Combinatorial and algorithmic properties of
Robinson matrices

Monique Laurent

Joint work with Matteo Seminaroti

Centrum Wiskunde & Informatica (CWI), Amsterdam & Tilburg University

LAGOS 2017 - CIRM, Marseille

TILBURG

UNIVERSITY
\ CWI_ %7
LT
e =



Rough plan

The seriation problem: Robinson matrices and the spectral algorithm

Combinatorial algorithms: links to (unit) interval (hyper)graphs

Classical graph search: Lexicographic Breadth-First Search (Lex-BFS)
& unit interval graphs

New weighted graph search: Similarity-First Search (SFS)

& Robinson matrices



The seriation problem



Motivation: Archeology

Sequence dating

g’ﬁﬁh.
&5.

'65@* / ‘
- "

Matthew Flinders
Petrie (1853_1942)

Al



Consecutive Ones Property (C1P)

Order the graves chronologically based on the stylistic and technical
characteristics of objects (potteries...) found in the sites.

Pl P2 P3 P4 Pl P2 P3 P4
G1 1 G1 1
G2| 1 1 1 G| 1 1 1 1
G3 1 1 G2l 1 1 1
G4 1 G3 1 1
G5\ 1 1 1 1 G4 1
Matrix with C1P Petrie matrix

P P



70090 - '
Ta090< 9L = .: -

§
‘,
=

OOOOO' ¥ _“_" :’i"w.l
@iow-@w F s A

QQQ'@@@WQ ————~——--.-'-——.""§
%@-%V P =! P~
ﬂvﬁqq oy :

B
<l
g

W.M.F. Petrie. Sequences in prehistoric remains. Journal of the
Anthropological Institute of Great Britain and Ireland, 1899.



Robinson(ian) similarity matrix

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.



Robinson(ian) similarity matrix

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gl G2 G3 G4 G5 Gl G3 G5 G2 G4

Gl / 3 1 2 0 1 Gl / 3 2 1 1 0

G2| 1 4 2 3 3 G3| 2 4 2 2 0

G3| 2 2 4 0 2 G| 1 2 3 3 2

G41 O 3 0 4 2 G2| 1 2 3 4 3

G5\ 1 3 2 2 3 G4\ 0 0 2 3 4
Robinsonian matrix Robinson matrix

A ITATIT



Robinson(ian) similarity matrix

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gl G2 G3 G4 G5 Gl G3 G5 G2 G4
Gl / 3 1 2 0 1 Gl / 3 2 1 1 0
G2| 1 4 2 3 3 G3| 2 4 2 2 0
G3| 2 2 4 0 2 G| 1 2 3 3 2
G41 O 3 0 4 2 G2| 1 2 3 4 3
G5\ 1 3 2 2 3 G4\ 0 0 2 3 4
Robinsonian matrix Robinson matrix
A ITAIIT

Theorem (Kendall 1971)
e P is Petrie < PP is Robinson.




Robinson(ian) similarity matrix

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gl G2 G3 G4 G5 Gl G3 G5 G2 G4
Gl / 3 1 2 0 1 Gl / 3 2 1 1 0
G2| 1 4 2 3 3 G3| 2 4 2 2 0
G3| 2 2 4 0 2 G| 1 2 3 3 2
G41 O 3 0 4 2 G2| 1 2 3 4 3
G5\ 1 3 2 2 3 G4\ 0 0 2 3 4
Robinsonian matrix Robinson matrix
A ITAIIT

Theorem (Kendall 1971)

e P is Petrie <= PPT s Robinson.

e P has unimodal columns <= P o PT = (3. min{P,,, Py })sy is
Robinson.




Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along rows and columns when moving toward the diagonal:

______

Ay, <min{A;,, Ay}

Vi<z<y<z<n




Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that ITAIIT = A™ := (AW(Z)Jr(y))xy is a Robinson similarity.




Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that ITAIIT = A™ := (AW(Z)Jr(y))xy is a Robinson similarity.

Then 7 is called a Robinson ordering of A.



Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that ITAIIT = A™ := (AW(Z)Jr(y))xy is a Robinson similarity.

Then 7 is called a Robinson ordering of A.

The seriation problem: Find such a Robinson ordering 7 (if it exists).



Robinson(ian) dissimilarity matrix

D € 8" is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

D,. > max{Dyy, D,.}
Vi<z<y<z<n



Robinson(ian) dissimilarity matrix

D € 8" is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

D € §™ is a Robinsonian dissimilarity if there exists a permutation 7
such that D™ := (DF(J:)’W(y))xy is a Robinson dissimilarity,

that is: A = —D is a Robinsonian similarity.



The seriation problem

Given A € 8", find a permutation = (Robinson ordering) for which A™ is
Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.



The seriation problem

Given A € 8", find a permutation = (Robinson ordering) for which A™ is
Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

QAP(4, D) min ) AuyDr(oyn(y)-
z,y=1

e With D = ((z — y)?)



