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Rough plan

• The seriation problem: Robinson matrices and the spectral algorithm

• Combinatorial algorithms: links to (unit) interval (hyper)graphs

• Classical graph search: Lexicographic Breadth-First Search (Lex-BFS)

& unit interval graphs

• New weighted graph search: Similarity-First Search (SFS)

& Robinson matrices



The seriation problem



Motivation: Archeology

Sequence dating

Sir William
Matthew Flinders
Petrie (1853-1942)



Consecutive Ones Property (C1P)

Order the graves chronologically based on the stylistic and technical
characteristics of objects (potteries...) found in the sites.



P1 P2 P3 P4

G1 1
G2 1 1 1
G3 1 1
G4 1
G5 1 1 1 1




P1 P2 P3 P4

G1 1
G5 1 1 1 1
G2 1 1 1
G3 1 1
G4 1


Matrix with C1P Petrie matrix

P ΠP
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W.M.F. Petrie. Sequences in prehistoric remains. Journal of the
Anthropological Institute of Great Britain and Ireland, 1899.



Robinson(ian) similarity matrix

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to

each other in the ordering.



G1 G2 G3 G4 G5

G1 3 1 2 0 1
G2 1 4 2 3 3
G3 2 2 4 0 2
G4 0 3 0 4 2
G5 1 3 2 2 3




G1 G3 G5 G2 G4

G1 3 2 1 1 0
G3 2 4 2 2 0
G5 1 2 3 3 2
G2 1 2 3 4 3
G4 0 0 2 3 4


Robinsonian matrix Robinson matrix

A ΠAΠT

Theorem (Kendall 1971)

P is Petrie ⇐⇒ PP T is Robinson.

P has unimodal columns ⇐⇒ P ◦ PT = (
∑

z min{Pxz, Pyz})x,y is
Robinson.
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Robinson(ian) similarity matrix

A ∈ Sn is a Robinson similarity if its entries increase monotonically
along rows and columns when moving toward the diagonal:

x y

Axz ≤ min{Axy, Ayz}
∀ 1 ≤ x < y < z ≤ n

z

A ∈ Sn is a Robinsonian similarity if there exists a permutation π such
that ΠAΠT = Aπ :=

(
Aπ(x),π(y)

)
x,y

is a Robinson similarity.

Then π is called a Robinson ordering of A.

The seriation problem: Find such a Robinson ordering π (if it exists).
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Robinson(ian) dissimilarity matrix

D ∈ Sn is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

x y

Dxz ≥ max{Dxy, Dyz}
∀ 1 ≤ x < y < z ≤ n

z

D ∈ Sn is a Robinsonian dissimilarity if there exists a permutation π
such that Dπ :=

(
Dπ(x),π(y)

)
x,y

is a Robinson dissimilarity,

that is: A = −D is a Robinsonian similarity.



Robinson(ian) dissimilarity matrix

D ∈ Sn is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

D ∈ Sn is a Robinsonian dissimilarity if there exists a permutation π
such that Dπ :=

(
Dπ(x),π(y)

)
x,y

is a Robinson dissimilarity,
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The seriation problem

Given A ∈ Sn, find a permutation π (Robinson ordering) for which Aπ is
Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

QAP(A,D) min
π

n∑
x,y=1

AxyDπ(x)π(y).

With D = ((x− y)2) ; 2-SUM problem, NP-hard for general A
[George-Pothen 97]

Motivates the spectral algorithm of [Atkins-Boman-Hendrickson 98]

Note D is a Robinson dissimilarity & Toeplitz
; QAP(A,D) is poly-time solvable if A is a Robinsonian similarity
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An easy instance of QAP

Theorem (L-Seminaroti 2015)

1. If A is a Robinson similarity, D is a Robinson dissimilarity, and A or
D is Toeplitz, then the identity permutation solves QAP(A,D) at
optimality.

2. If π is a Robinson (similarity) ordering of A, σ is a Robinson
(dissimilarity) ordering of D, and Aπ or Dσ is Toeplitz, then σ−1π
solves QAP(A,D) at optimality.

