Minimum density of identifying codes of king grids

Frédéric Havet

Université Côte d'Azur, CNRS, I3S and INRIA Sophia Antipolis, France

Joint work with

R. Dantas and R. Sampaio

Universidade Federal do Ceará

IX Latin and American Algorithms, Graphs and Optimization Symposium, September 11-15, 2017

COATI

Definitions

neighbourhood of $v : N(v) = \{u \mid uv \in E(G)\}.$ closed neighbourhood of $v : N[v] = N(v) \cup \{v\}.$

 $C \subseteq V(G)$ identifier of $v : I(v) = N[v] \cap C$.

C is an identifying code if

•
$$I(v) \neq \emptyset$$
 for all $v \in V(G)$;

•
$$I(v) \neq I(u)$$
 for any $v \neq u$.

COATI

Existence theorem

u and v are twins if N[u] = N[v].

For all C, two twins have the same identifier.

Theorem: G admits an identifying code iff G has no twins. *Proof:* If two twins, no identifying code. If no twins, then V(G) is an identifying code.

Problem 1: Let G be a finite graph with no twins. What is the **minimum size** of an identifying code ?

Problem 2: Let G be an infinite graph with no twins. What is the **minimum density** $d^*(G)$ of an identifying code ?

Formal definition of density

 v_0 vertex in G $B_r(v_0)$ ball of radius r in $G : B_r(v_0) = \{x \mid d(v_0, x) \le r\}.$

density of C in G :

$$d(C,G) = \limsup_{r \to +\infty} \frac{|C \cap B_r(v_0)|}{|B_r(v_0)|}$$

Identifying codes in the infinite square grid

Cohen et al. (1999) $d^*(\mathbb{Z}^2) \le 7/20$.

shifted by vectors $(10x, x + 4y) x, y \in \mathbb{Z}$.

Benhaim and Litsyn (2005) $d^*(\mathbb{Z}^2) > 7/20$.

COATI

Identifying codes of infinite square strips

 $S_k = \mathbb{Z} \Box [1, k] =$ square grid on k rows. Daniel et al. (2004) $d^*(S_1) = 1/2$.

Daniel et al. (2004) $d^*(S_2) = 3/7$.

COATI

Identifying codes of king grids

6/2

Identifying codes in infinite square strips

Bouznif, H. and Preissman (2016) $d^*(S_3) = 7/18 = 0.388...$

Jiang (2016+) $d^*(S_4) = 11/28 = 0.392...$ and $d^*(S_5) = 19/50 = 0.38.$

Bouznif, H. and Preissman (2016)
$$\frac{7}{20} + \frac{1}{20k} \le d^*(\mathcal{S}_k) \le \frac{7}{20} + \frac{3}{10k}.$$

125

Identifying codes in the triangular grid

Karpovsky et al. (1998) $d^*(\mathcal{G}_T) = 1/4$.

Identifying codes in infinite triangular strips

Dantas, H., and Sampaio (2017)

•
$$d^*(T_k) = \frac{1}{4} + \frac{1}{4k}$$
, if k is odd.

• $\frac{1}{4} + \frac{1}{4k} \le d^*(T_k) \le \frac{1}{4} + \frac{1}{2k}$, if k is even.

Identifying codes in infinite triangular strips

Dantas, H., and Sampaio (2017) $d^*(T_2) = 1/2 = \frac{1}{4} + \frac{1}{2 \times 2}$.

COATI

Identifying codes of king grids

10/

Identifying codes in the infinite king grid

Charon et al. (2002) $d^*(\mathcal{G}_K) = 2/9.$

135

11/

Our results

Theorem 1 : for every king grid G, $d^*(G) \ge 2/9$.

