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Introduction

Bicliques

Definition

A biclique of a graph G is a set B of vertices of G such that B induces a
maximal complete bipartite graph.
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Biclique Graph

Definition

The biclique graph KB(G ) is the intersection graph of the bicliques of G .
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Introduction

Biclique Graph

Introduced and characterized by Groshaus and Szwarcfiter (2010).

The characterization does not lead to a polynomial time recognition
algorithm.

It remains open the time complexity of the problem of recognizing
biclique graphs.
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Introduction

Our work

We study the problem of deciding if a graph G is the biclique graph of a
bipartite permutation graph (BPG).

Results:

KB(BPG) ⊂ K1,4-free interval graph.

KB(BPG) = (L(BPG))2 (the square of the line graph).

a characterization of the biclique graph of a particular subclass of
BPG, which lead to a polynomial time recognition algorithm.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 5 / 30



Introduction

Our work

We study the problem of deciding if a graph G is the biclique graph of a
bipartite permutation graph (BPG).

Results:

KB(BPG) ⊂ K1,4-free interval graph.

KB(BPG) = (L(BPG))2 (the square of the line graph).

a characterization of the biclique graph of a particular subclass of
BPG, which lead to a polynomial time recognition algorithm.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 5 / 30



Introduction

Our work

We study the problem of deciding if a graph G is the biclique graph of a
bipartite permutation graph (BPG).

Results:

KB(BPG) ⊂ K1,4-free interval graph.

KB(BPG) = (L(BPG))2 (the square of the line graph).

a characterization of the biclique graph of a particular subclass of
BPG, which lead to a polynomial time recognition algorithm.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 5 / 30



Introduction

Our work

We study the problem of deciding if a graph G is the biclique graph of a
bipartite permutation graph (BPG).

Results:

KB(BPG) ⊂ K1,4-free interval graph.

KB(BPG) = (L(BPG))2 (the square of the line graph).

a characterization of the biclique graph of a particular subclass of
BPG, which lead to a polynomial time recognition algorithm.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 5 / 30



Preliminaries

Bipartite permutation graphs

Definition

A graph G is a permutation graph if there are two permutations, π1 and
π2 of V (G ) such that there is an edge {u, v} if and only if u and v are in
one order in π1 and in the reversed order in π2.
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Preliminaries

Bipartite permutation graphs

Definition

A graph G is BPG if it is bipartite and is a permutation graph.

BPG = proper bi-interval graphs (Hell and Huang, 2004).

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 7 / 30



Preliminaries

Bipartite permutation graphs

Definition

A graph G is BPG if it is bipartite and is a permutation graph.

BPG = proper bi-interval graphs (Hell and Huang, 2004).

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 7 / 30



Preliminaries

Ordering properties

Definition (adjacency property)

The order <G has the adjacency property if the vertices in NG (v) are
consecutive in <G for each v ∈ V (G ).
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Definition (enclosure property)

The order <G has the enclosure property when for all u, v ∈ V (G ), if
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Preliminaries

Ordering properties

Definition (strong ordering property)

The order <G of the vertices of a bipartite graph G = (A ∪ B,E ) has the
strong ordering property if u, v ∈ A, u <G v , w , x ∈ B where w <G x ,
and {u, x}, {v ,w} ∈ E , then {u,w}, {v , x} ∈ E .
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Preliminaries

Ordering properties

A BPG G has an ordering <G with these properties (Spinrad at al., 1987).

Definition

fG (u) = min<G
{v |{u, v} ∈ E} - first neighbour of u in G , and

lG (u) = max<G
{v |{u, v} ∈ E} - last neighbour of u in G .
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KB(BPG)

Bicliques of a bipartite permutation graph

For every biclique S of a BPG G ,

S ∩ A is a subset of consecutive vertices of A and

S ∩ B is a subset of consecutive vertices of B.

fA(S) and lA(S) be, respectively, first and last vertices of S in A, and

fB(S) and lB(S) be, respectively, first and last vertices of S in B.
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KB(BPG)

Bicliques of a bipartite permutation graph

Lemma (first and last)

S is a biclique of a BPG G if and only if

lG (fA(S)) = lB(S), fG (lA(S)) = fB(S),

lG (fB(S)) = lA(S), and fG (lB(S)) = fA(S).
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KB(BPG)

Bicliques of a bipartite permutation graph

Lemma (order)

S and S ′ are bicliques of a BPG G.

fA(S) <G fA(S ′) iff lB(S) <G lB(S ′).

lA(S) <G lA(S ′) iff fB(S) <G fB(S ′).
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KB(BPG)

Non intersecting bicliques

Corollary (non intersecting)

S and S ′ be two non intersecting bicliques of a BPG G. If S ∩ A is
completely before S ′ ∩ A then S ∩ B is completely before S ′ ∩ B.
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KB(BPG)

Asteroidal triple

Definition

An asteroidal triple (AT) in a graph G is an independent set of 3 vertices
such that there is a path for every two of them avoiding the
neighbourhood of the third.
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KB(BPG)

AT-free

Lemma (AT-free)

The biclique graph of BPG has no asteroidal triple (AT-free).
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KB(BPG)

