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Chromatic connectivity of graphs

Proper colorings

Well known...
four color map problem [Appel and Haken (1989)]
chromatic number problem - NP-complete
for vertices / edges
many applications - avoid conflicts

register allocation
scheduling problems
interference, security in communication networks
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Chromatic connectivity of graphs

Proper path colorings

Relaxed constrains

Not necessary to impose constrains on the colors for all pairs of adjacent
edges/vertices in order avoid conflicts, but:

assure paths between any pair of vertices on which communication is safe

Possible advantages: less colors, algorithms

Proper path coloring - proper connection number
Borozan et al. (2012)
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Chromatic connectivity of graphs

Proper path colorings

Definition (Borozan et al. (2012); Andrews et al. (2016))

c : E(G) −→ {1, 2, . . . , k}

proper path P: c|E(P) proper edge-coloring

proper connection number of G : pce(G)

similar - proper vertex-connection number of G : pcv (G)

proper connection for strong digraphs: for every ordered pair u,v of vertices exists
a proper (di)path from u to v .

Related to rainbow coloring - [Chartrand et al. (2008)]

computing the rainbow connection number is NP-hard and not FPT for any
fixed k ≥ 2 [Chakraborty et al. (2011)]
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Proper connection number

Known results

Survey - [Li and Magnant (2015)]

Combinatorial results:
Existence problems [Andrews et al. (2016)]

difference between chromatic number and pc can be arbitrary large
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Connection to structure properties of graph
minimum degree, domination, connectivity [Li et al. (2015)]
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Proper connection number

Known results

Combinatorial results:
Extremal graphs [Laforge et al. (2016)]

graphs with pc(G) = m − 1,m − 2
graphs with pc = 2 - no complete characterization or algorithmic results
- 3-connected, 2-connected with diameter 2, bipartite bridgeless

Classes of graphs
random graphs [Gu et al. (2016)]

Almost all graphs have proper connection number 2

bipartite graphs [Borozan et al. (2012); Huang et al. (2015, 2016)]
sufficient conditions to have proper connection number 2

Digraphs [Magnant et al. (2016)]
−→pce(D) ≤ 3
Conjecture: A strong digraph with no even dicycle has −→pce(D) = 3.

Proper vertex-connection for undirected graphs - trivial
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Proper connection number

Our results

No algorithmic results

Bipartite graphs with pc = 2 - no complete characterization or algorithms

Polynomial-time recognition algorithms for bounded-treewidth graphs
and bipartite graphs with pc = 2

Characterization of bipartite graphs with pc = 2
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Proper connection number

Our results

Digraphs
−→pce(D) ≤ 3

Deciding whether −→pce(D) ≤ 2 is NP-complete.
Reduction from Positive NAE-SAT

Conjecture: A strong digraph with no even dicycle has −→pce(D) = 3

There exists an infinite family of digraphs with no even dicycles
that also have properly connected 2-colorings.

Proper vertex-connection for undirected graphs - trivial

Initiate study of proper vertex-connection for digraphs
−→pcv (D) ≤ 3
Deciding whether −→pcv (D) ≤ 2 is NP-complete

Reduction from 3-SAT
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Proper connection number

Bipartite graphs

Lemma (Huang et al. (2015))

If G is a connected bipartite bridgeless graph, then pce(G ) ≤ 2. Furthermore, such
a coloring can be produced with the strong property.

u v

Coloring with strong property - ear decomposition

Remark

pce(G ) ≥ b(G ) = maximum number of bridges incident in a vertex
[Andrews et al. (2016)]

pce(G ) ≤ 2 =⇒ b(G ) ≤ 2
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Proper connection number

Bipartite graphs

? Any bipartite graph with b(G ) ≤ 2 has pce(G ) ≤ 2?

