Detecting an induced subdivision of K_4

Ngoc Khang Le

Team MC2, LIP, ENS de Lyon, Lyon, France

September 13, 2017

< 67 ▶

æ

2 Detecting ISK4

Ngoc Khang Le (Team MC2, LIP, ENS de Ly Detecting an induced subdivision of K_4

э

æ

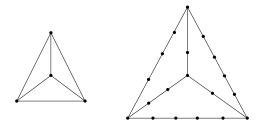
Image: A matrix

Definition

A *subdivision* of a graph is obtained by subdividing its edges into paths of arbitrary length (at least 1).

Definition

A graph is *ISK4-free* if it contains no induced subdivision of K_4 .



Theorem (Le 2016)

Let G be an ISK4-free graph. Then $\chi(G) \leq 24$.

Theorem (Le 2016)

Let G be an ISK4-free graph. Then $\chi(G) \leq 24$.

Conjecture (Lévêque, Maffray, Trotignon 2012)

Let G be an ISK4-free graph. Then $\chi(G) \leq 4$.

Theorem (Le 2016)

Let G be an ISK4-free graph. Then $\chi(G) \leq 24$.

Conjecture (Lévêque, Maffray, Trotignon 2012)

Let G be an ISK4-free graph. Then $\chi(G) \leq 4$.

- Finding maximum clique is easy.
- Coloring ISK4-free graphs is NP-hard since it contains all line graphs of cubic graphs.
- Finding maximum stable set is open.

Problem 1

Input: A fixed graph H and a graph G.

Output: Decide if G contains some subdivision of H as a subgraph.

Problem 1

Input: A fixed graph H and a graph G.

Output: Decide if G contains some subdivision of H as a subgraph.

This is polynomial-time solvable by a theorem of Robertson and Seymour.

Problem 1

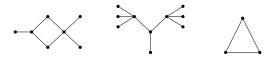
Input: A fixed graph H and a graph G.

Output: Decide if G contains some subdivision of H as a subgraph.

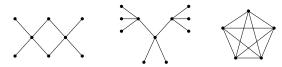
This is polynomial-time solvable by a theorem of Robertson and Seymour.

Problem 2

Input: A fixed graph H and a graph G. Output: Decide if G contains some subdivision of H as an induced subgraph. • Polynomial: (Chudnovsky, Seymour 2010)



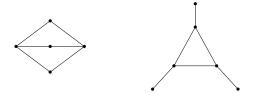
• NP-hard: (Lévêque, Lin, Maffray, Trotignon 2009)



Open question

Do we have polynomial algorithm if H is a subcubic graph?

• True for following graphs: (Chudnovsky, Seymour, Trotignon 2013)



Theorem (Le 2017)

There is an $O(n^9)$ algorithm to detect an ISK4.

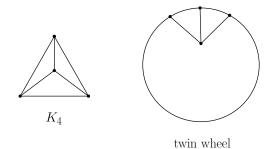
э

- 一司

æ

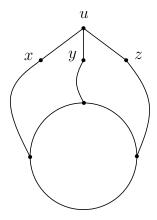
Detecting claw-free ISK4

- Detecting K_4 can be done in $O(n^4)$.
- Detecting twin-wheel can be done in $O(n^6)$.



11 / 21

Detecting radar

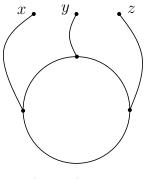


- 一司

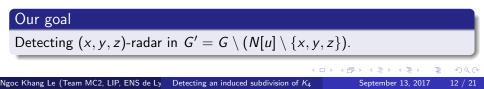
2 / 21

э

Detecting radar

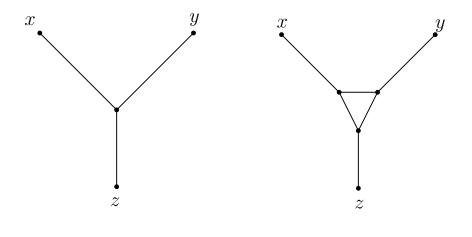


(x, y, z)-radar

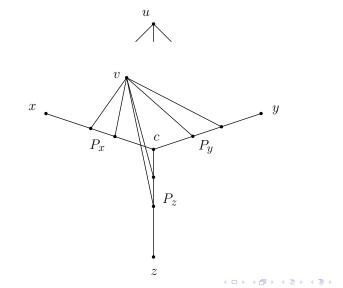


Minimum connected subgraph

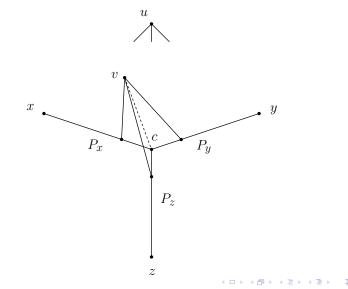
• Finding a minimum subgraph of G' connecting x, y, z in $O(n^3)$.