The seriation problem

Given A € 8", find a permutation = (Robinson ordering) for which A™ is
Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

QAP(4, D) min ) AuyDr(oyn(y)-
z,y=1

e With D = ((z — y)?) ~ 2-SUM problem, NP-hard for general A
[George-Pothen 97]



The seriation problem

Given A € 8", find a permutation = (Robinson ordering) for which A™ is
Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

QAP(4, D) min ) AuyDr(oyn(y)-
z,y=1

e With D = ((z — y)?) ~ 2-SUM problem, NP-hard for general A
[George-Pothen 97]

@ Motivates the spectral algorithm of [Atkins-Boman-Hendrickson 98]



The seriation problem

Given A € 8", find a permutation = (Robinson ordering) for which A™ is
Robinson or decide that none exists.

Applications: archeology, ecology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.

Optimization approach via Quadratic Assignment:

QAP(4, D) min ) AuyDr(oyn(y)-
z,y=1

e With D = ((z — y)?) ~ 2-SUM problem, NP-hard for general A
[George-Pothen 97]

@ Motivates the spectral algorithm of [Atkins-Boman-Hendrickson 98]

@ Note D is a Robinson dissimilarity & Toeplitz
~ QAP(A, D) is poly-time solvable if A is a Robinsonian similarity



An easy instance of QAP

Theorem (L-Seminaroti 2015)

1. If A is a Robinson similarity, D is a Robinson dissimilarity, and A or
D is Toeplitz, then the identity permutation solves QAP(A, D) at
optimality.




An easy instance of QAP

Theorem (L-Seminaroti 2015)

1. If A is a Robinson similarity, D is a Robinson dissimilarity, and A or
D is Toeplitz, then the identity permutation solves QAP(A, D) at
optimality.

2. If w is a Robinson (similarity) ordering of A, o is a Robinson
(dissimilarity) ordering of D, and A™ or D° is Toeplitz, then o~ 1x
solves QAP(A, D) at optimality.




An easy instance of QAP

Theorem (L-Seminaroti 2015)

1. If A is a Robinson similarity, D is a Robinson dissimilarity, and A or
D is Toeplitz, then the identity permutation solves QAP(A, D) at
optimality.

2. If w is a Robinson (similarity) ordering of A, o is a Robinson
(dissimilarity) ordering of D, and A™ or D° is Toeplitz, then o~ 1x
solves QAP(A, D) at optimality.

Contains the special case when A is a block matrix:

‘OOO
‘OI—‘O
‘OOO

and D = ((z — y)?)
[Fogel-Jenatton-Bach-Aspremont NIPS'13]



The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming _,  Agy(m(z) — m(y))® by

mingegrn Zx’y Agy(vy — vy)2 =" Lv



The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming _,  Agy(m(z) — m(y))® by

mingern 5, Azy(vs — v)? =vTLav st ou|=1, elv=0.



The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming _,  Agy(m(z) — m(y))® by
mingern 5, Azy(vs — v)? =vTLav st ou|=1, elv=0.

~> Fiedler value: \2(L4), whose eigenvectors are the Fiedler vectors.



The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming _,  Agy(m(z) — m(y))® by
mingern 5, Azy(vs — v)? =vTLav st ou|=1, elv=0.
~> Fiedler value: \2(L4), whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then its Laplacian matrix L 4 := Diag(Ae) — A has a
monotone Fiedler vector.




The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming >, Agy(m(z) — m(y))® by
mingern 5, Azy(vs — v)? =vTLav st ou|=1, elv=0.

~> Fiedler value: \2(L4), whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then its Laplacian matrix L 4 := Diag(Ae) — A has a
monotone Fiedler vector.

2. Assume A is irreducible with min; ; A;; = 0. If A is Robinsonian then
Ao(La)> 0 and Aao(Ly) is simple.




The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming >, Agy(m(z) — m(y))? by
mingern 5, Azy(vs — v)? =vTLav st ou|=1, elv=0.

~ Fiedler value: \o(L4), whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)
1. If A is Robinson then its Laplacian matrix L 4 := Diag(Ae) — A has a
monotone Fiedler vector.
2. Assume A is irreducible with min; ; A;; = 0. If A is Robinsonian then
Ao(La)> 0 and Aao(Ly) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
7 orders vo monotonically <= 7 is a Robinson ordering of A.

v




The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming >, Agy(m(z) — m(y))? by
mingern 5, Azy(vs — v)? =vTLav st ou|=1, elv=0.

~> Fiedler value: \y(L4), whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then its Laplacian matrix L 4 := Diag(Ae) — A has a
monotone Fiedler vector.