Contains the special case when A is a block matrix:

0 0 0

0 1 0

0 0 0

and D = ((x− y)2)
[Fogel-Jenatton-Bach-Aspremont NIPS’13]
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The spectral algorithm to recognize Robinsonian matrices

Given A ≥ 0: “Relax” 2-SUM: minπ
∑

x,y Axy(π(x)− π(y))2 by

minv∈Rn

∑
x,y Axy(vx − vy)2 = vTLAv

s.t. ‖v‖ = 1, eTv = 0.

; Fiedler value: λ2(LA), whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then its Laplacian matrix LA := Diag(Ae)−A has a
monotone Fiedler vector.

2. Assume A is irreducible with mini,j Aij = 0. If A is Robinsonian then
λ2(LA)> 0 and λ2(LA) is simple.

3. If the Fiedler vector v2 has no repeated entries, then a permutation
π orders v2 monotonically ⇐⇒ π is a Robinson ordering of A.

General case: If v2 has repeated entries, then recurse the algorithm on
the submatrices indexed by the repeated entries.

Can encode all Robinson orderings of A using PQ-trees.
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Combinatorial algorithms

Interval (hyper)graphs

Unit interval graphs



Links to interval (hyper)graphs

For a similarity A ∈ Sn, a ball is any set B(x, δ) = {y ∈ [n], Axy ≥ δ}.
B: set of all balls; V = [n].

Theorem (Mirkin-Rodin 1984)

The following are equivalent:

1. A is a Robinsonian similarity

2. the ball hypergraph H = (V,B) is an interval hypergraph:

its vertices/hyperedges incidence matrix has C1P

3. the intersection graph of B is an interval graph ⇐⇒
its max.cliques/vertices incidence matrix has C1P [Fulkerson-Gross 65]

Can test whether M ∈ {0, 1}p×q with m ones has C1P in O(p+ q +m)
using PQ-trees. [Booth-Lueker 76]
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Existing recognition algorithms for Robinsonian matrices

Year Complexity Subroutine Paradigm

Mirkin
& Rodin

1984 O(n4) PQ-trees
interval

hypergraphs

Chepoi
& Fichet

1997 O(n3) PQ-trees
interval

hypergraphs

Préa
& Fortin

2014 O(n2) PQ-trees
interval
graphs

Atkins
et al.

1998 O(n(T (n) + n log n)) eigenvalues
Fiedler
vector

Laurent
& Seminaroti

2015 O(L(m+ n)) Lex-BFS
unit interval

graphs

Laurent
& Seminaroti

2017 O(n2 +mn log n) SFS
new weighted
graph search

n: size of A; m : # of nonzero entries of A; L : # of distinct values of A.



Binary Robinsonian matrices and unit interval graphs

Fact (Roberts 1969)

A ∈ {0, 1}n×n is a Robinsonian similarity if and only if A is the adjacency
matrix of a unit interval graph G.

G is a unit interval graph if ∃ unit intervals I1, . . . , In in R such that

{x, y} ∈ E ⇐⇒ Ix ∩ Iy 6= ∅.

1

2

3

4

5

1 2

3

4 5

Theorem (Looges-Olariu 1993)

G is a unit interval graph if and only if there exists a linear order π of
the vertices satisfying the 3-point condition:

{x, z} ∈ E =⇒ {x, y}, {y, z} ∈ E if x <π y <π z

Recall the Robinson (similarity) property:

x y z Axz ≤ min{Axy, Ayz} if x < y < z
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Binary Robinsonian matrices and unit interval graphs

Fact (Roberts 1969)

A ∈ {0, 1}n×n is a Robinsonian similarity if and only if A is the adjacency
matrix of a unit interval graph G.

