Upper bounds on the kissing number via copositive programming

Olga Kuryatnikova

Joint work with: Juan C. Vera Lizcano

Tilburg University, The Netherlands

► Kissing number κ_n is the maximum number of non-overlapping unit spheres S^{n-1} in \mathbb{R}^n that can touch another unit sphere

► Kissing number κ_n is the maximum number of non-overlapping unit spheres S^{n-1} in \mathbb{R}^n that can touch another unit sphere

One of the hard fundamental packing problems

July 2017

Known kissing numbers and bounds on them

dimension n	3	4	5	6	7	8	9	24
upper/lower bound	12	24	44/40	78/72	134/126	240	364/306	196 560
% difference	0	0	10	8.3	6.3	0	19	0

Known kissing numbers and bounds on them

dimension n	3	4	5	6	7	8	9	24
upper/lower bound	12	24	44/40	78/72	134/126	240	364/306	196 560
% difference	0	0	10	8.3	6.3	0	19	0

► Linear upper bound [DELSARTE, GOETHALS AND SEIDEL '77] $\rightarrow \kappa_8, \kappa_{24}$, and κ_4 with modification by [MUSIN '08]

Known kissing numbers and bounds on them

dimension n	3	4	5	6	7	8	9	24
upper/lower bound	12	24	44/40	78/72	134/126	240	364/306	196 560
% difference	0	0	10	8.3	6.3	0	19	0

- ► Linear upper bound [DELSARTE, GOETHALS AND SEIDEL '77] $\rightarrow \kappa_8, \kappa_{24}$, and κ_4 with modification by [MUSIN '08]
- ► SDP upper bound [BACHOC AND VALLENTIN '08] → all upper bounds in the table above

Known kissing numbers and bounds on them

dimension n	3	4	5	6	7	8	9	24
upper/lower bound	12	24	44/40	78/72	134/126	240	364/306	196 560
% difference	0	0	10	8.3	6.3	0	19	0

- ► Linear upper bound [DELSARTE, GOETHALS AND SEIDEL '77] $\rightarrow \kappa_8, \kappa_{24}$, and κ_4 with modification by [MUSIN '08]
- ► SDP upper bound [BACHOC AND VALLENTIN '08]
 → all upper bounds in the table above
- ▶ Hierarchies: f_r [MUSIN '08]; las_r^* [DE LAAT AND VALLENTIN '15] → r=0: linear bound, r=1: SDP bound, r>1: too big to solve

3

► Stability number α(G) in a graph G is the largest number of vertices, no two of which are adjacent.

- ► Stability number α(G) in a graph G is the largest number of vertices, no two of which are adjacent.
- ► Kissing number κ_n is $\alpha(\mathcal{G}^n)$ in the graph $\mathcal{G}^n = (S^{n-1}, E)$, $(u, v) \in E$ if the angle between u and v is smaller than $\frac{\pi}{3}$

- ► Stability number α(G) in a graph G is the largest number of vertices, no two of which are adjacent.
- Kissing number κ_n is $\alpha(\mathcal{G}^n)$ in the graph $\mathcal{G}^n = (\mathbf{S}^{n-1}, \mathbf{E})$, $(u, v) \in E$ if the angle between u and v is smaller than $\frac{\pi}{3}$

- ► Stability number α(G) in a graph G is the largest number of vertices, no two of which are adjacent.
- ► Kissing number κ_n is $\alpha(\mathcal{G}^n)$ in the graph $\mathcal{G}^n = (S^{n-1}, E)$, $(u, v) \in E$ if the angle between u and v is smaller than $\frac{\pi}{3}$

- ► Stability number α(G) in a graph G is the largest number of vertices, no two of which are adjacent.
- Kissing number κ_n is $\alpha(\mathcal{G}^n)$ in the graph $\mathcal{G}^n = (\mathbf{S}^{n-1}, \mathbf{E})$, $(u, v) \in E$ if the angle between u and v is smaller than $\frac{\pi}{3}$

► The cone of copositive matrices:

 $COP^n = \{K \text{ is } n \times n \text{ symmetric matrix} : x^\top K x \ge 0 \text{ for all } x \ge 0 \}$

