Random Hyperbolic Graphs

Marcos Kiwi

mk@dim.uchile.cl

U. Chile

September 13, 2017

Part I: Motivation and model specification

Random hyperbolic graphs (RHGs): Introduction

- Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguña [Phys. Rev. '10]
- Appeal: Replicate characteristic properties observed in "real world networks" or "complex networks"

Example of networks:	Power grid Internet Social networks Biological interaction networks
Typical properties:	Sparse Heterogeneous Locally dense (exhibit clustering phenomena) Small world Navigable Scale free (with exponent between 2 and 3)

Random hyperbolic graphs (RHGs): Introduction

- Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguña [Phys. Rev. '10]
- Appeal: Replicate characteristic properties observed in "real world networks" or "complex networks"

Example of networks:	Power grid Internet Social networks Biological interaction networks
Typical properties:	Sparse Heterogeneous Locally dense (exhibit clustering phenomena) Small world Navigable Scale free (with exponent between 2 and 3)

Susceptible to mathematical analysis!

Informal definition of RHGs model

Like random geometric graphs but where the underlying space instead of being Euclidean is Hyperbolic.

Hyperbolic plane **H**²

Euclidean plane \mathbb{R}^2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Examples of random geometric graphs

n = 500 points

Poincaré disk model of \mathbb{H}^2

[Rendered with KaleidoTile by J. Weeks]

- \mathbb{H}^2 is represented as an open disk *D*.
- Blue curves are geodesics (arcs of circles perpendicularly incident to D).
- Each heptagon has the same area.
- Points in ∂D are at infinite distance from X.
- Points at (Euclidean) distance y from X are at hyperbolic distance r from X where

$$r=\ln\frac{1+y}{1-y}.$$

Space expands at exponential rate! Continuous analogue of regular trees.

Good for making cool pictures!

[Rendered with M. Christersson hyperbolic tiling applet]

イロト イロト イヨト イヨト 三日

Native representation of \mathbb{H}^2

 $B_O(R)$: Ball of radius Rcentered at origin O with perimeter $2\pi \sinh R = \Theta(e^R)$.

- \mathbb{H}^2 is represented as \mathbb{R}^2 .
- A point *p* is represented in polar coordinates.
- r_p is the hyperbolic distance between p and O

Poincaré vs Native representation of \mathbb{H}^2

Native representation.

Full disclosure ...

Hiperbolicland can be dangerous!

"Just because you keep getting lost on the way to work is no proof that the Universe is hiperbolic!"

Formal definition of RHG model: $G_{\alpha,\nu}(n)$

(Gugelmann, Panagiotou, Peter [ICALP'12])

Choose an *n*-node graph G = (V, E) as follows:

- Each $v \in V$ uniformly and independently in $B_O(R)$.
- $uv \in E$ iff $u \in B_v(R)$.

Formal definition of RHG model: $G_{\alpha,\nu}(n)$

(Gugelmann, Panagiotou, Peter [ICALP'12])

Choose an *n*-node graph G = (V, E) as follows:

• Each $v \in V$ so $\phi_v \sim \text{Unif}[0, 2\pi)$ independent of r_v with density:

 $f(r) := \frac{\alpha}{C_{\alpha,R}} \sinh(\alpha r) \approx \alpha e^{-\alpha(R-r)} \quad \text{if } 0 \le r < R \text{ and } 0 \text{ otherwise.}$

(Here, $C_{\alpha,R}$ is a normalizing constant).

• $uv \in E$ iff $u \in B_v(R)$.

Soft version

Incorporates a temperature T and a probability of connecting u and v:

 $p(d) := \frac{1}{1 + e^{\frac{1}{2T}(d-R)}}$

where $d := d_{\mathbb{H}^2}(u, v)$ is the (hyperbolic) distance between $u, v \in \mathbb{H}^2$.

R = 3.0.