2. Assume A is irreducible with min; ; A;; = 0. If A is Robinsonian then
Ao(La)> 0 and Aao(Ly) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
7 orders vo monotonically <= 7 is a Robinson ordering of A.

v

General case: If v5 has repeated entries, then recurse the algorithm on
the submatrices indexed by the repeated entries.



The spectral algorithm to recognize Robinsonian matrices

Given A > 0: "Relax” 2-SUM:  ming >, Agy(m(z) — m(y))? by
mingern 5, Azy(vs — v)? =vTLav st ou|=1, elv=0.

~> Fiedler value: \y(L4), whose eigenvectors are the Fiedler vectors.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then its Laplacian matrix L := Diag(Ae) — A has a
monotone Fiedler vector.

2. Assume A is irreducible with min; ; A;; = 0. If A is Robinsonian then
Ao(La)> 0 and Aao(Ly) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
7 orders vo monotonically <= 7 is a Robinson ordering of A.

v

General case: If v5 has repeated entries, then recurse the algorithm on
the submatrices indexed by the repeated entries.

Can encode all Robinson orderings of A using PQ-trees.



Combinatorial algorithms
Interval (hyper)graphs

Unit interval graphs



Links to interval (hyper)graphs

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B: set of all balls; V' = [n].

Theorem (Mirkin-Rodin 1984)

The following are equivalent:

1. A is a Robinsonian similarity

2. the ball hypergraph H = (V, B) is an interval hypergraph:
its vertices/hyperedges incidence matrix has CI1P




Links to interval (hyper)graphs

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B: set of all balls; V' = [n].

Theorem (Mirkin-Rodin 1984)

The following are equivalent:

1. A is a Robinsonian similarity

2. the ball hypergraph H = (V, B) is an interval hypergraph:

its vertices/hyperedges incidence matrix has CI1P

3. the intersection graph of B is an interval graph <—-

its max.cliques/vertices incidence matrix has C1P [Fulkerson-Gross 65]




Links to interval (hyper)graphs

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B: set of all balls; V' = [n].

Theorem (Mirkin-Rodin 1984)

The following are equivalent:

1. A is a Robinsonian similarity

2. the ball hypergraph H = (V, B) is an interval hypergraph:

its vertices/hyperedges incidence matrix has CI1P

3. the intersection graph of B is an interval graph <—-

its max.cliques/vertices incidence matrix has C1P [Fulkerson-Gross 65]

Can test whether M € {0,1}P*? with m ones has C1P in O(p + ¢ + m)
using PQ-trees. [Booth-Lueker 76]



Existing recognition algorithms for Robinsonian matrices

Year Complexity Subroutine  Paradigm
&Mli?r:il?n 1084 O(n*) PQ-trees hyipn;regr;/;ll)hs
&Crll:(iatl:JI:;t 1997 O(n?) PQ-trees hy;)n;f;:;;hs
Py F;:l;)é;in 2014 O(n?) PQ-trees ig:ae;\}/]a;l
Aeik;r;.s 1998 O(n(T(n)+nlogn)) eigenvalues I\:lfils:
N 'S'::‘n’::]’;otl 2015 O(L(m + n)) Lex-BFS “”i;ria”:s;"a'
& Semiparoty | 21 Ot £mnlogn) sk IR

n: size of A; m : # of nonzero entries of A; L : # of distinct values of A.



Binary Robinsonian matrices and unit interval graphs

Fact (Roberts 1969)

A € {0,1}™*™ is a Robinsonian similarity if and only if A is the adjacency
matrix of a unit interval graph G.

G is a unit interval graph if 3 unit intervals I1,..., I, in R such that

{z,y} e E <— IL,NI,#0.




Binary Robinsonian matrices and unit interval graphs

Fact (Roberts 1969)

A € {0,1}™*™ is a Robinsonian similarity if and only if A is the adjacency
matrix of a unit interval graph G.

v

Theorem (Looges-Olariu 1993)

G is a unit interval graph if and only if there exists a linear order 7 of
the vertices satisfying the 3-point condition:

{z,2} e E = {z,y},{y,z2}€FE if s<,y<pz




Binary Robinsonian matrices and unit interval graphs

Fact (Roberts 1969)

A € {0,1}™*™ is a Robinsonian similarity if and only if A is the adjacency
matrix of a unit interval graph G.

Theorem (Looges-Olariu 1993)

G is a unit interval graph if and only if there exists a linear order 7 of
the vertices satisfying the 3-point condition:

{z,2} e FE = {z,y},{y,2}€FE if z<,y<pz

Recall the Robinson (similarity) property:

_____

sz < min{ACEyv Ayz} if z< y<z



Binary Robinsonian matrices and unit interval graphs

Fact (Roberts 1969)

A € {0,1}™*™ is a Robinsonian similarity if and only if A is the adjacency
matrix of a unit interval graph G.