Chordal

Lemma (chordal)

The biclique graph of BPG is chordal.
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KB(BPG)

K1,4-free

Lemma (K1,4-free)
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KB(BPG)

K1,4-free interval graph

Theorem (K1,4-free interval)

The biclique graph of BPG is a K1,4-free interval graph.
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KB(BPG) = (L(BPG))2

Simplification of a BPG

Definition

The set of extremal edges of G is the set T (G ) defines as:

{{u, v} ∈ E | (u = fG (v) and v = lG (u)) or (u = lG (v) and v = fG (u))}.
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KB(BPG) = (L(BPG))2

Simplification of G

Definition

The simplification of G is the graph S(G ) = (T (G ),E ′) such that:

E ′ = {{a, b} | a and b of G are “crossed” or has a vertex in common}

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 22 / 30



KB(BPG) = (L(BPG))2

Simplification of G

Definition

The simplification of G is the graph S(G ) = (T (G ),E ′) such that:

E ′ = {{a, b} | a and b of G are “crossed” or has a vertex in common}

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 22 / 30



KB(BPG) = (L(BPG))2

Simplification of G

bijection: bicliques of G ↔ .

S(G ) is a BPG (permutations are easily obtained).

for every BPG H there is a BPG G such that H ' S(G ).
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KB(BPG) = (L(BPG))2

Line graph and the square of a graph

Definition

L(H) is the intersection graph of its edges.

Definition

G 2 is the graph G plus edges between vertices of distance 2.
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KB(BPG) = (L(BPG))2

Square of the line graph of the simplification graph of G

Theorem

If G ∈ BPG then KB(G ) ' (L(S(G )))2.
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KB(BPG) = (L(BPG))2

Characterization of KB(BPG)

Theorem

KB(BPG) = (L(BPG))2.

∀G ∈ BPG, S(G ) ∈ BPG
⇒ KB(BPG) ⊆ (L(BPG))2.

∀H ∈ BPG, there is a G ∈ BPG such that H ' S(G )
⇒ KB(BPG) ⊇ (L(BPG))2.
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Characterization of a subclass

A subclass of BPG

Consider the graph G ∈ BPG such that S(G ) is acyclic.

Acyclic BPGs are caterpillars.

L(S(G )) has a sequence of cliques such that consecutive cliques has
one vertex in common.

The cliques of (L(S(G )))2 are the union of consecutive cliques of
L(S(G )).
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Characterization of a subclass

Linear proper interval graph

H is a proper interval graph.

Unique perfect elimination ordering of V (H): (v1, v2, . . . , vn).

There ordering of the cliques of H (C1,C2, . . . ,Ck) such that the first
vertex of Ci is before the first vertex of Cj iff i < j (Brandstädt, Le,
and Spinrad, 1999, Gilmore and Hoffman, 1964).

Definition

A linear proper interval graph is a proper interval graph with the cliques
(C1,C2, . . . ,Ck) in the above order and such that |Ci ∩ Ci+1| > 1, for
1 ≤ i ≤ k − 1, and |Ci ∩ Ci+2| = 1, for 1 ≤ i ≤ k − 2.
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Characterization of a subclass

Characterization of a subclass

Theorem

H ' KB(G ), for acyclic S(G ) iff H is a linear proper interval graph.

If S(G ) is acyclic, then (L(S(G )))2 is a linear proper interval graph.
If H is a linear proper interval graph there is a graph G ∈ BPG such
that H ' (L(S(G )))2.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 29 / 30



Characterization of a subclass

Characterization of a subclass

Theorem

H ' KB(G ), for acyclic S(G ) iff H is a linear proper interval graph.

If S(G ) is acyclic, then (L(S(G )))2 is a linear proper interval graph.

If H is a linear proper interval graph there is a graph G ∈ BPG such
that H ' (L(S(G )))2.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 29 / 30



Characterization of a subclass

Characterization of a subclass

Theorem

H ' KB(G ), for acyclic S(G ) iff H is a linear proper interval graph.

If S(G ) is acyclic, then (L(S(G )))2 is a linear proper interval graph.
If H is a linear proper interval graph there is a graph G ∈ BPG such
that H ' (L(S(G )))2.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 29 / 30



Characterization of a subclass

Characterization of a subclass

Theorem

H ' KB(G ), for acyclic S(G ) iff H is a linear proper interval graph.

If S(G ) is acyclic, then (L(S(G )))2 is a linear proper interval graph.
If H is a linear proper interval graph there is a graph G ∈ BPG such
that H ' (L(S(G )))2.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 29 / 30



Characterization of a subclass

Characterization of a subclass

Theorem

H ' KB(G ), for acyclic S(G ) iff H is a linear proper interval graph.

If S(G ) is acyclic, then (L(S(G )))2 is a linear proper interval graph.
If H is a linear proper interval graph there is a graph G ∈ BPG such
that H ' (L(S(G )))2.

Groshaus, Guedes, Puppo Biclique graph of BPG LAGOS’2017 29 / 30



Characterization of a subclass

Biclique graph of bipartite permutation graphs
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