Pdf of (r_v, ϕ_v) and its heat plot

(Colder colors correspond to smaller density)

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

In general, use hyperbolic law of cosines

 $\cosh(d) = \cosh(r_u) \cosh(r_v) - \sinh(r_u) \sinh(r_v) \cos(\phi_{u,v}).$

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

In general, use hyperbolic law of cosines

 $\cosh(d) = \cosh(r_u) \cosh(r_v) - \sinh(r_u) \sinh(r_v) \cos(\phi_{u,v}).$

Examples of RHGs $(\nu = 1 \text{ fixed}, n = 500)$

Examples of RHGs $(\alpha = \frac{3}{4} \text{ fixed}, n = 500)$

 $\nu = 0.50$

 $\nu = 0.75$

 $\nu = 1.00$

<ロト < 四ト < 回 > < 回 > < 回</p>

Nice, but who cares?

First model that "naturally" exhibits:

- Scale freeness, AND
- Non-negligible clustering.

But, what really drew attention ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Mapping of Internet's Autonomous Systems (ASs)

(2009 data collected by infrastructure developed by CAIDA)

[From Boguña, Papadopoulus, Krioukov (Nat. Comm. '10)]

Data set:

- ▶ 23,752 ASs
- ▶ 58,416 links
- Average degree 4.92

"Maximum Likelihood" fit:

- ► *R* = 27
- Temperature T = 0.69

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Greedy Forwarding

Papadopoulos et al. ^[INFOCOM 2010], in a experimental study (but without "real" data) report excellent stretch (average \sim 1, max \sim 1.4) and success ratio (0.99920 for $\alpha \sim \frac{1}{2}$ to 0.92 for $\alpha \sim 1$, with α, ν as in the Internet).

Part II: Analysis of model

Poissonized model of RHGs: $\mathcal{G}_{\alpha,\nu}(n)$

It is more natural to consider a Poissonized version of $G_{\alpha,\nu}(n)$.

- ▶ $\mathbb{E}|V \cap S|$ is proportional to $n\mu(S)$ where $\mu(S) := \iint_{\Omega} f(r, \phi) dr d\phi$.
- ▶ $|V \cap S_1|, |V \cap S_2|$... are independent.

Equivalently, $\forall S \subseteq \mathbb{H}^2$, $|S \cap V| \sim \text{Poisson}(n\mu(S))$, i.e, $\forall k \in \mathbb{N}$.

$$\mathbb{P}(|S \cap V| = k) = e^{-n\mu(S)} \frac{1}{k!} (n\mu(S))^k.$$

Key fact

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Key fact

Moreover, it is possible to depoisonize

Henceforth $\frac{1}{2} < \alpha < 1$.

Do Not Forget!

Calculations yield^[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

(ロ)、(型)、(E)、(E)、 E) のQの

Calculations yield^[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

(ロ)、(型)、(E)、(E)、 E) のQの

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Define, $V_{\leq i} := V \cap B_O(i)$. Let $i_0 := (1 - \frac{1}{2\alpha})R$. so $\mu(B_O(i_0)) = \frac{1}{\alpha}$.

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Define, $V_{\leq i} := V \cap B_O(i)$. Let $i_0 := (1 - \frac{1}{2\alpha})R$. so $\mu(B_O(i_0)) = \frac{1}{n}$.

If $i_0^- = i_0 - \frac{\ln R}{\alpha} - \omega(1)$, then $\mathbb{E}|_{\leq i_0^-} | = n\mu(B_O(i_0^-)) = o(1)$.

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Define, $V_{\leq i} := V \cap B_O(i)$. Let $i_0 := (1 - \frac{1}{2\alpha})R$. so $\mu(B_O(i_0)) = \frac{1}{n}$.

If $i_0^- = i_0 - \frac{\ln R}{\alpha} - \omega(1)$, then $\mathbb{E}|V_{\leq i_0^-}| = n\mu(B_O(i_0^-)) = o(1)$.