Theorem (Looges-Olariu 1993)

G is a unit interval graph if and only if there exists a linear order 7 of
the vertices satisfying the 3-point condition:

{z,2} e FE = {z,y},{y,2}€FE if z<,y<pz

Recall the Robinson (similarity) property:

_____

-
’,
’

sz < min{ACEyv Ayz} if < y<z

Theorem (Corneil 2004)
One can recognize unit interval graphs in O(|V'| + |E|) using Lex-BFS. J




Graph search: Lex-BFS



Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

4 @ 6

Different queue updates lead to different graph search algorithms:
@ Breadth-First Search (BFS)
@ Depth-First Search (DFS)
@ Lexicographic Breadth-First Search (Lex-BFS)



Lex-BFS via partition refinement

Let N(p) denote the neighborhood of the current pivot p.

By

B;

Bs

T2

T4

5

Te




Lex-BFS via partition refinement

Let N(p) denote the neighborhood of the current pivot p.

B; By Bs
Q : T T2 T3 T4 5 T
x1 r3 x2 & T4 Z6 s

B1 N N(p)

Bi\N(p) BonN(p) B2\N(p) BsNN(p) Bs\N(p)




Lex-BFS via partition refinement

Let N(p) denote the neighborhood of the current pivot p.

B, By Bs
Q: Z1 T2 r3 T4 Ts5 Z6
T T3 T2 z T4 T6 5
BiNN(p) Bi\N(p) BN N(p) B2\ N(p) BsNN(p) Bs\N(p)
Q' : 1 T3 2 T4 T6 T5




Lex-BFS via partition refinement

Let N(p) denote the neighborhood of the current pivot p.

By By Bs
Q: Z1 T2 r3 T4 Ts5 Z6
T r3 z2 z T4 Te 5
BiNN(p) Bi\N(p) BonN(p) B2\N(p) BsNN(p) Bs\N(p)
Q' : 1 x3 T2 Ty x6 5

Lex-BFS, : Order the vertices in each block according to a given order 7



Lex-BFS via partition refinement

Let N(p) denote the neighborhood of the current pivot p.

By By Bs
Q: Z1 T2 r3 T4 Ts5 Z6
T T3 z2 z T4 Te 5
BiN N(p) Bi\N(p) BN N(p) B2\ N(p) B3N N(p) Bs\N(p)
Q' : 1 x3 T2 Ty x6 5

Lex-BFS, : Order the vertices in each block according to a given order 7
Lex-BFS runs in time O(|V| + |E|) [Rose-Tarjan'75, Habib et al.’00]



Example of Lex-BFS.

r=(1,2,3,4,5,6)
1
/2\ /3\
4 5 6

1 2 3 4 5 6]




Example of Lex-BFS.

r=(1,2,3,4,5,6)
1
/2\ /3\
4 5 6

1 2 3 4 5 6]

12 3[4 5 6]




Example of Lex-BFS.

7 =(1,2,3,4,5,6)
1
/N
g — (3
NN
1 5 6
1 2 3 4 5 6] 1 2 [3]/4 5]6]

12 3[4 5 6]




Example of Lex-BFS.

r=(1,2,3,4,5,6)
1
2/ >3\\
4/ \5 6
1 2 3 4 5 6] 1 2 [3]/4 5]6]
12 3[4 5 6] 1 2 3|5]/4]6]

The Lex-BFS; ordering is 0 = (1,2, 3,5,4,6)




Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

1. 0 = Lex-BFS (G)



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

1. 0 = Lex-BFS (G)
2. o4 = LeX-BFS+(G,O'_1)



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

1. 0 = Lex-BFS (G)
2. o4 = LeX-BFS+(G,O'_1)
3. = Lex-BFS,(G,0")



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

o = Lex-BFS (G)
0. = Lex-BFS(G,071)
T = Lex-BFS,(G,01")

if 7 satisfies 3-vertex condition return

=



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

o = Lex-BFS (G)
0. = Lex-BFS(G,071)
T = Lex-BFS,(G,01")

if 7 satisfies 3-vertex condition return

AN

else return “G is not a unit interval graph”



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

o = Lex-BFS (G)
0. = Lex-BFS(G,071)
T = Lex-BFS,(G,01")

if 7 satisfies 3-vertex condition return

AN

else return “G is not a unit interval graph”

Hence: In time O(|V'| + | E]), return a Robinson ordering of A or state
Ag is not Robinsonian.



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

o = Lex-BFS (G)
0. = Lex-BFS(G,071)
T = Lex-BFS,(G,01")

if 7 satisfies 3-vertex condition return

AN

else return “G is not a unit interval graph”

Hence: In time O(|V'| + | E]), return a Robinson ordering of A or state
Ag is not Robinsonian.

What about general matrices A?



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

o = Lex-BFS (G)
0. = Lex-BFS(G,071)
T = Lex-BFS,(G,01")

if 7 satisfies 3-vertex condition return

AN

else return “G is not a unit interval graph”

Hence: In time O(|V'| + | E]), return a Robinson ordering of A or state
Ag is not Robinsonian.