• The cone of copositive matrices: $COP^n = \{K \text{ is } n \times n \text{ symmetric matrix : } x^\top K x \ge 0 \text{ for all } x \ge 0 \}$

 Copositive programming is linear optimization over COPⁿ: NP-hard, but all complexity is in COPⁿ

- The cone of copositive matrices: $COP^n = \{K \text{ is } n \times n \text{ symmetric matrix} : x^\top Kx \ge 0 \text{ for all } x \ge 0 \}$
- Copositive programming is linear optimization over COPⁿ: NP-hard, but all complexity is in COPⁿ
- ► Copositive programming ← Combinatorial optimization: chromatic number, 3-partitioning, stability number

Graph G = (V, E), |V| = n [DE KLERK AND PASECHNIK '02] $\alpha(G) = \inf_{K \in \mathbb{S}^n, \lambda} \lambda$ s.t. $K(v, v) = \lambda - 1$ for all $v \in V$ K(u, v) = -1 for all $(u, v) \notin E$ $K \in COP^n$

Notation: \mathbb{S}^n are real symmetric matrices, $COP^n = \{K \in \mathbb{S}^n : x^\top K x \ge 0 \text{ for all } x \ge 0\}$ are copositive matrices

Upper bounds on the kissing number via copositive prog.

Copositive programming for stability number

• $\kappa_n = \alpha(\mathcal{G}^n)$, move from finite to infinite graphs

Graph $\mathcal{G}^{n} = (S^{n-1}, E)$ [DOBRE, DÜR, FRERICK, VALLENTIN '16] $\alpha(\mathcal{G}^{n}) = \inf_{K \in \mathcal{K}(S^{n-1}), \lambda} \lambda$ s.t. $K(v, v) = \lambda - 1$ for all $v \in V$ K(u, v) = -1 for all $(u, v) \notin E$ $K \in COP(S^{n-1})$

Notation:

 $\mathcal{K}(S^{n-1})$ are kernels - real symmetric continuous functions on $S^{n-1} \times S^{n-1}$, $\mathcal{COP}(S^{n-1})$ are copositive kernels: any finite principal submatrix is copositive

▶ Optimizing over copositive matrices (COPⁿ) is NP-hard

- ▶ Optimizing over copositive matrices (COPⁿ) is NP-hard
- ▶ Replace COP^n with its tractable subset:

- ▶ Optimizing over copositive matrices (COPⁿ) is NP-hard
- Replace COP^n with its tractable subset:
 - $\rightarrow {\mathcal C}^n_r$ [De Klerk and Pasechnik '02], ${\mathcal Q}^n_r$ [Peña, Vera, Zuluaga '07], ${\mathcal K}^n_r$ [Parrilo '00]

- ▶ Optimizing over copositive matrices (COPⁿ) is NP-hard
- Replace COP^n with its tractable subset:
 - → C_r^n [De Klerk and Pasechnik '02], Q_r^n [Peña, Vera, Zuluaga '07], $\frac{\mathcal{K}_r^n}{\mathcal{K}_r^n}$ [Parrilo '00]

ightarrow hierarchies: $r \in \{0, 1, 2,\}$, subsets grow with r

- ▶ Optimizing over copositive matrices (COPⁿ) is NP-hard
- Replace COP^n with its tractable subset:
 - → $\frac{C_r^n}{Q_r^n}$ [De Klerk and Pasechnik '02], $\frac{Q_r^n}{Q_r^n}$ [Peña, Vera, Zuluaga '07], $\frac{\mathcal{K}_r^n}{\mathcal{K}_r^n}$ [Parrilo '00]

- ightarrow hierarchies: $r \in \{0, 1, 2,\}$, subsets grow with r
- \rightarrow converging upper bounds on $\alpha(G)$ with any of $\mathcal{C}_r^n, \ \mathcal{Q}_r^n, \ \mathcal{K}_r^n$

- ▶ Optimizing over copositive matrices (COPⁿ) is NP-hard
- ▶ Replace COP^n with its tractable subset:
 - → $\frac{C_r^n}{Q_r^n}$ [De Klerk and Pasechnik '02], $\frac{Q_r^n}{Q_r^n}$ [Peña, Vera, Zuluaga '07], $\frac{\mathcal{K}_r^n}{\mathcal{K}_r^n}$ [Parrilo '00]

- ightarrow hierarchies: $r \in \{0, 1, 2,\}$, subsets grow with r
- \rightarrow converging upper bounds on $\alpha(G)$ with any of $\mathcal{C}_r^n, \ \mathcal{Q}_r^n, \ \mathcal{K}_r^n$
- **•** Extend this for kernels to upper bound the kissing number?