Theorem (Looges-Olariu 1993)

G is a unit interval graph if and only if there exists a linear order π of
the vertices satisfying the 3-point condition:

{x, z} ∈ E =⇒ {x, y}, {y, z} ∈ E if x <π y <π z

Recall the Robinson (similarity) property:

x y z Axz ≤ min{Axy, Ayz} if x < y < z

Theorem (Corneil 2004)

One can recognize unit interval graphs in O(|V |+ |E|) using Lex-BFS.



Graph search: Lex-BFS



Graph search paradigm

Given a graph G = (V,E):
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Different queue updates lead to different graph search algorithms:

Breadth-First Search (BFS)

Depth-First Search (DFS)

Lexicographic Breadth-First Search (Lex-BFS)
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Different queue updates lead to different graph search algorithms:

Breadth-First Search (BFS)

Depth-First Search (DFS)

Lexicographic Breadth-First Search (Lex-BFS)



Lex-BFS via partition refinement

Let N(p) denote the neighborhood of the current pivot p.

Q : x1 x2 x3 x4 x5 x6

B1 B2 B3

x1 x3 x2 � x4 x6 x5

B1 ∩N(p) B1 \N(p) B2 ∩N(p) B2 \N(p) B3 ∩N(p) B3 \N(p)

Q′ : x1 x3 x2 x4 x6 x5

Lex-BFS+: Order the vertices in each block according to a given order τ

Lex-BFS runs in time O(|V |+ |E|) [Rose-Tarjan’75, Habib et al.’00]
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Example of Lex-BFS+

τ = (1, 2, 3, 4, 5, 6)
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1 2 3 5 4 6

The Lex-BFS+ ordering is σ = (1, 2, 3, 5, 4, 6)
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Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V,E).
Output: an ordering π of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

1. σ = Lex-BFS (G)

2. σ+ = Lex-BFS+(G, σ−1)

3. π = Lex-BFS+(G, σ−1+ )

4. if π satisfies 3-vertex condition return π

5. else return “G is not a unit interval graph”

Hence: In time O(|V |+ |E|), return a Robinson ordering of AG or state
AG is not Robinsonian.

What about general matrices A?

Option 1: Use Lex-BFS for the ‘level graphs’ of A. [L-Seminaroti’15]

Option 2: Generalize Lex-BFS to weighted graphs: SFS.
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Recognizing Robinsonian matrices with Lex-BFS

Lemma

Consider A ∈ Sn taking values α0 = 0 < α1 < α2 < . . . < αL.

A is Robinson ⇐⇒ A is a conic combination of 0/1 Robinson matrices:

A =

L∑
l=1

(αl − αl−1)AGl
,

where graph Gl has edges {x, y} with Axy ≥ αl.

Algorithm (rough sketch):

1. Find the level graphs G1, . . . , GL of A.

2. Find an ordering π of V which satisfies the 3-point condition for
all graphs Gl (l = 1, . . . , L). Then π is a Robinson ordering of A.

If none exists, then A is not Robinsonian.

; algorithm in O(L(n+m)) [L-Seminaroti 2015]



Weighted graph search:

Similarity-First Search (SFS)



Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {x : Apx > 0}.
Consider the ordered similarity partition (C1, C2, C3, . . . ) of N(p), where
Apx = α1 > Apy = α2 > Apz = α3 > . . . > 0 ∀x ∈ C1, y ∈ C2, z ∈ C3, ...

Q : x1 x2 x3 x4 x5 x6

B1 B2

x3 x1 x2 � x4 x6 � x5 �

B1 ∩ C1 B1 ∩ C2 B1 ∩ C3 B1 \N(p) B2 ∩ C1 B2 ∩ C2 B2 ∩ C3 B2 \N(p)

Q′ : x3 x1 x2 x4 x6 x5

SFS runs in O(n+m log n) if A has m nonzero entries. [L-Seminaroti 17]
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Example for SFS+

τ = (1, 2, 3, 4, 5, 6)
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The SFS+ ordering is σ = (1, 3, 2, 6, 5, 4)
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SFS and Robinson matrices