What about general matrices A?
Option 1: Use Lex-BFS for the ‘level graphs’ of A.  [L-Seminaroti'15]



Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that GG is not a unit interval graph.

o = Lex-BFS (G)
0. = Lex-BFS(G,071)
7 = Lex-BFS.(G,01")

if 7 satisfies 3-vertex condition return

AN

else return “G is not a unit interval graph”

Hence: In time O(|V'| + | E]), return a Robinson ordering of A or state
Ag is not Robinsonian.

What about general matrices A?

Option 1: Use Lex-BFS for the ‘level graphs’ of A.  [L-Seminaroti'15]
Option 2: Generalize Lex-BFS to weighted graphs: SFS.



Recognizing Robinsonian matrices with Lex-BFS

Lemma
Consider A € 8™ taking values ag =0 < a3 < ag < ... < af,.
A is Robinson <= A is a conic combination of 0/1 Robinson matrices:

L
A= (- a1)Ag,,
=1

where graph G| has edges {x,y} with Ay, > .

Algorithm (rough sketch):
1. Find the level graphs G1,...,Gy, of A.

2. Find an ordering 7 of V which satisfies the 3-point condition for
all graphs G; (I =1,...,L). Then 7 is a Robinson ordering of A.

If none exists, then A is not Robinsonian.

~> algorithm in O(L(n + m)) [L-Seminaroti 2015]




Weighted graph search:

Similarity-First Search (SFS)



Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cy, Cs,...) of N(p), where
App =1 > Apy=aa>Ap. =a3> ... >0 Yo e O,y € O,z € Cs,...

By Bs

Q: T T2 T3 T4 x5 T6




Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cs,C5,...) of N(p

), where
App =1 > Apy=aa>Ap. =a3> ... >0 Vo e O,y € O,z € C3,.

B1 B2
Q: 1 2 x3 x4 x5 Z6
T3 | T1 T2 = & = T4 +— T +— L o Ty o &

BiNC, B1NCs B1ﬂC;3Bl\N(p) BanNCi1 BanNCo BQQCSBQ\N(I))



Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cs,C5,...) of N(p

), where
App =1 > Apy=aa>Ap. =a3> ... >0 Vo e O,y € O,z € C3,.

B1 BQ
Q: 1 2 x3 x4 x5 Z6
T3 | T1 T2 = & = T4 +— T +— L o Ty o &
BiNC, B1NCs B]ﬂC;}Bl\N(p) BanNCi1 BanNCo BZQCSB2\N(p)

Q' : x3 1 T2 T4 T +—— Ij




Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cs,C5,...) of N(p

), where
App =1 > Apy=aa>Ap. =a3> ... >0 Vo e O,y € O,z € C3,.

B1 BQ
Q: T T2 3 T4 5 T
T3 | T1 T2 = & = T4 +— T +— L o Ty o &
BiNC, B1NCs BiNCs Bl\N(p) BonNCy BanNCy BaNCs B2\N(p)
Q' : x3 x1 x2 x4 Te — Ts

SFS runs in O(n + mlogn) if A has m nonzero entries. [L-Seminaroti 17]



Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6]




Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6]

!




Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6] 1 3 [2]6][5]4]
]2 o]




Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6] 1 3 [2]6][5]4]
1[3][2][4 5 ¢ 13 2[6][5]4]

The SFS, ordering is 0 = (1,3,2,6,5,4)




SFS and Robinson matrices



SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"
Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian



SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"
Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian

1. 09 = SFS (A)



SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"
Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian

1. 09 = SFS (A)
2. fori=1,...,n—2

5. end



SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
1. 09 = SFS (A)
2. fori=1,...,n—2
3. 0i=SFS (4,0,

5. end



SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
1. 09 = SFS (A)
2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4 if o; is a Robinson ordering return © = o;

5. end



SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;

5

6

=

. end
. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)
Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o,_2 is a Robinson ordering.




SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;

5

6

=

. end
. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)
Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o,_2 is a Robinson ordering.

2. The multisweep recognition algorithm runs in O(n? + mnlogn) time.




SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;

5

6

=

. end
. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)

Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o,_2 is a Robinson ordering.
2. The multisweep recognition algorithm runs in O(n? + mnlogn) time.

3. Simpler test at line 4: Check whether o; = 0;11. If YES then:

if o; is Robinson then A is Robinsonian; else A is not Robinsonian.




SFS and end vertices of Robinson orderings (anchors of A)




SFS and end vertices of Robinson orderings (anchors of A)

e o € V is an anchor of A if there exists a Robinson ordering 7 of A
starting (or ending) at a



SFS and end vertices of Robinson orderings (anchors of A)

e o € V is an anchor of A if there exists a Robinson ordering 7 of A
starting (or ending) at a

e a, b €V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

e a ai as e by by b



SFS and end vertices of Robinson orderings (anchors of A)

e o € V is an anchor of A if there exists a Robinson ordering 7 of A
starting (or ending) at a

e a, b €V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

o a al as cee by by b

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and o = SFS(A) has last vertex b.

