
Minimum density of identifying codes of king

grids

Frédéric Havet
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Definitions
neighbourhood of v : N(v) = {u | uv ∈ E (G )}.
closed neighbourhood of v : N[v ] = N(v) ∪ {v}.

C ⊆ V (G )
identifier of v : I (v) = N[v ] ∩ C .

C is an identifying code if

I (v) 6= ∅ for all v ∈ V (G );

I (v) 6= I (u) for any v 6= u.
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Existence theorem

u and v are twins if N[u] = N[v ].

For all C , two twins have the same identifier.

Theorem: G admits an identifying code iff G has no twins.

Proof: If two twins, no identifying code.
If no twins, then V (G ) is an identifying code. �

Problem 1: Let G be a finite graph with no twins.
What is the minimum size of an identifying code ?

Problem 2: Let G be an infinite graph with no twins.
What is the minimum density d∗(G ) of an identifying code ?

F.Havet Identifying codes of king grids 3/21



Formal definition of density

v0 vertex in G

Br (v0) ball of radius r in G : Br (v0) = {x | d(v0, x) ≤ r}.

density of C in G :

d(C ,G ) = lim sup
r→+∞

|C ∩ Br (v0)|
|Br (v0)|
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Identifying codes in the infinite square grid

Cohen et al. (1999) d∗(Z2) ≤ 7/20.

shifted by vectors (10x , x + 4y) x , y ∈ Z.

Benhaim and Litsyn (2005) d∗(Z2) ≥ 7/20.
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Identifying codes of infinite square strips

Sk = Z�[1, k] = square grid on k rows.

Daniel et al. (2004) d∗(S1) = 1/2.

Daniel et al. (2004) d∗(S2) = 3/7.
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Identifying codes in infinite square strips

Bouznif, H. and Preissman (2016) d∗(S3) = 7/18 = 0.388....

Jiang (2016+) d∗(S4) = 11/28 = 0.392...
and d∗(S5) = 19/50 = 0.38.

Bouznif, H. and Preissman (2016)
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Identifying codes in the triangular grid

Karpovsky et al. (1998) d∗(GT ) = 1/4.
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Identifying codes in infinite triangular strips

Dantas, H., and Sampaio (2017)

d∗(Tk) =
1

4
+

1

4k
, if k is odd.
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Identifying codes in infinite triangular strips

Dantas, H., and Sampaio (2017) d∗(T2) = 1/2 = 1
4 + 1

2×2 .

5
16 = 1

4 + 1
4×4 < d∗(T4) = 1/3 < 1

4 + 1
2×4 = 3

8 .
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Identifying codes in the infinite king grid

Charon et al. (2002) d∗(GK ) = 2/9.
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Our results

Theorem 1 : for every king grid G , d∗(G ) ≥ 2/9.

Theorem 2 : for every finite king grid G , d∗(G ) > 2/9.

Kk : king strip of height k .
d∗(K1) = 1/2; K2 has no id. code; d∗(K3) = 1/3;
d∗(K4) = 5/16; d∗(K5) = 4/15; d∗(K6) = 5/18.

Theorem 3 :

2/9 + 8
81k ≤ d∗(Kk) ≤


2
9 + 6

18k , if k ≡ 0 mod 3,
2
9 + 8

18k , if k ≡ 1 mod 3,
2
9 + 7

18k , if k ≡ 2 mod 3.
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Using the Discharging Method

General Idea

Assume there is an identifying code C of G .

Initial charge : w(v) = 1 if v ∈ C ; w(v) = 0 if
v ∈ V (G ) \ C .

Apply some local discharging rules. (constant weight)

Final charge : w∗(v) ≥ α for all v ∈ V (G ).

=⇒ d∗(G ) ≥ α.
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Theorem 1 : d∗(G ) ≥ 2/9 for every king grid G .

Notations
C code U = V (G ) \ C .

Xi = {v ∈ X | |I (v)| = i},
X≥i = {v ∈ X | |I (v)| ≥ i}, X≤i = {v ∈ X | |I (v)| ≤ i},

full vertex v : |N[v ]| = 9 side vertex v : |N[v ]| ≤ 6.

Initial charge : w(v) = 1 if v ∈ C ; w(v) = 0 if v ∈ V (G ) \ C .

Goal : w∗(v) ≥ 2/9 for all v ∈ V (G ).
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Theorem 1 : d∗(G ) ≥ 2/9 for every king grid G .

(R1) Every C -vertex sends 2
9i to each of its neighbours in Ui .

Every U-vertex get charge 2/9.

BUT some C -vertices might become defective (have charge less
than 2/9).
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Theorem 1 : d∗(G ) ≥ 2/9 for every king grid G .

(R1) Every C -vertex sends 2
9i to each of its neighbours in Ui .

(R2) Every defective vertex receives 1
54 from each of its partners.

At the end, the charge of every vertex is at least 2/9.
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Theorem 2 : d∗(G ) > 2/9 for every finite king grid G .

If v is a side C -vertex, then w∗(v) ≥ 2
9 + 11

54 .
If v is a full C≥3-vertex, then w∗(v) ≥ 2/9 + 1

27 .

In each “corner”, there is a side C -vertex of a full C≥3-vertex.
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Theorem 3 : d∗(Kk) ≥ 2/9 + 8
81k .

excess : exc(v) ≥ w∗(v)− 2
9

(R3) Every side C -vertex sends 2
27 to its two side neighbours.

B[a] = {(a− 1, 1), (a− 1, 2), (a− 1, 3), (a, 1), (a, 2), (a, 3), }
∪ {(a + 1, 1), (a + 1, 2), (a + 1, 3)}.

1

2

3

4

a-1 a a+1

exc(B[a]) ≥ 4
27 for every integer a.
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