▶ Generalize Cⁿ_r, Qⁿ_r, Kⁿ_r into copositive kernels?
 → Yes, we extend Cⁿ_r, Qⁿ_r keeping their properties

- ► Generalize C_r^n , Q_r^n , \mathcal{K}_r^n into copositive *kernels*? → Yes, we extend C_r^n , Q_r^n keeping their properties
- Get *tractable* upper bounds on κ_n with the new hierarchies?

- ► Generalize $C_r^n, Q_r^n, \mathcal{K}_r^n$ into copositive *kernels?* → Yes, we extend C_r^n, Q_r^n keeping their properties
- Get *tractable* upper bounds on κ_n with the new hierarchies? \rightarrow Yes, using symmetry of the sphere

Intuition for generalized hierarchies

$$Q_r^n = \left\{ \mathcal{K} \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top \mathcal{K} x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] = p(x), \\$$
has nonnegative coefficients, $S_\beta \succeq 0$ for all $\beta \in \mathbb{N}^n, |\beta| = r \right\}$

• How to construct p(x) for a kernel instead of a matrix?

Notation:
$$e = (1, \ldots, 1), \ |\beta| := \beta_1 + \ldots + \beta_n, \ x^{\beta} := x_1^{\beta_1} \cdots x_n^{\beta_n}$$

Upper bounds on the kissing number via copositive prog.

Intuition for generalized hierarchies

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] = p(x), \\ \text{has nonnegative coefficients}, S_\beta \succeq 0 \text{ for all } \beta \in \mathbb{N}^n, |\beta| = r \right\}$$

► How to construct p(x) for a kernel instead of a matrix?
→ do not write p(x), write only its coefficients

Notation:
$$e = (1, ..., 1), |\beta| := \beta_1 + ... + \beta_n, x^{\beta} := x_1^{\beta_1} \cdots x_n^{\beta_n}$$

Upper bounds on the kissing number via copositive prog.

Write the coefficients explicitly

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] \right.$$

has nonnegative coefficients, all $S_\beta \succeq 0 \right\}$

Lifting operator ⊕r: K⊕r reflects lifting of the quadratic form (x^TKx) by multiplying it with (e^Tx)^r

Write the coefficients explicitly

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] \right.$$

has nonnegative coefficients, all $S_\beta \succeq 0 \right\}$

- Lifting operator ⊕r: K⊕r reflects lifting of the quadratic form (x^TKx) by multiplying it with (e^Tx)^r
- Symmetrization operator σ: averages a function over all permutations of its variables

$$Q_r^n = \left\{ \mathcal{K} \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top \mathcal{K} x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] \right.$$

has nonnegative coefficients, all $S_\beta \succeq 0 \right\}$

- Lifting operator ⊕r: K⊕r reflects lifting of the quadratic form (x^TKx) by multiplying it with (e^Tx)^r
- Symmetrization operator σ: averages a function over all permutations of its variables
- ▶ **Coefficient** of the monomial $(x_{v_1} \cdots x_{v_{r+2}})$ in $(e^{\top}x)^r(x^{\top}Kx)$ is

 $\sigma(\mathsf{K}^{\oplus r})(\mathsf{v}_1,...,\mathsf{v}_{r+2})$

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] \right.$$

has nonnegative coefficients, all $S_\beta \succeq 0 \right\}$

An (r+2)-variate function F is called 2-psd if for any fixed u₁,..., u_r ∈ Sⁿ⁻¹, the "slice" F(v₁, v₂, u₁,..., u_r) is PSD

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] \right.$$

has nonnegative coefficients, all $S_\beta \succeq 0 \right\}$

- An (r+2)-variate function F is called 2-psd if for any fixed u₁, ..., u_r ∈ Sⁿ⁻¹, the "slice" F(v₁, v₂, u₁, ..., u_r) is PSD
- ▶ A kernel is PSD iff every principal submatrix is PSD