1. b is an anchor of A.
(In fact any anchor arises as end vertex of some SFS ordering of A.)




SFS and end vertices of Robinson orderings (anchors of A)

e o € V is an anchor of A if there exists a Robinson ordering 7 of A
starting (or ending) at a

e a, b €V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

o a ai as e by by b

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and o = SFS(A) has last vertex b.
1. b is an anchor of A.
(In fact any anchor arises as end vertex of some SFS ordering of A.)

2. If the first vertex a in o is an anchor of A, then a, b are opposite
anchors of A.




SFS and end vertices of Robinson orderings (anchors of A)

e o € V is an anchor of A if there exists a Robinson ordering 7 of A
starting (or ending) at a

e a, b €V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

o a ai as e by by b

Theorem (L-Seminaroti 2017)
Assume A is Robinsonian and ¢ = SFS(A) has last vertex b.

1. b is an anchor of A.
(In fact any anchor arises as end vertex of some SFS ordering of A.)

2. If the first vertex a in o is an anchor of A, then a, b are opposite
anchors of A.

Key ingredient: combinatorial characterization of (opposite) anchors of
A in terms of certain “forbidden paths”.



Anchor flipping property of SFS,




Anchor flipping property of SFS,

aggQ - Ul u9 us

Unp—2

Un—1



Anchor flipping property of SFS,

ao - Uy U2 us v Unp—2 Up—1 a

o1 : a ‘M/ b

n—2 n—1



Anchor flipping property of SFS,

0o : U1 UQU?)/UTLQW1
b a %
02! b Y2 Y3 s Yn—2 Yn—1

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 start with a and end with b; o9 start with b and end with a;




Anchor flipping property of SFS,
oo : U Ug us Up—2
: m b

[ 3 a aj

g2

Theorem (Anchors Flipping)

Assume A € 8" is Robinsonian and o; = SFS(A,0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.




Anchor flipping property of SFS,

0o : u1 UQUB/UTLQW1 a
o1t a T2 T3 S Tn—2 Tn—1 b

N | é a
o3 : a al a2 ba b1 b

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.

Key fact: a; = y,_1 and b; are opposite anchors of A[V \ {a,b}].



Anchor flipping property of SFS,

0o : U1 UZU?}/UTL2%1 a
o1t a T2 T3 S Tn—2 Tn—1 b

N | é a
03 : a ay as by by b

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.

Moreover: o, _2[A\ {a,b}]| can be seen as result of the multisweep
algorithm applied to A[V \ {a,b}], starting with o3[V \ {a,b}].
~> can apply induction.



Crucial technical tool: Path avoiding a vertex

For distinct z,y,z € V, P = (x = vy, v1,...,V_1,Vk = y) is a path from
x to y avoiding z if each triple (v;, z,v;11) is not Robinson, i.e.,

A >min{A.,,, Ay, ), Vi=0,1,...,k—1

ViVit+1



Crucial technical tool: Path avoiding a vertex

For distinct z,y,z € V, P = (x = vy, v1,...,V_1,Vk = y) is a path from
x to y avoiding z if each triple (v;, z,v;11) is not Robinson, i.e.,

A >min{A.,,, Ay, ), Vi=0,1,...,k—1

ViVit+1

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z  then
z does not lie between = and y in any Robinson ordering 7 of A.




Crucial technical tool: Path avoiding a vertex

For distinct z,y,z € V, P = (x = vy, v1,...,V_1,Vk = y) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,

A >min{A.,,, Ay, ), Vi=0,1,...,k—1

ViVit+1

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z  then
z does not lie between = and y in any Robinson ordering 7 of A.

Theorem

a is an anchor of A <— A wu,v € V, a path a ~ u avoiding v, and a path
a~ v avoiding u (sincem:a---v--~u or wia---u---v)




Crucial technical tool: Path avoiding a vertex

For distinct z,y,z € V, P = (x = vy, v1,...,V_1,Vk = y) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,

A >min{A.,,, Ay, ), Vi=0,1,...,k—1

ViVi+1

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z  then
z does not lie between = and y in any Robinson ordering 7 of A.

Theorem

a is an anchor of A <— A wu,v € V, a path a ~ u avoiding v, and a path

a~ v avoiding u (sincem:a---v--~u or wia---u---v)
v

Theorem

Two anchors a,b of A are opposite anchors
<= A path a ~ b avoiding some u (since w:a---u---b)

v




Certifying non-Robinsonian matrices

Definition

A weighted asteroidal triple for A is a triple {z,y, z} such that
d path z ~ y avoiding z; d path x ~ z avoiding y; and

3 path y ~ 2 avoiding x.

