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Reducibility:

k-reducible graph G: For any non-monchromatic initial configuration
of stones, there exists a succession of moves that leaves & stones on
the board.

Reducibility of a graph G:

r(G) :=min{k > 1| G is k-reducible.} .
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Correducibility

k-correducible graph G: For every non-monochromatic initial
configuration of stones and for every subset S C V(G) of cardinality at
most k, there exists a Solitaire Clobber game on G that empties S.

Correducibility of a graph G:

cr(G) :== max{k € N | G is k-correducible}.
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Connectivity and correducibility

k-connected graph G: |G| > k and G — X is connected for every
X C V(G) with | X| < k.

Theorem (Menger’ 27)
A graph G is k-connected if and only if every pair of vertices are joined
by k& pairwise internally disjoint paths.

For all pair (v,w)
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It is easy to see that a 1-correducible graph is 1-connected.

Proposition
A graph G is 1-correducible if and only if it is 1-connected.




o Note that K} is the only k-connected graph of order & + 1, and
this graph is not k-correducible. Actually, it is
(k — 1)-correducible.




o Note that K} is the only k-connected graph of order & + 1, and
this graph is not k-correducible. Actually, it is
(k — 1)-correducible.

o Our main theorem states that every other k-connected graph is
k-correducible.
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Idea of the proof

Lemma

Let k£ > 1, and let G be a k-connected graph such that |G| > k + 2.
Given any initial configuration ®; : V(G) — {0, 1} with |®,'(0)| = 1
and a subset S of V(G) with |S| = k, there exists a Solitaire Clobber
game on G that empties S.

Now, we may always assume that |®~1(0)| > 1 and [®~!(1)| > 1.
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Idea of the proof
We use induction.

If there exists v € S and u adjacent to v such that @ (u) # ®1(v):
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Idea of the proof
We use induction.

If there exists v € S and u adjacent to v such that @ (u) # ®1(v):

o |Go| >k+1=(k—1)+2;
o G = 1

o |Sg| =k —1.

o ®5 is non-monochromatic.
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Now assume that for each vertex v € S and any vertex « adjacent to
v, ®1(u) = P1(v).

Theorem (Dirac ‘60)

If G is a k-connected graph (with £ > 2), and S is a set of k vertices in
G, then G has a cycle C including S in its vertex set.

Theorem (Fan Lemma, Dirac ‘60)

Let G be a k-connected graph, let x be a vertex of GG, and let

Y CV(G)\ {z} be a set of at least k vertices of G. Then there exists
a k-fanin G from z to Y (that is, a family of & internally disjoint
(x,Y)-paths whose terminal vertices are distinct).

We may assume that the restriction of ®; to V(C) is
non-monochromatic.

If ®1(z) = ®,(y) forall z,y € S, then there is an obvious Solitaire

Clobber game on the cycle C that empties S.
(0 o KN o o]




If both S and C' are non-monochromatic, we use the following lemma
which extends Dirac’s Theorem.




If both S and C' are non-monochromatic, we use the following lemma
which extends Dirac’s Theorem.

Lemma
Let k£ > 2, G be a k-connected graph, S C V(G) with |S| = k, and

T = {vi1,...,vis} 1 <4 < m, mpairwise disjoint subsets of S.
Suppose that G contains a cycle C that satisfies the following
condition: (%) Foreach1 <i <m, (v;1,...,v;) isapathin C. Then
G contains a cycle that includes S in its vertex set and satisfies ().
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Let G be a graph with |G| > 4. Then G is 2-connected if and only if it is
2-correducible.

G(n,k)

Proposition
Foralln >2and k <n—1, k(G(n,k)) = k. In contrast, for a fixed k,
bkt b et
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NEXT STEPS:

o Find graphs with k(G)=cr(G);
o Study other types of connectivity;

o Determine the correducibility of some interesting graphs (eg.:
grids, tori, hypercubes, ...)
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