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Kissing number problem

I Kissing number κn is the maximum number of non-overlapping
unit spheres Sn−1 in Rn that can touch another unit sphere

n = 2 n = 3

I One of the hard fundamental packing problems
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Upper bounds on kissing numbers

I Known kissing numbers and bounds on them

dimension n 3 4 5 6 7 8 9 24

upper/lower
bound

12 24 44/40 78/72 134/126 240 364/306 196 560

% difference 0 0 10 8.3 6.3 0 19 0

I Linear upper bound [Delsarte, Goethals and Seidel '77]

→ κ8, κ24, and κ4 with modification by [Musin '08]

I SDP upper bound [Bachoc and Vallentin '08]

→ all upper bounds in the table above

I Hierarchies: fr [Musin '08]; las∗r [De Laat and Vallentin '15]

→ r=0: linear bound, r=1: SDP bound, r>1: too big to solve
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Kissing number and Stability number

I Stability number α(G) in a graph G is the largest number of
vertices, no two of which are adjacent.

I Kissing number κn is α(Gn) in the graph Gn=(Sn−1,E),
(u, v) ∈ E if the angle between u and v is smaller than π
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Gn is an infinite graph
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Copositive programming: introduction

I The cone of copositive matrices:
COPn = {K is n×n symmetric matrix : x>Kx ≥ 0 for all x≥0}

I Copositive programming is linear optimization over COPn:
NP-hard, but all complexity is in COPn

I Copositive programming← Combinatorial optimization:
chromatic number, 3-partitioning, stability number
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Copositive programming for stability number

Graph G=(V ,E ), |V | = n [De Klerk and Pasechnik '02]

α(G ) = inf
K∈Sn,λ

λ

s. t. K (v , v) = λ− 1 for all v ∈ V

K (u, v) = −1 for all (u, v) /∈ E

K ∈ COPn

Notation: Sn are real symmetric matrices,

COPn={K∈Sn: x>Kx ≥ 0 for all x≥0} are copositive matrices
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Copositive programming for stability number

I κn =α(Gn), move from finite to infinite graphs

Graph Gn=(Sn−1,E ) [Dobre, Dür, Frerick, Vallentin '16]

α(Gn) = inf
K∈K(Sn−1),λ

λ

s. t. K (v , v) = λ− 1 for all v ∈ V

K (u, v) = −1 for all (u, v) /∈ E

K ∈ COP(Sn−1)

Notation:

K(Sn−1) are kernels - real symmetric continuous functions on Sn−1×Sn−1,

COP(Sn−1) are copositive kernels: any finite principal submatrix is copositive

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 6



Inner approximations: finite case

I Optimizing over copositive matrices (COPn) is NP-hard

I Replace COPn with its tractable subset:

→ Cn
r [De Klerk and Pasechnik '02],

Qn
r [Peña, Vera, Zuluaga '07 ], Kn

r [Parrilo '00]

Cn
r Qn

r Kn
r COPn

→ hierarchies: r ∈ {0, 1, 2, ....}, subsets grow with r

→ converging upper bounds on α(G ) with any of Cn
r , Qn

r , Kn
r

I Extend this for kernels to upper bound the kissing number?

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 7



Inner approximations: finite case

I Optimizing over copositive matrices (COPn) is NP-hard

I Replace COPn with its tractable subset:

→ Cn
r [De Klerk and Pasechnik '02],

Qn
r [Peña, Vera, Zuluaga '07 ], Kn

r [Parrilo '00]

Cn
r Qn

r Kn
r COPn

→ hierarchies: r ∈ {0, 1, 2, ....}, subsets grow with r

→ converging upper bounds on α(G ) with any of Cn
r , Qn

r , Kn
r

I Extend this for kernels to upper bound the kissing number?

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 7



Inner approximations: finite case

I Optimizing over copositive matrices (COPn) is NP-hard

I Replace COPn with its tractable subset:

→ Cn
r [De Klerk and Pasechnik '02],

Qn
r [Peña, Vera, Zuluaga '07 ], Kn

r [Parrilo '00]

Cn
r Qn

r Kn
r COPn

→ hierarchies: r ∈ {0, 1, 2, ....}, subsets grow with r

→ converging upper bounds on α(G ) with any of Cn
r , Qn

r , Kn
r

I Extend this for kernels to upper bound the kissing number?

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 7



Inner approximations: finite case

I Optimizing over copositive matrices (COPn) is NP-hard

I Replace COPn with its tractable subset:

→ Cn
r [De Klerk and Pasechnik '02],

Qn
r [Peña, Vera, Zuluaga '07 ], Kn

r [Parrilo '00]

Cn
r Qn

r Kn
r COPn

→ hierarchies: r ∈ {0, 1, 2, ....}, subsets grow with r

→ converging upper bounds on α(G ) with any of Cn
r , Qn

r , Kn
r

I Extend this for kernels to upper bound the kissing number?