If $i_0^+ = i_0 + \frac{\ln R}{\alpha} - \omega(1)$, then $\mathbb{P}(|V_{\leq i_0^+}| > \ln n) \leq \frac{1}{\ln n} \mathbb{E}|V_{\leq i_0^+}| = o(1)$.

Calculations yield^[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Vertex degrees (measure of non-centered balls)

Calculations yield

$$\mu(B_{P}(R)) = C_{\alpha} e^{-\frac{r_{P}}{2}} (1 + o(e^{-(\alpha - \frac{1}{2})r_{P}}).$$

Vertex degrees (measure of non-centered balls)

Calculations yield

$$\mu(B_{P}(R)) = C_{\alpha} e^{-\frac{r_{P}}{2}} (1 + o(e^{-(\alpha - \frac{1}{2})r_{P}}).$$

Thus,

 $\deg(P) = \begin{cases} O(\ln n) \text{ (no concentration),} \\ \text{if } r_P = R - 2 \ln R + O(1), \\ \Theta(ne^{-\frac{r_P}{2}}) \text{ w.e.p.,} \\ \text{otherwise.} \end{cases}$

Consequences

- A.a.s, a max degree vertex is in $V_{i_0}^+$ and has degree $n^{1-\frac{1}{2\alpha}+o(1)}$ w.e.p.
- If $k = C_{\alpha} n e^{-\frac{j}{2}}$, $j \ge i_0^+$, then w.e.p. the number of degree $\le k$ nodes is

$$\cong ne^{-\alpha(R-j)} = n\left(\frac{\nu C_{\alpha}}{k}\right)^{-2\alpha}$$

I.e., power law degree distribution with exponent $2\alpha + 1$.

- The average degree is $\pi \nu C_{\alpha}^2(1 + o(1))$, i.e., constant!.
- ▶ If $v \notin V_{\leq R-c}$, c constant,

 $\mathbb{P}(\deg(\nu)=0)\cong C_{\alpha}e^{-c/2}$

and w.e.p. there are $\Theta(n)$ such vertices.

► $V_{\leq R/2}$ induces a clique K (w.e.p. $|V_{\leq R/2}| = \Theta(n^{1-\alpha})$)

Location of neighbors of a vertex

Calculations yield

 $\mu(B_{P}(R)\cap L_{i}) = \Theta(e^{-(\alpha-\frac{1}{2})(R-i)}e^{-\frac{1}{2}(R-r_{P})})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Location of neighbors of a vertex

Calculations yield

$$\begin{split} \mu(B_P(R) \cap L_i) &= \Theta(e^{-(\alpha - \frac{1}{2})(R-i)}e^{-\frac{1}{2}(R-r_P)}) \\ &= (1 - e^{-(\alpha - \frac{1}{2})})(1 + o(1))\mu(B_P(R) \cap B_O(i-1)). \end{split}$$

As a function of *i* grows like $e^{-\alpha i}$.

So, P has:

- more neighbors towards $\partial B_O(R)$
- const. fraction of neighbors "near" $\partial B_O(R)$

Visualization of claims

Non-negligible local clustering coefficient

[GPP'12]

If $C_{\nu} := \mathbb{P}_{s,t}(st \in E | s, t \in \mathcal{N}_{\nu})$, then $\mathbb{E}_{\nu}C_{\nu} = \Omega(1)$.