The initial Q-hierarchy

$$Q_r^n = \bigg\{ K \in \mathbb{S}^n : \bigg[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \bigg],$$

has nonnegative coefficients, $S_{eta} \succeq 0$ for all $eta \in \mathbb{N}^n, |eta| = r$

The initial Q-hierarchy

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right], \right.$$

has nonnegative coefficients, $S_{\beta} \succeq 0$ for all $\beta \in \mathbb{N}^n, |\beta| = r$

The generalized *Q*-hierarchy for a sphere

$$Q_r^{S^{n-1}} = \big\{ \mathcal{K} \in \mathcal{K}(S^{n-1}) : \sigma(\mathcal{K}^{\oplus r}) - \sigma(S_r) \ge 0, \ S_r \text{ is } 2\text{-psd} \big\}$$

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University

July 2017

The initial Q-hierarchy

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right], \right.$$

has nonnegative coefficients, $S_{\beta} \succeq 0$ for all $\beta \in \mathbb{N}^n$, $|\beta| = r$

The generalized *Q*-hierarchy for a sphere

$$Q_r^{S^{n-1}} = \big\{ \mathcal{K} \in \mathcal{K}(S^{n-1}) : \sigma(\mathcal{K}^{\oplus r}) - \sigma(S_r) \ge 0, \ S_r \text{ is } 2\text{-psd} \big\}$$

Analogously, generalize C_r^n hierarchy into $C_r^{S^{n-1}}$

Upper bounds on the kissing number via copositive prog.

Olga Kuryatnikova, Tilburg University July 2017 12

Theorem 1

$$\mathcal{C}_r^{S^{n-1}} \subseteq \mathcal{Q}_r^{S^{n-1}} \subseteq \mathcal{COP}(S^{n-1})$$
 for any r, and subsets grow with r

Theorem 1

$$\mathcal{C}_r^{S^{n-1}} \subseteq \mathcal{Q}_r^{S^{n-1}} \subseteq \mathcal{COP}(S^{n-1})$$
 for any r, and subsets grow with r

Theorem 2

Replacing $COP(S^{n-1})$ by either of $C_r^{S^{n-1}}$ or $Q_r^{S^{n-1}}$ gives upper bounds on $\alpha(\mathcal{G}^n) = \kappa_n$, converging as r grows

$$Q_r^{S^{n-1}} = \left\{ \mathcal{K} \in \mathcal{K}(S^{n-1}) : \sigma(\mathcal{K}^{\oplus r}) - \sigma(S_r) \ge 0, \ S_r \text{ is } 2\text{-psd} \right\}$$

▶ Use SOS [Lasserre '06], DSOS [Ahmadi and Majumdar '15]

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 14

$$Q_r^{S^{n-1}} = \left\{ \mathcal{K} \in \mathcal{K}(S^{n-1}) : \sigma(\mathcal{K}^{\oplus r}) - \sigma(S_r) \ge 0, \ S_r \text{ is } 2\text{-psd} \right\}$$

- ▶ Use SOS [Lasserre '06], DSOS [Ahmadi and Majumdar '15]
- ▶ What are (*r*+2)-variate 2-psd functions on a sphere?

$$Q_r^{S^{n-1}} = \left\{ K \in \mathcal{K}(S^{n-1}) : \sigma(K^{\oplus r}) - \sigma(S_r) \ge 0, \ S_r \text{ is } 2\text{-psd} \right\}$$

- ▶ Use SOS [Lasserre '06], DSOS [Ahmadi and Majumdar '15]
- What are (r+2)-variate 2-psd functions on a sphere? → use invariance of Gⁿ under orthogonal group O_n

▶ Bivariate 2-psd functions are PSD kernels:

Proposition 1 (SCHOENBERG '42)

A kernel $K : (S^{n-1})^2 \to \mathbb{R}$ is invariant under O_n and PSD iff

$$\mathsf{K}(\mathsf{x},\mathsf{y}) = \sum_{\mathsf{i} \in \mathbb{N}} c_{\mathsf{i}} \mathsf{P}_{\mathsf{i}}^{\frac{n-3}{2}}(\mathsf{x}^{\top}\mathsf{y}), \; c_{\mathsf{i}} \geq 0,$$

where $P_i^{\frac{n-3}{2}}$ are Jacobi polynomials of order $\left(\frac{n-3}{2}, \frac{n-3}{2}\right)$, degree i