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 7



Inner approximations: finite case

I Optimizing over copositive matrices (COPn) is NP-hard

I Replace COPn with its tractable subset:

→ Cn
r [De Klerk and Pasechnik '02],

Qn
r [Peña, Vera, Zuluaga '07 ], Kn

r [Parrilo '00]

Cn
r Qn

r Kn
r COPn

→ hierarchies: r ∈ {0, 1, 2, ....}, subsets grow with r

→ converging upper bounds on α(G ) with any of Cn
r , Qn

r , Kn
r

I Extend this for kernels to upper bound the kissing number?

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 7



Inner approximations: finite case

I Optimizing over copositive matrices (COPn) is NP-hard

I Replace COPn with its tractable subset:

→ Cn
r [De Klerk and Pasechnik '02],

Qn
r [Peña, Vera, Zuluaga '07 ], Kn

r [Parrilo '00]

Cn
r Qn

r Kn
r COPn

→ hierarchies: r ∈ {0, 1, 2, ....}, subsets grow with r

→ converging upper bounds on α(G ) with any of Cn
r , Qn

r , Kn
r

I Extend this for kernels to upper bound the kissing number?

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 7



Main Q&A of this research

I Generalize Cn
r ,Q

n
r ,Kn

r into copositive kernels?

→ Yes, we extend Cn
r ,Q

n
r keeping their properties

I Get tractable upper bounds on κn with the new hierarchies?

→ Yes, using symmetry of the sphere
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Intuition for generalized hierarchies

Qn
r =

{
K ∈ Sn :

[
(e>x)r (x>Kx)−

∑
|β|=r

xβ(x>Sβx)

]
= p(x),

has nonnegative coefficients, Sβ � 0 for all β ∈ Nn, |β| = r

}

I How to construct p(x) for a kernel instead of a matrix?

→ do not write p(x), write only its coefficients

Notation: e = (1, . . . , 1), |β| := β1 + . . .+ βn, xβ := xβ1

1 · · · xβn
n
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Write the coefficients explicitly

I Lifting operator ⊕r: K⊕r reflects lifting of the quadratic form
(x>Kx) by multiplying it with (e>x)r

I Symmetrization operator σ: averages a function over all
permutations of its variables

I Coefficient of the monomial (xv1 · · · xvr+2) in (e>x)r (x>Kx) is

σ
(
K⊕r

)
(v1, ..., vr+2)
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2-psd functions

I An (r+2)-variate function F is called 2-psd if for any fixed
u1, ..., ur ∈ Sn−1, the “slice” F (v1, v2, u1, ..., ur ) is PSD

I A kernel is PSD iff every principal submatrix is PSD
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Generalized inner approximations

The initial Q-hierarchy

Qn
r =

{
K ∈ Sn :

[
(e>x)r (x>Kx)−

∑
|β|=r

xβ(x>Sβx)

]
,

has nonnegative coefficients, Sβ � 0 for all β ∈ Nn, |β| = r

}

The generalized Q-hierarchy for a sphere

QSn−1

r =
{

K ∈ K(Sn−1) : σ(K⊕r )− σ(Sr ) ≥ 0, Sr is 2-psd
}

Analogously, generalize Cn
r hierarchy into CSn−1

r
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Inclusion and convergence

Theorem 1

CSn−1

r ⊆QSn−1

r ⊆COP(Sn−1) for any r , and subsets grow with r

Theorem 2

Replacing COP(Sn−1) by either of CSn−1

r or QSn−1

r gives upper
bounds on α(Gn)=κn, converging as r grows
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Implementation for the kissing number

QSn−1

r =
{

K ∈ K(Sn−1) : σ(K⊕r )− σ(Sr ) ≥ 0, Sr is 2-psd
}

I Use SOS [Lasserre '06], DSOS [Ahmadi and Majumdar '15]

I What are (r+2)-variate 2-psd functions on a sphere?

→ use invariance of Gn under orthogonal group On
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2-psd condition, the case r = 0

I Bivariate 2-psd functions are PSD kernels:

Proposition 1 (Schoenberg '42)

A kernel K : (Sn−1)2 → R is invariant under On and PSD iff

K(x, y) =
∑∑∑
i∈N

ciP
n−3

2
i (x>y), ci ≥ 0,

where P
n−3

2
i are Jacobi polynomials of order

(
n−3

2
, n−3

2

)
, degree i

I QSn−1

0 gives the linear bound
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2-psd condition, the case n≥r>0

I For x , y , z1, ..., zr ∈ Sn−1 define their inner products Z , χ, υ:

Z=
[
z1, ..., zr

]>[z1, ..., zr

]
, χ=

[
z1, ..., zr

]>x , υ=
[
z1, ..., zr

]>y

Theorem 3

Continuos f-n F :(Sn−1)r+2→R is invariant under On and 2-psd iff

F(x, y, z1, ..., zr) =
∑∑∑
i∈N

ci(χ,υ,Z)P
n−r−3

2
i (Z, χ, υ),

P
n−r−3

2
i (Z , χ, υ) are generalized Jacobi polynomials, ci (χ, υ,Z ) are

continuous functions PSD with respect to χ, υ.

