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Random hyperbolic graphs (RHGs): Introduction

» Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Bogufa ™" " "0l

» Appeal: Replicate characteristic properties observed in “real world
networks” or “complex networks”

Example of networks: Power grid
Internet
Social networks
Biological interaction networks

Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale free (with exponent between 2 and 3)
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» Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Bogufa ™" " "0l

» Appeal: Replicate characteristic properties observed in “real world
networks” or “complex networks”

Example of networks: Power grid
Internet
Social networks
Biological interaction networks

Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale free (with exponent between 2 and 3)

Susceptible to mathematical analysis!
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Informal definition of RHGs model

Like random geometric graphs but where the underlying space instead of
being Euclidean is Hyperbolic.

Euclidean plane R?

Hyperbolic plane H?




Geometric graphs
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Geometric graphs




Geometric graphs

5/40



Examples of random geometric graphs
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Poincaré disk model of H?

» H? is represented as an open disk D.

v

Blue curves are geodesics (arcs of circles
perpendicularly incident to D).

v

Each heptagon has the same area.

\4

Points in 0D are at infinite distance from X.

v

Points at (Euclidean) distance y from X are
at hyperbolic distance r from X where

14y
1—y

r=in

[Rendered with KaleidoTile by J. Weeks]

Space expands at exponential rate!

Continuous analogue of regular trees.
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Good for making cool pictures!

[Rendered with M. Christersson hyperbolic tiling applet]
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Native representation of H?

» H? is represented as RR.
» A point p is represented in polar coordinates.

» 1, is the hyperbolic distance between p and O

Bo(R): Ball of radius R
centered at origin O with
perimeter 27 sinh R = ©(e").
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Poincaré vs Native representation of H?

Poincare model

Native representation.
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Full disclosure ...

Hiperbolicland can be dangerous!

“Just because you keep getting lost on the way to work is no proof that the

Universe is hiperbolic!”
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Formal definition of RHG model: G, (n)

(Gugelmann, Panagiotou, Peter [‘CALPQ])

Model parameters:
o,V (S R+,n€ N+.

SetR:=2In’.
Bo(R)

Choose an n-node graph G = (V, E) as follows:
» Each v € V uniformly and independently in Bo(R).
» uv € Eiffue B/(R).



Formal definition of RHG model: G, (n)

(Gugelmann, Panagiotou, Peter [‘CALPQ])

Model parameters:
o,V S R+,n€ N+.

SetR:=2In’.
By(R)

Choose an n-node graph G = (V, E) as follows:
» Each v € V so ¢, ~ Unif[0, 27) independent of r, with density:

f(r) := -2 sinh(ar) ~ ae" "= if0 < r < Rand 0 otherwise.
Ca,R

(Here, C, g is a normalizing constant).
» uv € Eiffue B/(R).
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Soft version

Incorporates a temperature T and a probability of connecting u and v:

1

p(d) = 71 N e%(d—Fl)

where d := d.2(u, v) is the (hyperbolic) distance between u, v € H2.
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Pdf of (ry, ¢v) and its heat plot

(Colder colors correspond to smaller density)
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Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r,.
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Calculating distances
Hyperbolic distance from v to origin O, ... easy! Just r,.

In general, use hyperbolic law of cosines

cosh(d) = cosh(ry) cosh(r,) — sinh(ry) sinh(r,) cos(¢u,v)-




Calculating distances
Hyperbolic distance from v to origin O, ... easy! Just r,.

In general, use hyperbolic law of cosines

cosh(d) = cosh(ry) cosh(r,) — sinh(ry) sinh(r,) cos(¢u,v)-

Ifd=Randr,+r > R, then®""

Or(ru, 1v) == 2e%(Fifru—rv)(1 + e(eﬁfrufrv))
- @(e%(ﬁ—ru—rv)).

Lemma: ¢y, < 0p(ry, 1) < dg(u,v) < R.
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Examples of RHGs
(v = 1 fixed, n = 500)
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Examples of RHGs

(o = £ fixed, n = 500)

o 5 = = £ DA
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Nice, but who cares?

First model that “naturally” exhibits:
» Scale freeness, AND
» Non-negligible clustering.