▶ Bivariate 2-psd functions are PSD kernels:

Proposition 1 (SCHOENBERG '42)

A kernel $K : (S^{n-1})^2 \to \mathbb{R}$ is invariant under O_n and PSD iff

$$\mathsf{K}(x,y) = \sum_{i \in \mathbb{N}} c_i \mathsf{P}_i^{\frac{n-3}{2}}(x^\top y), \ c_i \geq 0,$$

where $P_i^{\frac{n-3}{2}}$ are Jacobi polynomials of order $(\frac{n-3}{2}, \frac{n-3}{2})$, degree i

• $Q_0^{S^{n-1}}$ gives the linear bound

► For $x, y, z_1, ..., z_r \in S^{n-1}$ define their inner products Z, χ, v : $\mathbf{Z} = [z_1, ..., z_r]^\top [z_1, ..., z_r], \ \boldsymbol{\chi} = [z_1, ..., z_r]^\top x, \ \boldsymbol{\upsilon} = [z_1, ..., z_r]^\top y$

▶ For $x, y, z_1, ..., z_r \in S^{n-1}$ define their inner products Z, χ, v :

Theorem 3

Continuos f-n $F:(S^{n-1})^{r+2} \rightarrow \mathbb{R}$ is invariant under O_n and 2-psd iff

$$\mathsf{F}(\mathsf{x},\mathsf{y},\mathsf{z}_1,...,\mathsf{z}_{\mathsf{r}}) = \sum_{\mathsf{i} \in \mathbb{N}} \mathsf{c}_{\mathsf{i}}(\chi,\upsilon,\mathsf{Z}) \mathcal{P}_{\mathsf{i}}^{\frac{\mathsf{n}-\mathsf{r}-3}{2}}(\mathsf{Z},\chi,\upsilon)$$

 $\mathcal{P}_{i}^{\frac{n-r-3}{2}}(Z,\chi,\upsilon)$ are generalized Jacobi polynomials, $c_{i}(\chi,\upsilon,Z)$ are continuous functions PSD with respect to χ,υ .

▶ For $x, y, z_1, ..., z_r \in S^{n-1}$ define their inner products Z, χ, v :

Theorem 3

Continuos f-n $F:(S^{n-1})^{r+2} \rightarrow \mathbb{R}$ is invariant under O_n and 2-psd iff

$$\mathsf{F}(\mathsf{x},\mathsf{y},\mathsf{z}_1,...,\mathsf{z}_{\mathsf{r}}) = \sum_{\mathsf{i}\in\mathbb{N}} \mathsf{c}_{\mathsf{i}}(\chi,\upsilon,\mathsf{Z}) \mathcal{P}_{\mathsf{i}}^{\frac{\mathsf{n}-\mathsf{r}-\mathsf{3}}{2}}(\mathsf{Z},\chi,\upsilon)$$

 $\mathcal{P}_{i}^{\frac{n-r-3}{2}}(Z,\chi,\upsilon)$ are generalized Jacobi polynomials, $c_{i}(\chi,\upsilon,Z)$ are continuous functions PSD with respect to χ,υ .

▶ r=1: [Bachoc and Vallentin '08]; Z=I: [Musin '08]

16

▶ For $x, y, z_1, ..., z_r \in S^{n-1}$ define their inner products Z, χ, v :

Theorem 3

Continuos f-n $F:(S^{n-1})^{r+2} \rightarrow \mathbb{R}$ is invariant under O_n and 2-psd iff

$$\mathsf{F}(\mathsf{x},\mathsf{y},\mathsf{z}_1,...,\mathsf{z}_{\mathsf{r}}) = \sum_{\mathsf{i}\in\mathbb{N}} \mathsf{c}_{\mathsf{i}}(\chi,\upsilon,\mathsf{Z}) \mathcal{P}_{\mathsf{i}}^{\frac{\mathsf{n}-\mathsf{r}-\mathsf{3}}{2}}(\mathsf{Z},\chi,\upsilon)$$

 $\mathcal{P}_{i}^{\frac{n-r-3}{2}}(Z,\chi,\upsilon)$ are generalized Jacobi polynomials, $c_{i}(\chi,\upsilon,Z)$ are continuous functions PSD with respect to χ,υ .