I r=1: [Bachoc and Vallentin '08]; Z =I : [Musin '08]

I Our bounds for QSn−1

1 are between linear and SDP bounds
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Z=
[
z1, ..., zr

]>[z1, ..., zr

]
, χ=

[
z1, ..., zr

]>x , υ=
[
z1, ..., zr

]>y

Theorem 3

Continuos f-n F :(Sn−1)r+2→R is invariant under On and 2-psd iff

F(x, y, z1, ..., zr) =
∑∑∑
i∈N

ci(χ,υ,Z)P
n−r−3

2
i (Z, χ, υ),

P
n−r−3

2
i (Z , χ, υ) are generalized Jacobi polynomials, ci (χ, υ,Z ) are

continuous functions PSD with respect to χ, υ.

I r=1: [Bachoc and Vallentin '08]; Z =I : [Musin '08]

I Our bounds for QSn−1

1 are between linear and SDP bounds
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Conclusions and questions for future

I 2 converging inner hierarchies for the set of copositive kernels

I Upper bounds on the kissing number with these hierarchies

→ level-1-bounds are between the linear and the SDP bounds∗

dimension n 3 4 5 6 7 8 9
SDP bound, Bachoc and Vallentin 12 24 45 78 135 240 366

QSn−1

1 bound 12 24 45 80 138 240 377
linear bound, Delsarte et al. 13 25 46 82 140 240 380
lower bound 12 24 40 72 126 240 306

∗ The optimized kernel is a polynomial of degree 10

I Level-2-bounds are in progress

I Precise connection between our bounds and the others?

I Applications for 2-psd functions?
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Thank you for your attention!
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Inner approximations for COPn

I Parrilo, 2000:

Kn
r =
{

K ∈ Sn :

( n∑
i=1

x2
i

)r n∑
i=1

n∑
j=1

Kij x
2
i x2

j is a sum of squares
}

I De Klerk and Pasechnik, 2002:

Cn
r =
{

K ∈ Sn : (e>x)r (x>Kx) has nonnegative coefficients
}

I Peña, Vera, Zuluaga, 2007:

Qn
r =
{

K ∈ Sn :

[
(e>x)r (x>Kx)−

∑
|β|=r

xβ(x>Sβx)

]
has nonnegative coefficients,Sβ � 0 for all β ∈ Nn, |β|=r

}
Notation: e = (1, . . . , 1), |β| := β1 + . . .+ βn, xβ := xβ1

1 · · · xβn
n
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Write the coefficients explicitely

I Lifting operator ⊕r applied to a kernel K

K⊕r (v1, v2, u1, ..., ur ) := K (v1, v2), for all u1, ..., ur ∈ V

I Symmetrization σ applied to the (r+2)-variate function K⊕r

σ
(
K⊕r

)
(v1, ..., vr+2):= 1

(r+2)!

∑
π∈permut.(1,...,r+2)

K⊕r
(
π(v1, ..., vr+2)

)
I Coefficient of the monomial (xv1 · · · xvr+2) in (e>x)r (x>Kx) is

σ
(
K⊕r

)
(v1, ..., vr+2)

Upper bounds on the kissing number via copositive prog. Olga Kuryatnikova, Tilburg University July 2017 22

Qn
r =
{

K∈Sn:

[
(e>x)r (x>Kx)−

∑
|β|=r

xβ(x>Sβx)

]
has nonnegative coefficients, all Sβ � 0

}



2-psd condition, the case n ≥ r > 0

I For x , y , z1, ..., zr ∈ Sn−1 define:

Z =
[
z1, ..., zr

]>[z1, ..., zr

]
, χ=

[
z1, ..., zr

]>x , υ=
[
z1, ..., zr

]>y

Theorem 4

Let K : (Sn−1)r+2 → R be a continuos function invariant under On.
Define Z , χ, υ as above. Then K is 2-psd iff

K (x , y , z1, ..., zr ) =
∑
i∈N

ci (χ, υ,Z )Qi

(
x>y − χ>Z−1υ√

(1− χ>Z−1χ)(1− υ>Z−1υ)

)
,

where Qi (t) = |Z |i
(
(1− χ>Z−1χ)(1− υ>Z−1υ)

) i
2 P

n−r−3
2

i (t) and

ci (χ, υ,Z ) are continuous functions, PSD w.r.t. χ, υ
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