No

Lemma

Let G = (V ,E ) be a connected graph, B be a bridge-block of G that is bipartite.
If B is incident to at least three bridges then pce(G ) ≥ 3.

v0

v1 v2
u0

u1 u2

u3

Рис.: A bipartite graph G with pce(G) = 3.
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Proper connection number

Bipartite graphs

v0

v1 v2
u0

u1 u2

u3

b0

b1 b2

paths of same parity

even length
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Proper connection number

Bipartite graphs

Theorem

Let G = (V ,E ) be a connected bipartite graph. We have pce(G ) ≤ 2 if and only
if the bridge-block tree of G is a path. Furthermore, if pce(G ) ≤ 2, then such a
coloring can be computed in linear-time.

B1B0 B2 B3 B4
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Proper connection number

Bipartite graphs

If bridge-block tree of G is a path =⇒ linear ordering B0,B1, . . . ,Bl over the
bridge-blocks.

Color blocks in this order (with strong property)

B1B0 B2 B3 B4
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Proper connection number

Bipartite graphs
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Proper connection number

Bipartite graphs

If bridge-block tree of G is a path =⇒ linear ordering B0,B1, . . . ,Bl over the
bridge-blocks.

Color bridge between Bi and Bi+1 according to color of bridge between Bi−1
and Bi and parity of paths length
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Proper connection number

Conclusions

Complete characterization of bipartite graphs with pc = 2

First algorithmic and complexity results on proper connection

Open problems
NP-completness results and algorithms for undirected case and related type of
colorings

characterize graphs with pc ≤ 2
proper connection number of bipartite graphs

Conditions for strong digraphs to have proper edge/vertex connection number
2 or 3.
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Strongly 2-connected digraphs with no even dicycle

Proposition (McCuaig (2015))

There is only one strongly 2-connected digraph with no even dicycle (up to an

isomorphism), digraph D7.

1
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4

5

6

7

Figure: D7.
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Strongly 2-connected digraphs with no even dicycle

Lemma

−→pce(D7) = 2.
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Bibliography

Strongly connected digraphs with no even dicycle

Theorem

There is an infinite family of strongly connected digraphs with no even dicycle

having proper connection number equal to 2

1
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7

1’
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3’

4’

5’

6’

7’

1 ≡ 3′
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NP-completness result

Theorem

Deciding whether −→pce(D) ≤ 2 for a given digraph D is NP-complete.

Proof.

NP-hard: reduction from Positive NAE-SAT

Problem (Positive NAE-SAT)

Input: A propositional formula Φ in conjunctive normal form,

with unnegated variables.

Question: Does there exist a truth assignment satisfying Φ in which

no clause has all its literals valued 1 ?
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Reduction example

C1

C2

x1

x2

x3

x4

y1

y2

y3

y4

T

F

F ′

T ′

Figure: DΦ for Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)
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Clause gadget

Cj

xi1

xi2

xi3
αj

βj

γj

δj

β′j

α′j

δ′j

γ′j

Figure: Gadget representing the clause Cj = xi1 ∨ xi2 ∨ xi3 .

(Di)graphs with proper connection 2 23 / 24



Bibliography

Clause gadget

unique paths: [αj , βj ,Cj , γj , δj ] and [γj , δj ,Cj , αj , βj ]

Cj
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xi2

xi3
αj

βj

γj

δj

β′j

α′j

δ′j

γ′j

Figure: Gadget representing the clause Cj = xi1 ∨ xi2 ∨ xi3 .
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Clause gadget

unique paths: [αj , βj ,Cj , γj , δj ] and [γj , δj ,Cj , αj , βj ] =⇒ arcs with same color

Cj

xi1

xi2

xi3
αj

βj

γj

δj

β′j

α′j

δ′j

γ′j

Figure: Gadget representing the clause Cj = xi1 ∨ xi2 ∨ xi3 .
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Proper vertex connection number of digraphs

F

y1 y2 y3

x1
α1 β1 x1

γ1δ1

x2
α2 β2 x2

γ2δ2

x3
α3 β3 x3

γ3δ3

C ′1 C1 C ′2 C2

Figure: DΦ for Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)
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