▶ r=1: [Bachoc and Vallentin '08]; Z=I: [Musin '08]

• Our bounds for $Q_1^{S^{n-1}}$ are between linear and SDP bounds

Upper bounds on the kissing number via copositive prog.

▶ 2 converging inner hierarchies for the set of copositive kernels

- ▶ 2 converging inner hierarchies for the set of copositive kernels
- ▶ Upper bounds on the kissing number with these hierarchies

- ▶ 2 converging inner hierarchies for the set of copositive kernels
- ▶ Upper bounds on the kissing number with these hierarchies
 - \rightarrow level-1-bounds are between the linear and the SDP bounds*

dimension n	3	4	5	6	7	8	9
SDP bound, Bachoc and Vallentin	12	24	45	78	135	240	366
Q ₁ ^{Sⁿ⁻¹bound}	12	24	45	80	138	240	377
linear bound, Delsarte et al.	13	25	46	82	140	240	380
lower bound	12	24	40	72	126	240	306

* The optimized kernel is a polynomial of degree 10

- ▶ 2 converging inner hierarchies for the set of copositive kernels
- ▶ Upper bounds on the kissing number with these hierarchies
 - \rightarrow level-1-bounds are between the linear and the SDP bounds^*

dimension n	3	4	5	6	7	8	9
SDP bound, Bachoc and Vallentin	12	24	45	78	135	240	366
$Q_1^{S^{n-1}}$ bound	12	24	45	80	138	240	377
linear bound, Delsarte et al.	13	25	46	82	140	240	380
lower bound	12	24	40	72	126	240	306

* The optimized kernel is a polynomial of degree 10

Level-2-bounds are in progress

- ▶ 2 converging inner hierarchies for the set of copositive kernels
- ▶ Upper bounds on the kissing number with these hierarchies
 - \rightarrow level-1-bounds are between the linear and the SDP bounds*

dimension n	3	4	5	6	7	8	9
SDP bound, Bachoc and Vallentin	12	24	45	78	135	240	366
Q ₁ ^{Sⁿ⁻¹bound}	12	24	45	80	138	240	377
linear bound, Delsarte et al.	13	25	46	82	140	240	380
lower bound	12	24	40	72	126	240	306

* The optimized kernel is a polynomial of degree 10

- Level-2-bounds are in progress
- Precise connection between our bounds and the others?

- ▶ 2 converging inner hierarchies for the set of copositive kernels
- ▶ Upper bounds on the kissing number with these hierarchies
 - \rightarrow level-1-bounds are between the linear and the SDP bounds*

dimension n	3	4	5	6	7	8	9
SDP bound, Bachoc and Vallentin	12	24	45	78	135	240	366
Q ₁ ^{Sⁿ⁻¹bound}	12	24	45	80	138	240	377
linear bound, Delsarte et al.	13	25	46	82	140	240	380
lower bound	12	24	40	72	126	240	306

- * The optimized kernel is a polynomial of degree 10
- Level-2-bounds are in progress
- Precise connection between our bounds and the others?
- Applications for 2-psd functions?

Thank you for your attention!

Upper bounds on the kissing number via copositive prog.

Olga Kuryatnikova, Tilburg University July 2017 18

References

-	-

A. A. Ahmadi, A. Majumdar, DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization, https://arxiv.org/abs/1706.02586

- C. Bachoc, F. Vallentin, New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc. 21-3 (2008), 909–924.
- E. de Klerk and D. Pasechnik, *Approximation of the stability number of a graph via copositive programming.* SIAM J. Optim. 12 (2002), 875–892.
- P. Delsarte, J.M. Goethals, J.J. Seidel, Spherical codes and designs. Geom. Dedicata 6 (1977), 363—388.

C. Dobre, M. Dür, L. Frerick, F. Vallentin, A Copositive Formulation for the Stability Number of Infinite Graphs. Math. Program. 160-1 (2016), 65-83.

