On the other hand, in 1995, Robertson and Seymour gave an O(n3
)-time

algorithm for k -VERTEX-DISJOINT PATHS, for fixed k .

In 2011, Kawarabayashi et al. proposed an O(n2
)-time algorithm for

k -VERTEX-DISJOINT PATHS and k -EDGE-DISJOINT PATHS, for fixed k .

Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.

k+1 vertex-disjoint paths September 2017 15 / 20

Disjoint paths problems

SIMPLE U2CIF is closely related to disjoint paths problems

It can be reduced to the k -EDGE-DISJOINT PATHS

problem.

Thus, k -EDGE-DISJOINT PATHS is NP-complete.

In 1975, Karp proved the NP-completeness of k -VERTEX-DISJOINT PATHS.

On the other hand, in 1995, Robertson and Seymour gave an O(n3
)-time

algorithm for k -VERTEX-DISJOINT PATHS, for fixed k .

In 2011, Kawarabayashi et al. proposed an O(n2
)-time algorithm for

k -VERTEX-DISJOINT PATHS and k -EDGE-DISJOINT PATHS, for fixed k .

Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.

k+1 vertex-disjoint paths September 2017 15 / 20

Disjoint paths problems

SIMPLE U2CIF is closely related to disjoint paths problems

It can be reduced to the k -EDGE-DISJOINT PATHS

problem.

Thus, k -EDGE-DISJOINT PATHS is NP-complete.

In 1975, Karp proved the NP-completeness of k -VERTEX-DISJOINT PATHS.

On the other hand, in 1995, Robertson and Seymour gave an O(n3
)-time

algorithm for k -VERTEX-DISJOINT PATHS, for fixed k .

In 2011, Kawarabayashi et al. proposed an O(n2
)-time algorithm for

k -VERTEX-DISJOINT PATHS and k -EDGE-DISJOINT PATHS, for fixed k .

Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.

k+1 vertex-disjoint paths September 2017 15 / 20

Disjoint paths problems

SIMPLE U2CIF is closely related to disjoint paths problems

It can be reduced to the k -EDGE-DISJOINT PATHS

problem.

Thus, k -EDGE-DISJOINT PATHS is NP-complete.

In 1975, Karp proved the NP-completeness of k -VERTEX-DISJOINT PATHS.

On the other hand, in 1995, Robertson and Seymour gave an O(n3
)-time

algorithm for k -VERTEX-DISJOINT PATHS, for fixed k .

In 2011, Kawarabayashi et al. proposed an O(n2
)-time algorithm for

k -VERTEX-DISJOINT PATHS and k -EDGE-DISJOINT PATHS, for fixed k .

Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.

k+1 vertex-disjoint paths September 2017 15 / 20

Disjoint paths problems

SIMPLE U2CIF is closely related to disjoint paths problems

It can be reduced to the k -EDGE-DISJOINT PATHS

problem.

Thus, k -EDGE-DISJOINT PATHS is NP-complete.

In 1975, Karp proved the NP-completeness of k -VERTEX-DISJOINT PATHS.

On the other hand, in 1995, Robertson and Seymour gave an O(n3
)-time

algorithm for k -VERTEX-DISJOINT PATHS, for fixed k .

In 2011, Kawarabayashi et al. proposed an O(n2
)-time algorithm for

k -VERTEX-DISJOINT PATHS and k -EDGE-DISJOINT PATHS, for fixed k .

Consequently, SIMPLE U2CIF is polynomial-time solvable if both demands are
bounded by constants.

k+1 vertex-disjoint paths September 2017 15 / 20

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k -EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT

PATHS problem.

k+1 vertex-disjoint paths September 2017 16 / 20

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k -EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT

PATHS problem.

k+1 vertex-disjoint paths September 2017 16 / 20

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k -EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT

PATHS problem.

k + 1 VERTEX-DISJOINT PATHS (k + 1 VDP)

Input: An undirected graph G, two unordered pairs {s1, t1} and {s2, t2} of vertices
of G and k 2 Z+.

Question: Does G admit k + 1 vertex-disjoint paths, such that one path is between
s1 and t1 and k paths are between s2 and t2?

k+1 vertex-disjoint paths September 2017 16 / 20

The k + 1 disjoint paths problems

Besides SIMPLE U2CIF to be related to k -EDGE-DISJOINT PATHS problem, note
that SIMPLE U2CIF coincides with the k + 1 EDGE-DISJOINT PATHS problem.