SFS multisweep recognition algorithm

Input: a nonnegative matrix A ∈ Sn
Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1. σ0 = SFS (A)

2. for i = 1, . . . , n− 2

3. σi = SFS+(A, σ−1i−1)

4. if σi is a Robinson ordering return π = σi
5. end
6. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)

Let A ∈ Sn be nonnegative with m nonzero entries. Then:

1. A ∈ Sn is Robinsonian ⇐⇒ σn−2 is a Robinson ordering.

2. The multisweep recognition algorithm runs in O(n2 +mn log n) time.

3. Simpler test at line 4: Check whether σi = σ−1i−1. If YES then:

if σi is Robinson then A is Robinsonian; else A is not Robinsonian.
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SFS and end vertices of Robinson orderings (anchors of A)

• a ∈ V is an anchor of A if there exists a Robinson ordering π of A
starting (or ending) at a
• a, b ∈ V are opposite anchors of A if there exists a Robinson

ordering π of A starting at a and ending at b

π :σ :

a1 a2 . . . b2 b1

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and σ = SFS(A) has last vertex b.

1. b is an anchor of A.

(In fact any anchor arises as end vertex of some SFS ordering of A.)

2. If the first vertex a in σ is an anchor of A, then a, b are opposite
anchors of A.

Key ingredient: combinatorial characterization of (opposite) anchors of
A in terms of certain “forbidden paths”.
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Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1

, σ3

start with a and end with b; σ2

, σ4

start with b and end with a;

etc.



Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1

, σ3

start with a and end with b; σ2

, σ4

start with b and end with a;

etc.



Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1

, σ3

start with a and end with b; σ2

, σ4

start with b and end with a;

etc.



Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1

, σ3

start with a and end with b; σ2

, σ4

start with b and end with a;

etc.



Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1 , σ3 start with a and end with b; σ2 , σ4 start with b and end with a; etc.



Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1 , σ3 start with a and end with b; σ2 , σ4 start with b and end with a; etc.

Key fact: a1 = yn−1 and b1 are opposite anchors of A[V \ {a, b}].



Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1 , σ3 start with a and end with b; σ2 , σ4 start with b and end with a; etc.

Moreover: σn−2[A \ {a, b}] can be seen as result of the multisweep
algorithm applied to A[V \ {a, b}], starting with σ3[V \ {a, b}].
; can apply induction.



Crucial technical tool: Path avoiding a vertex

For distinct x, y, z ∈ V , P = (x = v0, v1, . . . , vk−1, vk = y) is a path from
x to y avoiding z if each triple (vi, z, vi+1) is not Robinson, i.e.,

Avivi+1 > min{Azvi , Azvi+1}, ∀ i = 0, 1, . . . , k − 1.

Fact

Assume A is Robinsonian. If ∃ path x ; y avoiding z then
z does not lie between x and y in any Robinson ordering π of A.

Theorem

a is an anchor of A ⇐⇒ 6 ∃ u, v ∈ V , a path a; u avoiding v, and a path
a; v avoiding u (since π : a · · · v · · ·u or π : a · · ·u · · · v)

Theorem

Two anchors a, b of A are opposite anchors
⇐⇒ 6 ∃ path a; b avoiding some u (since π : a · · ·u · · · b)
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Certifying non-Robinsonian matrices

Definition

A weighted asteroidal triple for A is a triple {x, y, z} such that
∃ path x; y avoiding z; ∃ path x; z avoiding y; and
∃ path y ; z avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian ⇐⇒ there does not exist a weighted asteroidal triple.

• Can find a weighted asteroidal triple in O(n3): this certifies A is not
Robinsonian.

• This implies the characterization of unit interval graphs: no asteroidal
triple, no induced cycle of length at least 4, no induced claw K1,3

[Roberts 69]
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Tight example where n− 1 sweeps are needed

Example by S. Tanigawa: Robinson matrix A ∈ Sn:
A1n = 0, A1i = 1, A2n = 1, Ain = 2, Aij = Ai−1,j+1 + 1.