- D. de Laat and F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry. Math. Program. 151-2 (2015), 529–553.
- J.B. Lasserre, Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. OPTIM. 17-3 (2006), 822–843

- O.R. Musin, The kissing number in four dimensions, Annals of Mathematics 168 (2008), 1–32.
- O. R. Musin, Multivariate positive definite functions on spheres, https://arxiv.org/abs/math/0701083
- P. Parrilo, Structured Semidefinite Programming and Algebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA, 2000.
- J. Peña, J.C. Vera, L.F. Zuluaga, *Computing the stability number of a graph via linear and semidefinite programming.* SIAM J. Optim. 18-2 (2007), 87–105.
- I. J. Schoenberg, *Positive definite functions on spheres*. Duke Math. J. 9-1 (1942), 96–108.

Inner approximations for COP^n

► Parrilo, 2000:

$$\mathcal{K}_r^n = \left\{ \mathcal{K} \in \mathbb{S}^n : \left(\sum_{i=1}^n x_i^2\right)^r \sum_{i=1}^n \sum_{j=1}^n \mathcal{K}_{ij} x_i^2 x_j^2 \text{ is a sum of squares} \right\}$$

▶ De Klerk and Pasechnik, 2002:

$$\mathcal{C}_r^n = \left\{ K \in \mathbb{S}^n : (e^\top x)^r (x^\top K x) \text{ has nonnegative coefficients} \right\}$$

Peña, Vera, Zuluaga, 2007:

$$Q_r^n = \left\{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right] \right\}$$

has nonnegative coefficients, $S_{\beta} \succeq 0$ for all $\beta \in \mathbb{N}^n, |\beta| = r$

Notation:
$$e = (1, \ldots, 1), |\beta| := \beta_1 + \ldots + \beta_n, x^{\beta} := x_1^{\beta_1} \cdots x_n^{\beta_n}$$

Write the coefficients explicitely

$$Q_r^n = \{ K \in \mathbb{S}^n : \left[(e^\top x)^r (x^\top K x) - \sum_{|\beta|=r} x^\beta (x^\top S_\beta x) \right]$$

has nonnegative coefficients, all $S_\beta \succeq 0 \}$

► Lifting operator \oplus^r applied to a kernel K $K^{\oplus r}(v_1, v_2, u_1, ..., u_r) := K(v_1, v_2)$, for all $u_1, ..., u_r \in V$

Symmetrization σ applied to the (r+2)-variate function $K^{\oplus r}$

$$\sigma(K^{\oplus r})(v_1, ..., v_{r+2}) := \frac{1}{(r+2)!} \sum_{\pi \in \text{permut.}(1, ..., r+2)} K^{\oplus r}(\pi(v_1, ..., v_{r+2}))$$

• **Coefficient** of the monomial $(x_{v_1} \cdots x_{v_{r+2}})$ in $(e^\top x)^r (x^\top K x)$ is $\sigma(K^{\oplus r})(v_1, \dots, v_{r+2})$

► For
$$x, y, z_1, ..., z_r \in S^{n-1}$$
 define:
 $Z = [z_1, ..., z_r]^\top [z_1, ..., z_r], \ \chi = [z_1, ..., z_r]^\top x, \ v = [z_1, ..., z_r]^\top y$

Theorem 4

Let $K : (S^{n-1})^{r+2} \to \mathbb{R}$ be a continuos function invariant under O_n . Define Z, χ, v as above. Then K is 2-psd iff

$$\begin{split} & \mathcal{K}(x, y, z_1, ..., z_r) = \sum_{i \in \mathbb{N}} c_i(\chi, \upsilon, Z) Q_i \bigg(\frac{x^\top y - \chi^\top Z^{-1} \upsilon}{\sqrt{(1 - \chi^\top Z^{-1} \chi)(1 - \upsilon^\top Z^{-1} \upsilon)}} \bigg), \\ & \text{where } Q_i(t) = |Z|^i \big((1 - \chi^\top Z^{-1} \chi)(1 - \upsilon^\top Z^{-1} \upsilon) \big)^{\frac{i}{2}} P_i^{\frac{n-r-3}{2}}(t) \text{ and} \end{split}$$

 $c_i(\chi, v, Z)$ are continuous functions, PSD w.r.t. χ, v

Upper bounds on the kissing number via copositive prog.