Biclique graph of bipartite permutation graphs

Marina Groshaus^{1 2} André Guedes^{1 3} Juan Pablo Puppo⁴

²CONICET, Argentina

³Universidade Federal do Paraná, Brazil

⁴Universidad Tecnológica Nacional, Argentina

LAGOS'2017

¹Partially supported by CNPq, ANPCyT, UBACyT and CONICET $\exists b \in \exists b \in$

Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 1 / 30

Definition

A *biclique* of a graph G is a set B of vertices of G such that B induces a maximal complete bipartite graph.

イロト イポト イヨト イヨト

Definition

A *biclique* of a graph G is a set B of vertices of G such that B induces a maximal complete bipartite graph.

3

∃ ► < ∃ ►</p>

• • • • •

Definition

A *biclique* of a graph G is a set B of vertices of G such that B induces a maximal complete bipartite graph.

→ Ξ →

< 🗇 🕨

э

Definition

A *biclique* of a graph G is a set B of vertices of G such that B induces a maximal complete bipartite graph.

э

- ∢ ≣ →

Definition

A *biclique* of a graph G is a set B of vertices of G such that B induces a maximal complete bipartite graph.

→ Ξ →

э

31.5

Definition

The biclique graph KB(G) is the intersection graph of the bicliques of G.

<ロ> (四) (四) (三) (三) (三) (三)

Definition

The biclique graph KB(G) is the intersection graph of the bicliques of G.

-

э

• Introduced and characterized by Groshaus and Szwarcfiter (2010).

<ロ> (四) (四) (三) (三) (三) (三)

- Introduced and characterized by Groshaus and Szwarcfiter (2010).
- The characterization does not lead to a polynomial time recognition algorithm.

イロン 不得と 不足と 不足と 一足

- Introduced and characterized by Groshaus and Szwarcfiter (2010).
- The characterization does not lead to a polynomial time recognition algorithm.
- It remains open the time complexity of the problem of recognizing biclique graphs.

イロト イボト イヨト イヨト

We study the problem of deciding if a graph G is the biclique graph of a bipartite permutation graph (\mathcal{BPG}).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

We study the problem of deciding if a graph G is the biclique graph of a bipartite permutation graph (\mathcal{BPG}) .

Results:

• $KB(\mathcal{BPG}) \subset K_{1,4}$ -free interval graph.

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

We study the problem of deciding if a graph G is the biclique graph of a bipartite permutation graph (\mathcal{BPG}) .

Results:

- $KB(\mathcal{BPG}) \subset K_{1,4}$ -free interval graph.
- $KB(BPG) = (L(BPG))^2$ (the square of the line graph).

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

We study the problem of deciding if a graph G is the biclique graph of a bipartite permutation graph (\mathcal{BPG}) .

Results:

- $KB(\mathcal{BPG}) \subset K_{1,4}$ -free interval graph.
- $KB(BPG) = (L(BPG))^2$ (the square of the line graph).
- a characterization of the biclique graph of a particular subclass of \mathcal{BPG} , which lead to a polynomial time recognition algorithm.

Definition

A graph G is a permutation graph if there are two permutations, π_1 and π_2 of V(G) such that there is an edge $\{u, v\}$ if and only if u and v are in one order in π_1 and in the reversed order in π_2 .

イロト イポト イヨト イヨト 二日

Definition

A graph G is a permutation graph if there are two permutations, π_1 and π_2 of V(G) such that there is an edge $\{u, v\}$ if and only if u and v are in one order in π_1 and in the reversed order in π_2 .

Definition

A graph G is \mathcal{BPG} if it is bipartite and is a permutation graph.

Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 7 / 30

イロン 不得と 不足と 不足と 一足

Definition

A graph G is \mathcal{BPG} if it is bipartite and is a permutation graph.

$\mathcal{BPG} = \text{proper bi-interval graphs}$ (Hell and Huang, 2004).

Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 7 / 30

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

Definition (adjacency property)

The order $<_G$ has the **adjacency property** if the vertices in $N_G(v)$ are consecutive in $<_G$ for each $v \in V(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition (adjacency property)

The order $<_G$ has the **adjacency property** if the vertices in $N_G(v)$ are consecutive in $<_G$ for each $v \in V(G)$.

Definition (enclosure property)

The order $<_G$ has the **enclosure property** when for all $u, v \in V(G)$, if $N_G(u) \subseteq N_G(v)$ then the vertices in $N_G(v) \setminus N_G(u)$ are consecutive.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition (enclosure property)

The order $<_G$ has the **enclosure property** when for all $u, v \in V(G)$, if $N_G(u) \subseteq N_G(v)$ then the vertices in $N_G(v) \setminus N_G(u)$ are consecutive.

Definition (strong ordering property)

The order $<_G$ of the vertices of a bipartite graph $G = (A \cup B, E)$ has the **strong ordering property** if $u, v \in A$, $u <_G v$, $w, x \in B$ where $w <_G x$, and $\{u, x\}, \{v, w\} \in E$, then $\{u, w\}, \{v, x\} \in E$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition (strong ordering property)

The order $<_G$ of the vertices of a bipartite graph $G = (A \cup B, E)$ has the **strong ordering property** if $u, v \in A$, $u <_G v$, $w, x \in B$ where $w <_G x$, and $\{u, x\}, \{v, w\} \in E$, then $\{u, w\}, \{v, x\} \in E$.

Definition (strong ordering property)

The order $<_G$ of the vertices of a bipartite graph $G = (A \cup B, E)$ has the **strong ordering property** if $u, v \in A$, $u <_G v$, $w, x \in B$ where $w <_G x$, and $\{u, x\}, \{v, w\} \in E$, then $\{u, w\}, \{v, x\} \in E$.

A \mathcal{BPG} G has an ordering $<_{G}$ with these properties (Spinrad at al., 1987).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

A \mathcal{BPG} G has an ordering $<_{G}$ with these properties (Spinrad at al., 1987).

Definition

• $f_G(u) = \min_{\leq G} \{ v | \{u, v\} \in E \}$ - first neighbour of u in G, and • $l_G(u) = \max_{\leq G} \{ v | \{u, v\} \in E \}$ - last neighbour of u in G.

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

For every biclique S of a \mathcal{BPG} G,

• $S \cap A$ is a subset of consecutive vertices of A and

For every biclique S of a \mathcal{BPG} G,

- $S \cap A$ is a subset of consecutive vertices of A and
- $S \cap B$ is a subset of consecutive vertices of B.

(本間) (本語) (本語) (二語)

For every biclique S of a \mathcal{BPG} G,

- $S \cap A$ is a subset of consecutive vertices of A and
- $S \cap B$ is a subset of consecutive vertices of B.
- $f_A(S)$ and $I_A(S)$ be, respectively, first and last vertices of S in A, and

(本間) (本語) (本語) (語)

For every biclique S of a \mathcal{BPG} G,

- $S \cap A$ is a subset of consecutive vertices of A and
- $S \cap B$ is a subset of consecutive vertices of B.
- $f_A(S)$ and $I_A(S)$ be, respectively, first and last vertices of S in A, and
- $f_B(S)$ and $I_B(S)$ be, respectively, first and last vertices of S in B.

A (1) A (2) A (2) A (2) A (2)

KB(BPG)

Bicliques of a bipartite permutation graph

Lemma (first and last)

S is a biclique of a \mathcal{BPG} G if and only if

- $I_G(f_A(S)) = I_B(S), f_G(I_A(S)) = f_B(S),$
- $I_G(f_B(S)) = I_A(S)$, and $f_G(I_B(S)) = f_A(S)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Lemma (first and last)

S is a biclique of a BPG G if and only if

- $I_G(f_A(S)) = I_B(S), f_G(I_A(S)) = f_B(S),$
- $I_G(f_B(S)) = I_A(S)$, and $f_G(I_B(S)) = f_A(S)$.