If such triple exists then A is not Robinsonian!



Certifying non-Robinsonian matrices

Definition

A weighted asteroidal triple for A is a triple {z,y, z} such that
d path z ~ y avoiding z; d path x ~ z avoiding y; and

3 path y ~ 2 avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)
A is Robinsonian <= there does not exist a weighted asteroidal triple. J




Certifying non-Robinsonian matrices

Definition

A weighted asteroidal triple for A is a triple {z,y, z} such that
d path z ~ y avoiding z; d path x ~ z avoiding y; and

3 path y ~ 2 avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017) J

A is Robinsonian <= there does not exist a weighted asteroidal triple.

e Can find a weighted asteroidal triple in O(n?):



Certifying non-Robinsonian matrices

Definition

A weighted asteroidal triple for A is a triple {z,y, z} such that
d path z ~ y avoiding z; d path x ~ z avoiding y; and

3 path y ~ 2 avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)
A is Robinsonian <= there does not exist a weighted asteroidal triple. J

e Can find a weighted asteroidal triple in O(n3): this certifies A is not
Robinsonian.



Certifying non-Robinsonian matrices

Definition

A weighted asteroidal triple for A is a triple {z,y, z} such that
d path z ~ y avoiding z; d path x ~ z avoiding y; and

3 path y ~ 2 avoiding x.

If such triple exists then A is not Robinsonian!

Theorem (L-Seminaroti-Tanigawa 2017)
A is Robinsonian <= there does not exist a weighted asteroidal triple. J

e Can find a weighted asteroidal triple in O(n3): this certifies A is not
Robinsonian.

e This implies the characterization of unit interval graphs: no asteroidal

triple, no induced cycle of length at least 4, no induced claw K7 3
[Roberts 69]



Tight example where n — 1 sweeps are needed

Example by S. Tanigawa: Robinson matrix A € S™:
A, =0, Ayy=1, Aoy =1, Ajp =2, Ajj = A 111+ 1.

(-]

1 9 10 11
*

—_
—_

2
1
*

ONOOOCTDEWN =
¥ N = W
* W~ S
* B~ W~ O
¥ ULk W NN - O
¥ U B W N~ ~N
*¥ O O i W W N~
* R R R R WY N

o

10
11

* W W W WwWwwNnH
* NN DNDNDNDNDNDN—-O

With SFS o¢ = (2,3,...,n,1), the first Robinson sweep is 7,,_».



Computational experiments

by Matteo



Instances generation

Generatlon 1 Generat|on 2

(c) Generation 3 (d) Generation 4



Performance table (n < 1000)

# distinct values Tow (< 50) medium (> 50 and < 200) high (> 200)
algorithms
# nonzero entries spectral SFS ~ LBFS | spectral SFS  LBFS | spectral SFS LBFS
n
100 2,98 10,57 3,68 o7 58.85 2,20 B
200 848 36,99 838 8,08 893 -
300 16,69 83,08 18,00 16,55 16,58 -
400 27,68 153,23 30,06 31,92 } 32,10 -
sparse 500 38,78 209,87 47,77 4733 138298 41,20 -
(<30 %) 600 50,28 277,90 59,06 5547 1771,93 57,10 -
700 67,02 45 38313 72.54 7564 243752 78.96 -
800 9820 52648 98,96 102,09 -
900 124,67 616,90 122,12 130,02 -
1000 161,15 904,72 148,28 184,12 -
100 316 165 2625 346 5,20 5.04 E
200 11,04 1858 108.28 12,96 19,92 20,08 -
300 25,62 4091 25298 29,46 4437 45,00 -
400 49,50 76,23 459,03 55.82 74,65 79.34 -
normal 500 7335 10860 64523 8466 113,71 110,84 -
(> 30 % and < 70%) 600 10805 13940 89337 | 12633 153,15 148,99 -
700 14332 18648 124781 196,33 195,22 -
800 19345 25349 1646.54 246,19 5,05 -
900 25446 30713 213164 309,65 6.79 -
1000 33147 408,70 2856,86 376,66 499,45 -
100 681 66,58 772 78 B
200 2738 285,67 30,01 31,57 -
300 6159 633,54 65,96 490451 69.41 -
400 112,23 1165,52 9114,09 7766 12197 -
dense 500 158,87 1691,87 13693,00 | 11496 161,89 -
(>70 %) 600 17442 21188 234912 210,19 1845580 | 171,59 22539 -
700 27301 291,38 336406 286,44 2503280 | 24526 299,84 -
800 35928 379,78 449335 373,60 3480170 39755 -
900 480,78 487,85 585402 466,22 45060.20 519,41 -
1000 663,46 642,58 804678 579,50 5841050 | 70710 775,99 -

Figure 1: (Average) Time performance of the algorithms (in milliseconds)



