The Solitaire Clobber game and correducibility

Simone Dantas¹, **Rodrigo Marinho**^{1,2} and Slobodan Tanushevski¹

IME, Universidade Federal Fluminense, Brazil
 Department of Mathematics, PUC-Rio, Brazil

September 12, 2017

• Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);

Reducibility:

k-reducible graph G: For any non-monchromatic initial configuration of stones, there exists a succession of moves that leaves k stones on the board.

• Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);

Reducibility:

k-reducible graph G: For any non-monchromatic initial configuration of stones, there exists a succession of moves that leaves k stones on the board.

Reducibility of a graph G:

 $r(G) := \min \left\{ k \ge 1 \mid G \text{ is } k \text{-reducible.} \right\}.$

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);
- Albert, M. H., Grossman, J. P., Nowakowski, R. J., Wolfe, D. (2005);
- Dorbec, P., Duchêne, E., Gravier, S. (2008): Hamming graphs;
- Blondel, V. D., Hendrickx, J. M., Jungers, R. M. (2008): optimization problem;
- Duchêne, E., Gravier, S., Moncel, J. (2009); Dantas, S., Gravier, S., Pará, T. (2009, 2011); Beaudou, L., Duchêne, E., Gravier, S. (2015).

k-correducible graph *G*: For every non-monochromatic initial configuration of stones and for every subset $S \subset V(G)$ of cardinality at most *k*, there exists a Solitaire Clobber game on *G* that empties *S*.

k-correducible graph *G*: For every non-monochromatic initial configuration of stones and for every subset $S \subset V(G)$ of cardinality at most *k*, there exists a Solitaire Clobber game on *G* that empties *S*.

Example: K_3 .

k-correducible graph *G*: For every non-monochromatic initial configuration of stones and for every subset $S \subset V(G)$ of cardinality at most *k*, there exists a Solitaire Clobber game on *G* that empties *S*.

Example: K_3 .

k-correducible graph *G*: For every non-monochromatic initial configuration of stones and for every subset $S \subset V(G)$ of cardinality at most *k*, there exists a Solitaire Clobber game on *G* that empties *S*.

Example: K_3 .

k-correducible graph *G*: For every non-monochromatic initial configuration of stones and for every subset $S \subset V(G)$ of cardinality at most *k*, there exists a Solitaire Clobber game on *G* that empties *S*.

Correducibility of a graph G:

$cr(G) := max\{k \in \mathbb{N} \mid G \text{ is } k\text{-correducible}\}.$

Proposition If $n \ge 3$, then $cr(K_n) = n - 2$.

Proposition If $n \ge 3$, then $cr(K_n) = n - 2$. Corollary If |H| = n, then $cr(H) \le n - 2$.

Proposition If $n \ge 3$, then $cr(K_n) = n - 2$. Corollary If |H| = n, then $cr(H) \le n - 2$.

Proposition If $n \ge 3$, then $cr(K_n) = n - 2$. Corollary If |H| = n, then cr

 $cr(H) \le n - 2.$

k-connected graph G: |G| > k and G - X is connected for every $X \subseteq V(G)$ with |X| < k.

k-connected graph *G*: |G| > k and G - X is connected for every $X \subseteq V(G)$ with |X| < k.

Theorem (Menger' 27)

A graph G is k-connected if and only if every pair of vertices are joined by k pairwise internally disjoint paths.

k-connected graph *G*: |G| > k and G - X is connected for every $X \subseteq V(G)$ with |X| < k.

Theorem (Menger' 27)

A graph G is k-connected if and only if every pair of vertices are joined by k pairwise internally disjoint paths.

0 0 0 0 0

0 0 0 0

Proposition A graph *G* is 1-correducible if and only if it is 1-connected. • Note that K_{k+1} is the only *k*-connected graph of order k + 1, and this graph is not *k*-correducible. Actually, it is (k - 1)-correducible.

• Note that K_{k+1} is the only *k*-connected graph of order k + 1, and this graph is not *k*-correducible. Actually, it is (k - 1)-correducible.

• Our main theorem states that every other *k*-connected graph is *k*-correducible.

Theorem

Let $k \ge 1$, and let *G* be a graph with $|G| \ge k + 2$. If *G* is *k*-connected, then it is *k*-correducible.

Theorem Let $k \ge 1$, and let *G* be a graph with $|G| \ge k + 2$. If *G* is *k*-connected, then it is *k*-correducible.

Idea of the proof

Theorem Let $k \ge 1$, and let *G* be a graph with $|G| \ge k + 2$. If *G* is *k*-connected, then it is *k*-correducible.

Idea of the proof

Lemma

Let $k \ge 1$, and let G be a k-connected graph such that $|G| \ge k + 2$. Given any initial configuration $\Phi_1 : V(G) \to \{0, 1\}$ with $|\Phi_1^{-1}(0)| = 1$ and a subset S of V(G) with |S| = k, there exists a Solitaire Clobber game on G that empties S. **Theorem** Let $k \ge 1$, and let *G* be a graph with $|G| \ge k + 2$. If *G* is *k*-connected, then it is *k*-correducible.