A =



1 2 3 4 5 6 7 8 9 10 11

1 ∗ 1 1 1 1 1 1 1 1 1 0
2 ∗ 2 2 2 2 2 2 2 1 1
3 ∗ 3 3 3 3 3 2 2 2
4 ∗ 4 4 4 3 3 3 2
5 ∗ 5 4 4 4 3 2
6 ∗ 5 5 4 3 2
7 ∗ 5 4 3 2
8 ∗ 4 3 2
9 ∗ 3 2
10 ∗ 2
11 ∗


With SFS σ0 = (2, 3, . . . , n, 1), the first Robinson sweep is σn−2.



Computational experiments

by Matteo



Instances generation

(a) Generation 1 (b) Generation 2

(c) Generation 3 (d) Generation 4
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Table 9.2: (Average) Time performance of the algorithms (in milliseconds)

# distinct values low ( 50) medium (> 50 and  200) high (� 200)

# nonzero entries
n

algorithms

spectral SFS LBFS spectral SFS LBFS spectral SFS LBFS

sparse
( 30 %)

100 2,98 1,78 10,57 3,68 1,97 58,85 4,24 2,20 -

200 8,48 8,22 36,99 8,38 8,08 211,08 9,62 8,93 -

300 16,69 17,58 83,08 18,00 16,55 513,76 18,18 16,58 -

400 27,68 29,91 153,23 30,06 31,92 953,13 30,30 32,10 -

500 38,78 44,35 209,87 47,77 47,33 1382,98 45,60 41,20 -

600 50,28 53,66 277,90 59,06 55,47 1771,93 54,10 57,10 -

700 67,02 73,45 383,13 72,54 75,64 2437,52 76,55 78,96 -

800 98,54 98,29 526,48 94,76 98,96 3236,95 104,52 102,09 -

900 114,36 124,67 616,90 121,75 122,12 4103,76 136,70 130,02 -

1000 152,63 161,15 904,72 153,52 148,28 5047,28 189,63 184,12 -

normal
(> 30 % and  70%)

100 3,16 4,65 26,25 3,46 5,20 196,26 3,41 5,04 -

200 11,04 18,58 108,28 12,96 19,92 942,65 14,43 20,08 -

300 25,62 40,91 252,98 29,46 44,37 2098,60 30,71 45,09 -

400 49,50 76,23 459,03 55,82 74,65 3833,16 56,85 79,34 -

500 73,35 108,69 645,23 84,66 113,71 5659,31 84,77 110,84 -

600 108,05 139,40 893,37 126,33 153,15 7437,49 126,89 148,99 -

700 143,32 186,48 1247,81 164,40 196,33 10402,90 172,27 195,22 -

800 193,45 253,49 1646,54 232,95 246,19 13920,20 253,77 255,05 -

900 254,46 307,13 2131,64 317,26 309,65 17909,20 310,84 326,79 -

1000 331,47 408,70 2856,86 383,54 376,66 22601,10 442,26 499,45 -

dense
(> 70 %)

100 3,87 6,81 66,58 3,89 7,72 493,64 3,89 7,78 -

200 16,37 27,38 285,67 16,08 30,01 2126,32 16,95 31,57 -

300 38,64 61,59 633,54 40,14 65,96 4904,51 38,32 69,41 -

400 77,00 112,23 1165,52 76,81 114,90 9114,09 77,66 121,97 -

500 122,27 158,87 1691,87 122,57 163,62 13693,00 114,96 161,89 -

600 174,42 211,88 2349,12 173,31 210,19 18455,80 171,59 225,39 -

700 273,01 291,58 3364,06 248,08 286,44 25932,80 245,26 299,84 -

800 359,28 379,78 4493,35 339,09 373,69 34891,70 344,47 397,55 -

900 489,78 487,85 5854,02 450,70 466,22 45060,20 450,22 519,41 -

1000 663,46 642,58 8046,78 588,68 579,59 58410,50 707,10 775,99 -

Figure 1: (Average) Time performance of the algorithms (in milliseconds)