Theorem 2 : for every finite king grid G, $d^*(G) > 2/9$.

$$\begin{array}{ll} \mathcal{K}_k : \mbox{ king strip of height } k. \\ d^*(\mathcal{K}_1) = 1/2; & \mathcal{K}_2 \mbox{ has no id. code;} & d^*(\mathcal{K}_3) = 1/3; \\ d^*(\mathcal{K}_4) = 5/16; & d^*(\mathcal{K}_5) = 4/15; & d^*(\mathcal{K}_6) = 5/18. \end{array}$$

Theorem 3: $2/9 + \frac{8}{81k} \le d^*(\mathcal{K}_k) \le \begin{cases} \frac{2}{9} + \frac{6}{18k}, & \text{if } k \equiv 0 \mod 3, \\ \frac{2}{9} + \frac{8}{18k}, & \text{if } k \equiv 1 \mod 3, \\ \frac{2}{9} + \frac{7}{18k}, & \text{if } k \equiv 2 \mod 3. \end{cases}$

Using the Discharging Method

General Idea

- Assume there is an identifying code C of G.
- Initial charge : w(v) = 1 if $v \in C$; w(v) = 0 if $v \in V(G) \setminus C$.
- Apply some local discharging rules. (constant weight)
- Final charge : $w^*(v) \ge \alpha$ for all $v \in V(G)$.

 $\implies d^*(G) \ge \alpha.$

Register COATI

CIIIS

Identifying codes of king grids

13/

Theorem 1 : $d^*(G) \ge 2/9$ for every king grid G.

Notations

 $C \text{ code } U = V(G) \setminus C.$ $X_i = \{ v \in X \mid |I(v)| = i \},$ $X_{\geq i} = \{ v \in X \mid |I(v)| \geq i \},$ full vertex v : |N[v]| = 9

 $X_{\leq i} = \{ v \in X \mid |I(v)| \leq i \},$ side vertex $v : |N[v]| \leq 6.$

Identifying codes of king grids

14/

Initial charge : w(v) = 1 if $v \in C$; w(v) = 0 if $v \in V(G) \setminus C$. Goal : $w^*(v) \ge 2/9$ for all $v \in V(G)$.

COATI

Theorem 1 : $d^*(G) \ge 2/9$ for every king grid G.

(R1) Every C-vertex sends $\frac{2}{9i}$ to each of its neighbours in U_i .

Every U-vertex get charge 2/9.

BUT some *C*-vertices might become **defective** (have charge less than 2/9).

Theorem 1 : $d^*(G) \ge 2/9$ for every king grid G.

(R1) Every *C*-vertex sends $\frac{2}{9i}$ to each of its neighbours in U_i . (R2) Every defective vertex receives $\frac{1}{54}$ from each of its partners.

At the end, the charge of every vertex is at least 2/9.

If v is a side C-vertex, then $w^*(v) \ge \frac{2}{9} + \frac{11}{54}$. If v is a full $C_{\ge 3}$ -vertex, then $w^*(v) \ge 2/9 + \frac{1}{27}$.

In each "corner", there is a side C-vertex of a full $C_{>3}$ -vertex.

If v is a side C-vertex, then $w^*(v) \ge \frac{2}{9} + \frac{11}{54}$. If v is a full $C_{\ge 3}$ -vertex, then $w^*(v) \ge 2/9 + \frac{1}{27}$.

In each "corner", there is a side C-vertex of a full $C_{\geq 3}$ -vertex.

If v is a side C-vertex, then $w^*(v) \ge \frac{2}{9} + \frac{11}{54}$. If v is a full $C_{\ge 3}$ -vertex, then $w^*(v) \ge 2/9 + \frac{1}{27}$.

In each "corner", there is a side C-vertex of a full $C_{\geq 3}$ -vertex.

If v is a side C-vertex, then $w^*(v) \ge \frac{2}{9} + \frac{11}{54}$. If v is a full $C_{\ge 3}$ -vertex, then $w^*(v) \ge 2/9 + \frac{1}{27}$.

In each "corner", there is a side C-vertex of a full $C_{\geq 3}$ -vertex.

Theorem 3 : $d^*(\mathcal{K}_k) \ge 2/9 + \frac{8}{81k}$.

excess :
$$exc(v) \ge w^*(v) - \frac{2}{9}$$

(R3) Every side *C*-vertex sends $\frac{2}{27}$ to its two side neighbours.

$$\begin{array}{rcl} B[a] &=& \{(a-1,1),(a-1,2),(a-1,3),(a,1),(a,2),(a,3),\}\\ &\cup& \{(a+1,1),(a+1,2),(a+1,3)\}. \end{array}$$

 $\exp(B[a]) \ge \frac{4}{27}$ for every integer *a*.

COATI

Identifying codes of king grids

21/

135