But, what really drew attention ...
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Mapping of Internet’s Autonomous Systems (ASs)
(2009 data collected by infrastructure developed by CAIDA)

pre——ttl
= é;;m
witzerland

Data set:
» 23,752 ASs
» 58,416 links
» Average degree 4.92

“Maximum Likelihood” fit:
» a =0.55
» R=27

[From Bogufa, Papadopoulus, Krioukov (Nat. Comm. '10)]

» Temperature T = 0.69
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Greedy Forwarding

Papadopoulos et al. """%°"=°" 'in g experimental study (but without “real”
data) report excellent stretch (average ~ 1, max ~ 1.4) and success ratio
20/40

(0.99920 for o ~ % t0 0.92 for a ~ 1, with «, v as in the Internet).




Part II: Analysis of model
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Poissonized model of RHGs: G, ,(n)

It is more natural to consider a Poissonized version of G....(n).

l.e., a process where given o oo it holds that

S; Ss
» E|V N S| is proportional to nu(S) where p(S) := // f(r,¢)drd¢.
S
» |VN S|, VNS, ... are independent.
Equivalently, VS C H?, |S N V| ~ Poisson(nu(S)), i.e, Yk € N.

P(SNVI=K) = & ™9 (mu(S))"



Key fact

S VI nu(S).

If u(S)

|SN V|is small, w.e.p.
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Key fact

SOV nu(S).

If u(S)

|S N V|¥eP(Inn)'+o),

Moreover, it is possible to depoisonize
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Henceforth 3 < a < 1.

Do Not Forget!
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Vertices per layer
(measure centered balls)

Calculations yiel

Layer L; :="Bg(i)\Bo(i—1)

d[GPP'WZ]



O
Vertices per layer
(measure centered balls)

Calculations yield“”" "

p(t;) = AE))
p(Bo(i)) = e~

25/40
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Vertices per layer
(measure centered balls)

Calculations yield“"" "

Define, V<; := V N Bo(i).

Letio := (1—5-)R. 50 1u(Bo(io)) =

n:
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Vertices per layer
(measure centered balls)

Calculations yield“"" "

p(t;) = AE))
H(Bo(i)) = &,

Define, V<; := V N Bo(i).

Let jp := (1 —i)R. SO ,U,(Bo(lo)) =

1
Ifiy = Io_lna'q_w(‘]), then E| VSI'O_ |=nu(Bo(iy ))=o0(1).
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Vertices per layer
(measure centered balls)

Calculations yield'®™""

M(Li) o~ p:](_BZSI))
p(Boli) = &~"

but # 0 a.a.s

Define, V<; := V N Bo(i)

Let Io = (1 _7)[? SO /J,(Bo(lo)) = -
If iy = io—"F—w(1), then E|V_-|=nu(Bo(iy ))=0(1)
If iy = io + B —w(1), then P(|Vy| >Inn) < #E|V<, | =o0(1).

[m]

=
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Vertices per layer
(measure centered balls)

Calculations yield“”" "

N~ M(B (/))
n(Li) = 1_ o
w(Bo(i)) =

e a(FI i)



Vertex degrees

(measure of non-centered balls)

Calculations yield

1(Bp(R)) = Cae™ % (1+0(e™ @ 2)7),

X

(=Jee(+)
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Vertex degrees
(measure of non-centered balls)
Calculations yield

1(Bp(R)) = Cae™ % (1+0(e™ @ 2)7),

Thus,

O(In n) (no concentration),
if o = R—2In R+0(1),

v deg(P) =

@(ne”fp) w.e.p.,
otherwise.

(=Jee(+)
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Consequences

. _ 1
> A.a.s, a max degree vertex is in V- and has degree n'~za M we.p.

> If k= Cane*% ,J > iy, then w.e.p. the number of degree < k nodes is

—2«
~ pa—a(A—) _ [ VCa
= ne =N .
(%)

l.e., power law degree distribution with exponent 2« + 1.

v

The average degree is 7vC2(1 + o(1)), i.e., constant!.

v

If v & Vep_e, C constant,
P(deg(v) = 0) = C,e” /2

and w.e.p. there are ©(n) such vertices.

v

V<p,2 induces a clique K (w.e.p. |V<g 2| = ©(n'~*))
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Location of neighbors of a vertex

Calculations yield

u(Br(R) N L;) = ©(e~ (- DA-Ng=h(F-rr))
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Location of neighbors of a vertex

Calculations yield
1(Bp(R) N L)) = ©(e~ (@~ AN g=2(A-1r))
= (1= e ") + o(1))u(Br(R) N Bo(i — 1)).

As a function of i grows like e’

So, P has:
» more neighbors towards 0Bo(R)
» const. fraction of neighbors “near” 9Bo(R)
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Visualization of claims

Q6

N



Non-negligible local clustering coefficient

[GPP'12]

|f CV = Psyt(st S E|S, t S Nv), then ]Evcv = Q(1).
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O
Giant component
[BFM, EJC'15; FM, AAP'17]

Letve Vbest R—rn

Q(InR).