In this work, we additionally analyse the complexity of k + 1 VERTEX-DISJOINT

PATHS problem.

Similarly to SIMPLE U2CIF, we prove that k + 1 VERTEX-DISJOINT PATHS is a
NP-complete problem

By a polynomial-time reduction from 3-SAT.

k+1 vertex-disjoint paths September 2017 16 / 20

k + 1 VDP: construction of the instance g(I)

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

k = |C| paths between s2 and t2 and 1 path between s1 and t1.

k+1 vertex-disjoint paths September 2017 17 / 20

k + 1 VDP: construction of the instance g(I)

I = (x
1

_ x

2

_ x

3

) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

k = |C| paths between s2 and t2 and 1 path between s1 and t1.

k+1 vertex-disjoint paths September 2017 17 / 20

k + 1 VDP: construction of the instance g(I)

I = (x1 _ x2 _ x3) ^ (x
1

_ x

2

_ x

3

) ^ (x1 _ x2 _ x3)

k = |C| paths between s2 and t2 and 1 path between s1 and t1.

k+1 vertex-disjoint paths September 2017 17 / 20

k + 1 VDP: construction of the instance g(I)

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x
1

_ x

2

_ x

3

)

k = |C| paths between s2 and t2 and 1 path between s1 and t1.

k+1 vertex-disjoint paths September 2017 17 / 20

k + 1 VDP: construction of the instance g(I)

I = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)

k = |C| paths between s2 and t2 and 1 path between s1 and t1.

k+1 vertex-disjoint paths September 2017 17 / 20

Conclusion

In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

As future work, we intend to analyse the complexity of these problems when they
are restricted to some specific graphs, e.g. planar graphs.

Conclusion September 2017 18 / 20

Conclusion

In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

As future work, we intend to analyse the complexity of these problems when they
are restricted to some specific graphs, e.g. planar graphs.

Conclusion September 2017 18 / 20

Conclusion

In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

As future work, we intend to analyse the complexity of these problems when they
are restricted to some specific graphs, e.g. planar graphs.

Conclusion September 2017 18 / 20

Conclusion

In this work, we have proved that SIMPLE U2CIF is NP-complete even if the
demand of one commodity is unitary, closing a forty-year complexity gap.

Additionally, we have proved that k + 1 VERTEX-DISJOINT PATHS is also a
NP-complete problem.

As future work, we intend to analyse the complexity of these problems when they
are restricted to some specific graphs, e.g. planar graphs.

Conclusion September 2017 18 / 20

Thank you for your attention!

Alexsander A. Melo
aamelo@cos.ufrj.br

Conclusion September 2017 19 / 20

References I

Cormen, H. T., Leiserson, E. C., Rivest, L. R and Stein, C., Introduction to Algorithms, MIT
Press, third edition, 2009.

Even, S., Itai, A. and Shamir, A., On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput. 5:4 (1976), 691–703.

Edmonds, J. and Karp, R. M., Theoretical improvements in algorithmic efficiency for network
flow problems, J. ACM 19:2 (1972), 248–264.

Fortune, S., Hopcroft, J. and Wyllie, J., The directed subgraph homeomorphism problem,
Theoret. Comput. Sci. 10 (1980), 111–121.

Karp, R. M., On the computational complexity of combinatorial problems, Networks 5 (1975),
45–68.

Kawarabayashi, K., Kobayashi, Y. and Reed, B., The disjoint paths problem in quadratic time,
J. Combin. Theory Ser. B 102 (2012), 424–435

Perl, Y. and Shiloach, Y., Finding two disjoint paths between two pairs of vertices in a graph, J.
ACM 25:1 (1978), 1–9.

Roberson, N. and Seymour, P. D., Graph minors. XIII. The disjoint paths problem, J. Combin.
Theory Ser. B 63:1 (1995), 651–10.

Tali, E., The disjoint shortest paths problem, Discrete Appl. Math. 85 (1998), 113–138.

Conclusion September 2017 20 / 20

	Introduction
	Simple U2CIF with a unitary demand
	k+1 vertex-disjoint paths
	Conclusion