Performance chart (n < 1000

£ £
£ £
IS . .
700]
i
’
600/ .
’
.
500/
£ £
N < 400
£ £
300/
200/
100/ -
%00 1000 Too 200 300 40 50 60 700 80 50 1000

(c) normal - low (d) dense - high



Performance table (large instances)

# distinct values

Tow (< 50)

medium (> 50 and < 200)

high (> 200)

algorithms
# nonzero entries spectral ~SFS  LBFS | spectral SFS LBFS | spectral SFS LBFS
n
1000 0.16 0.19 - 0.16 - 0.17 -
2000 0.68 0.62 - 0.72 - 0.76 -
3000 1,56 - 1.95 -
4000 2,94 - 3.58 -
sparse 5000 441 - 6.09 -
(<30 %) 6000 6,94 - 10,87 -
7000 10,56 - 20,73 -
8000 14.86 - 21,03 -
9000 17.58 - 31.66 -
10000 22,46 - 32,87 -
1000 - 045 -
2000 - 1.99 -
3000 - 5.74 -
4000 - 14,22 -
normal 5000 17,08 - 26,33 -
(> 30 % and < 70%) 6000 29,09 - 43,07 -
7000 43,05 - 68,86 -
8000 72,48 - 86,72 -
9000 92,18 - 116,02 -
10000 111,08 - 155,1 -
1000 0.62 - 0.6 -
2000 3.3 - 3.62 -
3000 10,46 - 11,61 -
4000 25,64 - 26,62 -
dense 5000 43,85 - 51,03 -
(> 70 %) 6000 104,47 - 92,41 -
7000 121,14 - 14265 31,19 -
8000 220,08 - 21643 4331 -
9000 284.63 5. - 293,18 5244 -
10000 38398 24897 - 423,32 - 41120 64,93 -

Figure 2: (Average) Time performance of the algorithms (in seconds)




Performance chart (large instances)

.
.
0 160 g
.
/
1o
/
15 120 ’
3 3 ’
2 2100
£ £
10

“
"

00,
100
350
P
0 , 200
.
- , -
3 , g
s .
£ E 200,
a0 ” 150,
100
2
s0
fow 7000 000 @00 000 6000 700 000 9000 10000 foo 0 3000 400 00 000 7000 8000 000 10000

(c) normal - low (d) dense - high



Conclusions

e Lex-BFS is used to recognize unit interval graphs (3 sweeps,
Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs
(5* sweeps, Corneil & al."09), cocomparability graphs (n sweeps,
Dusart-Habib'17),...



Conclusions

e Lex-BFS is used to recognize unit interval graphs (3 sweeps,
Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs
(5* sweeps, Corneil & al."09), cocomparability graphs (n sweeps,
Dusart-Habib'17),...

e New weighted graph search algorithm: SFS (Similarity-First
Search).
Very simple algorithm: conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices. Other applications?



Conclusions

e Lex-BFS is used to recognize unit interval graphs (3 sweeps,
Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs
(5* sweeps, Corneil & al."09), cocomparability graphs (n sweeps,
Dusart-Habib'17),...

e New weighted graph search algorithm: SFS (Similarity-First
Search).
Very simple algorithm: conceptually and to implement:

CRAN Package SFS available at the R platform.
SFS permits to recognize Robinsonian matrices. Other applications?
e Robinsonian matrices are matrix analogues of unit interval graphs.

Investigate other matrix analogues, e.g., for interval graphs.



Conclusions

e Lex-BFS is used to recognize unit interval graphs (3 sweeps,
Corneil'04), cographs (2 sweeps, Bretscher & al.'08), interval graphs
(5* sweeps, Corneil & al."09), cocomparability graphs (n sweeps,
Dusart-Habib'17),...

e New weighted graph search algorithm: SFS (Similarity-First
Search).
Very simple algorithm: conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices. Other applications?

e Robinsonian matrices are matrix analogues of unit interval graphs.
Investigate other matrix analogues, e.g., for interval graphs.

e ‘Chordal’ matrices: defined by existence of a perfect elimination
ordering : Ay, >min{Ayy, Az} if 2 <zy<gz

Characterization by excluded ‘weighted chordless cycles'.
[L-Tanigawa'l7]



Based on papers

[@ M. Laurent and M. Seminaroti.
The quadratic assignment problem is easy for Robinsonian matrices
with Toeplitz structure.
Operations Research Letters, 2015.

[A M. Laurent and M. Seminaroti.
A Lex-BFS-based recognition algorithm for Robinsonian matrices.
Proceedings of CIAC 2015 & Discrete Applied Mathematics, 2017.

[3 M. Laurent and M. Seminaroti.
Similarity-First Search: a new algorithm with application to
Robinsonian matrix recognition.
SIAM Journal on Discrete Mathematics, 2017.

[@ M. Seminaroti.
Combinatorial Algorithms for the Seriation Problem.
PhD thesis, Tilburg University, December 2016.



