
The Solitaire Clobber game and correducibility

Simone Dantas1, Rodrigo Marinho1,2 and Slobodan Tanushevski1

1 IME, Universidade Federal Fluminense, Brazil
2 Department of Mathematics, PUC-Rio, Brazil

September 12, 2017



The Solitaire Clobber game

◦ Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);



The Solitaire Clobber game

◦ Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);



The Solitaire Clobber game

◦ Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);



The Solitaire Clobber game

◦ Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);



The Solitaire Clobber game

◦ Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);

Reducibility:

k-reducible graph G: For any non-monchromatic initial configuration
of stones, there exists a succession of moves that leaves k stones on
the board.

Reducibility of a graph G:

r(G) := min {k ≥ 1 | G is k-reducible.} .



The Solitaire Clobber game

◦ Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);

Reducibility:

k-reducible graph G: For any non-monchromatic initial configuration
of stones, there exists a succession of moves that leaves k stones on
the board.

Reducibility of a graph G:

r(G) := min {k ≥ 1 | G is k-reducible.} .



The Solitaire Clobber game

◦ Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);
◦ Albert, M. H., Grossman, J. P., Nowakowski, R. J., Wolfe, D.
(2005);

◦ Dorbec, P., Duchêne, E., Gravier, S. (2008): Hamming graphs;
◦ Blondel, V. D., Hendrickx, J. M., Jungers, R. M. (2008):
optimization problem;

◦ Duchêne, E., Gravier, S., Moncel, J. (2009); Dantas, S., Gravier,
S., Pará, T. (2009, 2011); Beaudou, L., Duchêne, E., Gravier, S.
(2015).



Correducibility

k-correducible graph G: For every non-monochromatic initial
configuration of stones and for every subset S ⊂ V (G) of cardinality at
most k, there exists a Solitaire Clobber game on G that empties S.

Example: K3.



Correducibility

k-correducible graph G: For every non-monochromatic initial
configuration of stones and for every subset S ⊂ V (G) of cardinality at
most k, there exists a Solitaire Clobber game on G that empties S.

Example: K3.



Correducibility

k-correducible graph G: For every non-monochromatic initial
configuration of stones and for every subset S ⊂ V (G) of cardinality at
most k, there exists a Solitaire Clobber game on G that empties S.

Example: K3.



Correducibility

k-correducible graph G: For every non-monochromatic initial
configuration of stones and for every subset S ⊂ V (G) of cardinality at
most k, there exists a Solitaire Clobber game on G that empties S.

Example: K3.



Correducibility

k-correducible graph G: For every non-monochromatic initial
configuration of stones and for every subset S ⊂ V (G) of cardinality at
most k, there exists a Solitaire Clobber game on G that empties S.

Example: K3.



Correducibility

k-correducible graph G: For every non-monochromatic initial
configuration of stones and for every subset S ⊂ V (G) of cardinality at
most k, there exists a Solitaire Clobber game on G that empties S.

Correducibility of a graph G:

cr(G) := max{k ∈ N | G is k-correducible}.



Correducibility of complete graphs

Proposition
If n ≥ 3, then cr(Kn) = n− 2.

Corollary
If |H| = n, then

cr(H) ≤ n− 2.



Correducibility of complete graphs

Proposition
If n ≥ 3, then cr(Kn) = n− 2.

Corollary
If |H| = n, then

cr(H) ≤ n− 2.



Correducibility of complete graphs

Proposition
If n ≥ 3, then cr(Kn) = n− 2.

Corollary
If |H| = n, then

cr(H) ≤ n− 2.



Correducibility of complete graphs

Proposition
If n ≥ 3, then cr(Kn) = n− 2.

Corollary
If |H| = n, then

cr(H) ≤ n− 2.



Correducibility of complete graphs

Proposition
If n ≥ 3, then cr(Kn) = n− 2.

Corollary
If |H| = n, then

cr(H) ≤ n− 2.



Connectivity and correducibility

k-connected graph G: |G| > k and G−X is connected for every
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A graph G is k-connected if and only if every pair of vertices are joined
by k pairwise internally disjoint paths.
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(k − 1)-correducible.

◦ Our main theorem states that every other k-connected graph is
k-correducible.
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Let k ≥ 1, and let G be a graph with |G| ≥ k + 2. If G is k-connected,
then it is k-correducible.

Idea of the proof
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Given any initial configuration Φ1 : V (G) → {0, 1} with |Φ−1

1 (0)| = 1
and a subset S of V (G) with |S| = k, there exists a Solitaire Clobber
game on G that empties S.

Now, we may always assume that |Φ−1(0)| > 1 and |Φ−1(1)| > 1.
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Now assume that for each vertex v ∈ S and any vertex u adjacent to
v, Φ1(u) = Φ1(v).

Theorem (Dirac ‘60)
If G is a k-connected graph (with k ≥ 2), and S is a set of k vertices in
G, then G has a cycle C including S in its vertex set.
Theorem (Fan Lemma, Dirac ‘60)
Let G be a k-connected graph, let x be a vertex of G, and let
Y ⊆ V (G) \ {x} be a set of at least k vertices of G. Then there exists
a k-fan in G from x to Y (that is, a family of k internally disjoint
(x, Y )-paths whose terminal vertices are distinct).

We may assume that the restriction of Φ1 to V (C) is
non-monochromatic.

If Φ1(x) = Φ1(y) for all x, y ∈ S, then there is an obvious Solitaire
Clobber game on the cycle C that empties S.
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If both S and C are non-monochromatic, we use the following lemma
which extends Dirac’s Theorem.

Lemma
Let k ≥ 2, G be a k-connected graph, S ⊆ V (G) with |S| = k, and
Ti = {vi,1, . . . , vi,si}, 1 ≤ i ≤ m,m pairwise disjoint subsets of S.
Suppose that G contains a cycle C that satisfies the following
condition: (∗) For each 1 ≤ i ≤ m, (vi,1, . . . , vi,si) is a path in C. Then
G contains a cycle that includes S in its vertex set and satisfies (∗).
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For all n ≥ 2 and k ≤ n− 1, k(G(n, k)) = k. In contrast, for a fixed k,
limn→∞ cr(G(n, k)) = ∞.
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