Thereisar > 1 so thatw.e.p. 3w ~ v s.t.

R—ry>7(R—nr).

21/40
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Giant component

[BFM, EJC'15; FM, AAP'17]

Letve Vbest. R—r =Q(InR).

Thereisar > 1 sothatw.e.p. 3w ~ v s.t

R—rw>71(R—-r).
|K|"PO(n" =)
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O
Giant component
[BFM, EJC'15; FM, AAP'17]

)

Letve Vbest R—rn,

=Q(InR).

Thereisar > 1 sothatw.e.p. 3w ~ v s.t
R—rw>71(R-r)

|K[¥ePe(n' =)

|V<r/| = e(polylog n))
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O
Giant component
[BFM, EJC'15; FM, AAP'17]

)

Letve Vbest R—rn,

= Q(nR).

Thereisar > 1 sothatw.e.p. 3w ~ v s.t

R—ry>71(R—r)
|K|"PO(n' =)

| V<r/| = e(polylog n))
|Core component|?2°©(n)
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O
Giant component
[BFM, EJC'15; FM, AAP'17]

)

Letve Vbest R—rn,

=Q(InR).
Thereisar > 1 sothatw.e.p. 3w ~ v s.t
R—rw>71(R-r)
|K|"eP@(n! =)
|V<r/| PO (soyingm

polylog (n) )

|Core component|?2°©(n)

|2nd component|Y¢PO (polylog(n))
[KM, ANALCO'15]
21/40
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Forbidden configurations

[FK, ICALP’15]
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Forbidden configurations

[FK, ICALP’15]

29/40



Some observations

Region ¢

V N Bo(r) contained in core comp.

1 =
k- Z(Inn)T
r.=R-nhA

1—a

lfk=c-(In n)ﬁ and c large enough, then
P(® N Bo(R)N V = ) = e Mk =% _ 5(=3)
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Some observations

Region ¢

V' N Bp(r) contained in core comp.

&N Bo(r) NV # 0 likely k- L(nnTa

r:=R— 1A

1—a

If k = c- (Inn)™= and c large enough, then

__«

P(® N Bo(R) NV = ) = e @WK =% o(p=3),

A union bound over possible ®'s gives P(3®, ® N Bo(r) NV = 0) = O(1).
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Some observations

2
&\ Bo(r)n V|"e&Po((Inn)T=o
Region o [\ Bo(r) N V]*ePe((inm) )

V' N Bp(r) contained in core comp.

&N Bo(r) NV # 0 likely k- L(nnTa

r:=R— 1A

1—a

If k = c- (Inn)™= and c large enough, then

__«

P(® N Bo(R) NV = ) = e @WK =% o(p=3),

A union bound over possible ®'s gives P(3®, ® N Bo(r) NV = 0) = O(1).
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[KM, ANALCO'15; FK, ICALP’15; MS, arXiv17]

An O((In n)ﬁ) bound on the diameter and 2nd component

o}

24/40
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Conductance and spectral gap

The graph conductance of the core component H of G.,,.(n) is:

o ESV(M)\S)
e(H):= min =g

0<vol(S)< | E(H)|

The spectral gap of H is \1(H) —the 2nd smallest eigenvalue of the
normalized Laplacian of H

By Cheeger’s inequality:

— Q2 (H) < M(H) < 2p(H).

Upper bound is almost tight“" ***"" and

"wo( ;) Fairly small
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Other ...

Bipartite!™ "= " £17 and higher dimensional analogues, as well as
generalizations™ " """ have also been considered.

Average distance™"#*"%l

Separators and treewidth™™ *°**%: Balanced separator hierarchies with
separators of size O(n'~*) and O(n' ) treewidth, a.a.s.

Minimum and maximum bisection "7,

Fast generatlon[BKL ESA’17; vLSMP, ISAAC'15] and embeddlng[BFKL ESAWG].
Connectivity threshold®™ #54¢)

Bootstrap percolationc" SPev e KL ICALP TG el i RHGs and GIRGs.

BKLMM, arXiv'17]

Greedy routing' .



What next?

(some of my favorite questions)

» Is there a compelling model that explains the emergence of “RHG like”
networks and how they evolve?

» How do epidemics/information spread through RHGs?

» When n — oo, are the graph metric of RHGs and H? related? If so, how?
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