Idea of the proof

Lemma

Let $k \ge 1$, and let G be a k-connected graph such that $|G| \ge k + 2$. Given any initial configuration $\Phi_1 : V(G) \to \{0, 1\}$ with $|\Phi_1^{-1}(0)| = 1$ and a subset S of V(G) with |S| = k, there exists a Solitaire Clobber game on G that empties S.

Now, we may always assume that $|\Phi^{-1}(0)| > 1$ and $|\Phi^{-1}(1)| > 1$.

We use induction.

We use induction.

We use induction.

 $\circ |G| \ge k+2;$

We use induction.

$$\circ |G| \ge k+2;$$

$$\circ k(G) = k;$$

We use induction.

$$\circ |G| \ge k + 2;$$

$$\circ k(G) = k;$$

$$\circ |S| = k.$$

We use induction.

$$\circ |G| \ge k + 2;$$

$$\circ k(G) = k;$$

$$\circ |S| = k.$$

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

|G₂| ≥ k + 1 = (k − 1) + 2;
k(G) = k.
|S| = k.

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

|G₂| ≥ k + 1 = (k − 1) + 2;
k(G₂) ≥ k − 1;
|S| = k.

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

 $◦ |G_2| ≥ k + 1 = (k - 1) + 2;$ $◦ k(G_2) ≥ k - 1;$ $◦ |S_2| = k - 1.$

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

- $|G_2| \ge k+1 = (k-1)+2;$
- $k(G_2) \ge k 1;$
- $\circ |S_2| = k 1.$

 $\circ \Phi_2$ is non-monochromatic.

Theorem (Dirac '60)

If G is a k-connected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle **C** including S in its vertex set.

Theorem (Fan Lemma, Dirac '60)

Let *G* be a *k*-connected graph, let *x* be a vertex of *G*, and let $Y \subseteq V(G) \setminus \{x\}$ be a set of at least *k* vertices of *G*. Then there exists a *k*-fan in *G* from *x* to *Y* (that is, a family of *k* internally disjoint (x, Y)-paths whose terminal vertices are distinct).

Theorem (Dirac '60)

If G is a k-connected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle **C** including S in its vertex set.

Theorem (Fan Lemma, Dirac '60)

Let *G* be a *k*-connected graph, let *x* be a vertex of *G*, and let $Y \subseteq V(G) \setminus \{x\}$ be a set of at least *k* vertices of *G*. Then there exists a *k*-fan in *G* from *x* to *Y* (that is, a family of *k* internally disjoint (x, Y)-paths whose terminal vertices are distinct).

We may assume that the restriction of Φ_1 to $V(\mathbf{C})$ is non-monochromatic.

Theorem (Dirac '60)

If G is a k-connected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle **C** including S in its vertex set.

Theorem (Fan Lemma, Dirac '60)

Let *G* be a *k*-connected graph, let *x* be a vertex of *G*, and let $Y \subseteq V(G) \setminus \{x\}$ be a set of at least *k* vertices of *G*. Then there exists a *k*-fan in *G* from *x* to *Y* (that is, a family of *k* internally disjoint (x, Y)-paths whose terminal vertices are distinct).

We may assume that the restriction of Φ_1 to $V(\mathbf{C})$ is non-monochromatic.

If $\Phi_1(x) = \Phi_1(y)$ for all $x, y \in S$, then there is an obvious Solitaire Clobber game on the cycle **C** that empties *S*. If both S and C are non-monochromatic, we use the following lemma which extends Dirac's Theorem.

If both S and C are non-monochromatic, we use the following lemma which extends Dirac's Theorem.

Lemma

Let $k \ge 2$, G be a k-connected graph, $S \subseteq V(G)$ with |S| = k, and $T_i = \{v_{i,1}, \ldots, v_{i,s_i}\}, 1 \le i \le m$, m pairwise disjoint subsets of S. Suppose that G contains a cycle **C** that satisfies the following condition: (*) For each $1 \le i \le m$, $(v_{i,1}, \ldots, v_{i,s_i})$ is a path in **C**. Then G contains a cycle that includes S in its vertex set and satisfies (*).

Theorem Let *G* be a graph with $|G| \ge 4$. Then *G* is 2-connected if and only if it is 2-correducible.

Theorem

Let *G* be a graph with $|G| \ge 4$. Then *G* is 2-connected if and only if it is 2-correducible.

Theorem

Let *G* be a graph with $|G| \ge 4$. Then *G* is 2-connected if and only if it is 2-correducible.

Proposition

For all $n \ge 2$ and $k \le n - 1$, k(G(n, k)) = k. In contrast, for a fixed k, $\lim_{n\to\infty} cr(G(n, k)) = \infty$.

0 0 0 0

• Find graphs with k(G)=cr(G);

Find graphs with k(G)=cr(G);
Study other types of connectivity;

- Find graphs with k(G)=cr(G);
- Study other types of connectivity;
- Determine the correducibility of some interesting graphs (eg.: grids, tori, hypercubes, ...)

Thank you for your attention!

Federal Fluminense University

This research was partially supported by CAPES, CNPq and FAPERJ.