[BFM, EJC'15; FM, AAP'17]

Let $v \in V$ be s.t. $R - r_v = \Omega(\ln R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

 $R-r_w > \tau(R-r_v).$

[BFM, EJC'15; FM, AAP'17]

Let $v \in V$ be s.t. $R - r_v = \Omega(\ln R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

 $R-r_w > \tau(R-r_v).$

[BFM, EJC'15; FM, AAP'17]

Let $v \in V$ be s.t. $R - r_v = \Omega(\ln R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

 $R-r_w > \tau(R-r_v).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

[BFM, EJC'15; FM, AAP'17]

Let $v \in V$ be s.t. $R - r_v = \Omega(\ln R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

 $R-r_w > \tau(R-r_v).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

[BFM, EJC'15; FM, AAP'17]

 $|\text{Core component}|^{aas}_{=}\Theta(n)$

 $|\text{2nd component}|_{=}^{\text{wep}}\Theta(\text{polylog}(n))$ [KM, ANALCO'15]

Let $v \in V$ be s.t. $R - r_v = \Omega(\ln R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

 $R-r_w > \tau(R-r_v).$

Forbidden configurations

Forbidden configurations

Some observations

If $k = c \cdot (\ln n)^{\frac{1}{1-\alpha}}$ and *c* large enough, then

$$\mathbb{P}(\Phi \cap B_{\mathcal{O}}(R) \cap V = \emptyset) = e^{-\Theta(1)k(\ln n)^{-\frac{\alpha}{1-\alpha}}} = O(n^{-3}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Some observations

$$\mathbb{P}(\Phi \cap B_O(R) \cap V = \emptyset) = e^{-\Theta(1)k(\ln n)^{-1-\alpha}} = O(n^{-3}).$$

A union bound over possible Φ 's gives $\mathbb{P}(\exists \Phi, \Phi \cap B_O(r) \cap V = \emptyset) = O(\frac{1}{n})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Some observations

A union bound over possible Φ 's gives $\mathbb{P}(\exists \Phi, \Phi \cap B_O(r) \cap V = \emptyset) = O(\frac{1}{n})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An $O((\ln n)^{\frac{2}{1-\alpha}})$ bound on the diameter and 2*nd* component

[KM, ANALCO'15; FK, ICALP'15; MS, arXiv17]

Conductance and spectral gap

The graph conductance of the core component *H* of $G_{\alpha,\nu}(n)$ is:

$$\varphi(H) := \min_{\substack{S \subseteq V(H) \\ 0 < \operatorname{vol}(S) \le |E(H)|}} \frac{E_H(S, V(H) \setminus S)}{\operatorname{vol}(S)}.$$

The spectral gap of *H* is $\lambda_1(H)$ – the 2nd smallest eigenvalue of the normalized Laplacian of *H*

By Cheeger's inequality:

$$\frac{1}{2}\varphi^2(H) \leq \lambda_1(H) \leq 2\varphi(H).$$

Upper bound is almost tight^[KM, AAP'17] and

 $\underset{\approx}{\overset{\text{wep}}{\approx}} \Theta\left(\frac{1}{n^{2\alpha-1}}\right) \qquad \text{Fairly small!}$

Other ...

- Bipartite^[KPK, Phys. Rev. E¹7] and higher dimensional analogues, as well as generalizations^[BKL, ESA17] have also been considered.
- Average distance^[BKL, arXiv'16]
- Separators and treewidth^[BFK, ESA'16]: Balanced separator hierarchies with separators of size $O(n^{1-\alpha})$ and $O(n^{1-\alpha})$ treewidth, a.a.s.

(ロ) (同) (三) (三) (三) (○) (○)

- Minimum and maximum bisection ^[KM, AAP'17].
- ► Fast generation^[BKL, ESA'17; vLSMP, ISAAC'15] and embedding^[BFKL, ESA'16].
- Connectivity threshold^[BFM, RS&A'16]
- ► Bootstrap percolation^[CF, SP&A'16; KL, ICALP'16; etc.] in RHGs and GIRGs.
- ► Greedy routing^[BKLMM, arXiv'17].

What next? (some of my favorite questions)

- Is there a compelling model that explains the emergence of "RHG like" networks and how they evolve?
- How do epidemics/information spread through RHGs?
- ▶ When $n \to \infty$, are the graph metric of RHGs and \mathbb{H}^2 related? If so, how?

[Rendered with M. Christersson hyperbolic tiling applet]