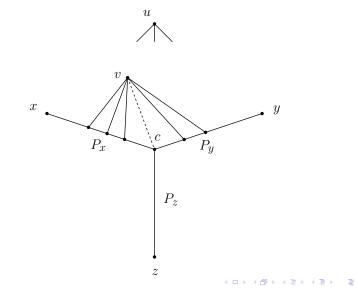
v cannot have neighbors in all 3 paths.



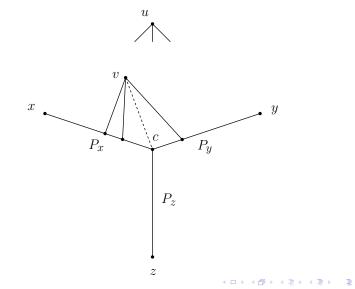
v cannot have neighbors in all 3 paths.



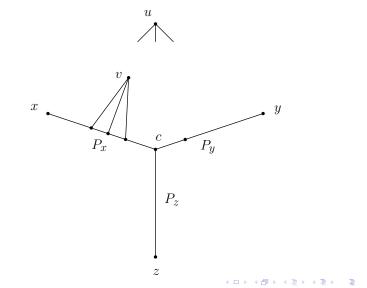
v cannot have neighbors in some 2 paths.



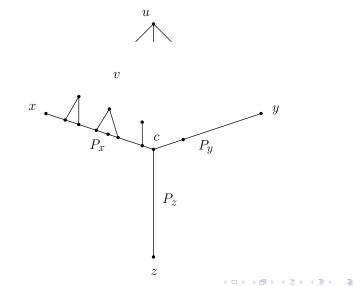
v cannot have neighbors in some 2 paths.



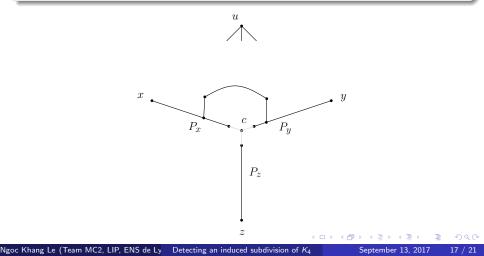
v can only attach "locally" on each path.



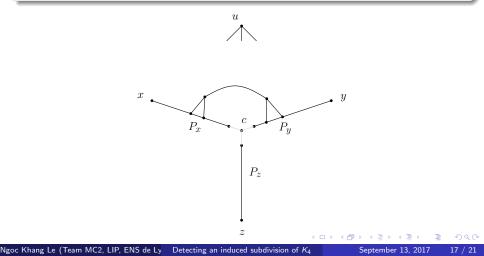
v can only attach "locally" on each path.



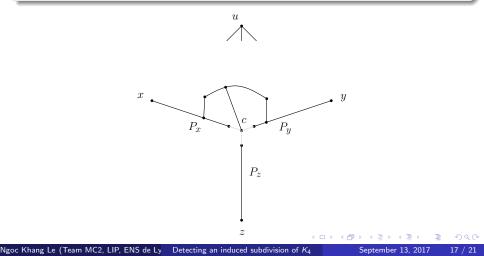
Claim



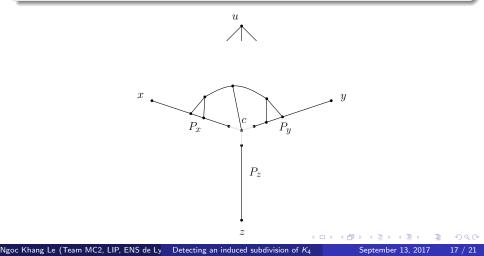
Claim



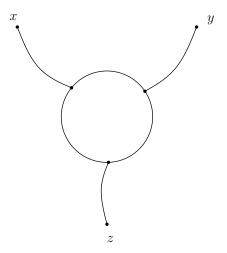
Claim



Claim



c has at least 3 neighbors in every path among x, y, z. $\Rightarrow c$ is not contained in any (x, y, z)-radar.



- (1) Check if G contains K_4 or twin-wheel.
- (2) For every claw (u, x, y, z) in G:
 - (a) Find a minimum subgraph H of $G' = G \setminus (N[u] \setminus \{x, y, z\})$ connecting x, y, z. Let c be the center of H.
 - (b) Check if there exists some path in $G' \setminus c$ between some pair of $\{x, y, z\}$ which contains at most 2 neighbors of c.
 - (c) $G := G \setminus c$, go to (a).

Complexity: $O(n^9)$.

The complexity can be improved to $O(n^7)$ by:

- First decompose the graph by clique cutset until there is no $K_{3,3}$.
- (ISK4, $K_{3,3}$)-free has linear number of edges, so testing the connection takes only O(n).
- Consider only $O(n^3)$ triples of independent vertices instead of generating all $O(n^4)$ claws.

Thank you !

Ngoc Khang Le (Team MC2, LIP, ENS de Ly Detecting an induced subdivision of K_4 - 一司

æ