Performance chart (n ≤ 1000)

(a) sparse - low (b) normal - medium

(c) normal - low (d) dense - high



Performance table (large instances)
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Table 9.3: (Average) Time performance of the algorithms (in seconds)

# distinct values low ( 50) medium (> 50 and  200) high (� 200)

# nonzero entries
n

algorithms

spectral SFS LBFS spectral SFS LBFS spectral SFS LBFS

sparse
( 30 %)

1000 0,16 0,19 - 0,16 0,16 - 0,17 0,18 -

2000 0,68 0,62 - 0,72 0,7 - 0,76 0,62 -

3000 1,56 1,5 - 1,95 1,58 - 1,95 1,48 -

4000 2,94 2,92 - 3,6 2,57 - 3,58 2,81 -

5000 4,41 4,61 - 5,56 4,03 - 6,09 4,38 -

6000 6,94 6,23 - 9,93 6,52 - 10,87 6,72 -

7000 10,56 10,48 - 20,98 10,32 - 20,73 8,75 -

8000 14,86 13,5 - 18,24 10,67 - 21,03 11,63 -

9000 17,58 16,83 - 26,38 13,75 - 31,66 13,97 -

10000 22,46 21,28 - 45,32 18,11 - 32,87 16,18 -

normal
(> 30 % and  70%)

1000 0,32 0,4 - 0,45 0,41 - 0,45 0,46 -

2000 1,53 1,8 - 2,2 1,67 - 1,99 1,71 -

3000 4,42 4,77 - 5,49 3,77 - 5,74 3,64 -

4000 9,13 9,46 - 13,04 6,33 - 14,22 6,54 -

5000 17,08 16,45 - 26,85 10,55 - 26,33 10,77 -

6000 29,09 27,48 - 44,08 16,76 - 43,07 18,11 -

7000 43,05 45,63 - 85,31 24,65 - 68,86 21,71 -

8000 72,48 58,42 - 88,91 31,54 - 86,72 30,49 -

9000 92,18 95,53 - 151,81 36,85 - 116,02 36,87 -

10000 111,08 116,67 - 190,55 48,09 - 155,1 43,41 -

dense
(> 70 %)

1000 0,62 0,67 - 0,62 0,6 - 0,6 0,63 -

2000 3,3 2,95 - 3,59 2,26 - 3,62 2,38 -

3000 10,46 8,43 - 11,65 4,99 - 11,61 5,51 -

4000 25,64 16,75 - 27,53 9,38 - 26,62 9,92 -

5000 43,85 29,4 - 51,63 15,22 - 51,03 15,89 -

6000 104,47 59,28 - 101,14 22,69 - 92,41 26,09 -

7000 121,14 91,75 - 166,53 38,52 - 142,65 31,19 -

8000 220,08 129,7 - 219,71 40,28 - 216,43 43,31 -

9000 284,63 175,07 - 331,37 52,81 - 293,18 52,44 -

10000 383,98 248,97 - 423,32 65,31 - 411,29 64,93 -

Figure 2: (Average) Time performance of the algorithms (in seconds)



Performance chart (large instances)

(a) sparse - low (b) normal - medium

(c) normal - low (d) dense - high



Conclusions

• Lex-BFS is used to recognize unit interval graphs (3 sweeps,
Corneil’04), cographs (2 sweeps, Bretscher & al.’08), interval graphs
(5∗ sweeps, Corneil & al.’09), cocomparability graphs (n sweeps,
Dusart-Habib’17),...

• New weighted graph search algorithm: SFS (Similarity-First
Search).
Very simple algorithm: conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices. Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs.

Investigate other matrix analogues, e.g., for interval graphs.

• ‘Chordal’ matrices: defined by existence of a perfect elimination
ordering π: Ayz ≥ min{Axy, Axz} if x <π y <π z

Characterization by excluded ‘weighted chordless cycles’.
[L-Tanigawa’17]
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