2

Lemma (first and last)

S is a biclique of a BPG G if and only if

- $I_G(f_A(S)) = I_B(S), f_G(I_A(S)) = f_B(S),$
- $I_G(f_B(S)) = I_A(S)$, and $f_G(I_B(S)) = f_A(S)$.

2

KB(BPG)

Bicliques of a bipartite permutation graph

Lemma (first and last)

S is a biclique of a \mathcal{BPG} G if and only if

- $I_G(f_A(S)) = I_B(S), f_G(I_A(S)) = f_B(S),$
- $I_G(f_B(S)) = I_A(S)$, and $f_G(I_B(S)) = f_A(S)$.

Bicliques of a bipartite permutation graph

Lemma (order)

- S and S' are bicliques of a \mathcal{BPG} G.
 - $f_A(S) <_G f_A(S')$ iff $I_B(S) <_G I_B(S')$.
 - $I_A(S) <_G I_A(S')$ iff $f_B(S) <_G f_B(S')$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bicliques of a bipartite permutation graph

Lemma (order)

S and S' are bicliques of a \mathcal{BPG} G.

- $f_A(S) <_G f_A(S')$ iff $I_B(S) <_G I_B(S')$.
- $I_A(S) <_G I_A(S')$ iff $f_B(S) <_G f_B(S')$.

(本間) ((日) (日) (日)

Non intersecting bicliques

Corollary (non intersecting)

S and *S'* be two non intersecting bicliques of a \mathcal{BPG} *G*. If $S \cap A$ is completely before $S' \cap A$ then $S \cap B$ is completely before $S' \cap B$.

イロン 不得と 不足と 不足と 一足

Non intersecting bicliques

Corollary (non intersecting)

S and *S'* be two non intersecting bicliques of a \mathcal{BPG} *G*. If $S \cap A$ is completely before $S' \cap A$ then $S \cap B$ is completely before $S' \cap B$.

3 × 4 3 ×

Asteroidal triple

Definition

An asteroidal triple (AT) in a graph G is an independent set of 3 vertices such that there is a path for every two of them avoiding the neighbourhood of the third.

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

Asteroidal triple

Definition

An asteroidal triple (AT) in a graph G is an independent set of 3 vertices such that there is a path for every two of them avoiding the neighbourhood of the third.

Lemma (AT-free)

The biclique graph of \mathcal{BPG} has no asteroidal triple (AT-free).

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

Lemma (AT-free)

The biclique graph of \mathcal{BPG} has no asteroidal triple (AT-free).

Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 17 / 30

Lemma (AT-free)

The biclique graph of \mathcal{BPG} has no asteroidal triple (AT-free).

2

イロト イポト イヨト イヨト

Lemma (AT-free)

The biclique graph of \mathcal{BPG} has no asteroidal triple (AT-free).

2

イロト イポト イヨト イヨト

Lemma (AT-free)

The biclique graph of \mathcal{BPG} has no asteroidal triple (AT-free).

2

イロト イポト イヨト イヨト

Chordal

Lemma (chordal)

The biclique graph of \mathcal{BPG} is chordal.

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

Chordal

Lemma (chordal)

The biclique graph of \mathcal{BPG} is chordal.

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

Lemma $(K_{1,4}\text{-}free)$

The biclique graph of \mathcal{BPG} is $K_{1,4}$ -free.

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

Lemma $(K_{1,4}\text{-}free)$

The biclique graph of \mathcal{BPG} is $K_{1,4}$ -free.

Biclique graph of \mathcal{BPG}	LAGOS'2017	19 / 30

イロン イヨン イヨン

Lemma $(K_{1,4}\text{-}free)$

The biclique graph of \mathcal{BPG} is $K_{1,4}$ -free.

Biclique graph of \mathcal{BPG}	LAGOS'2017	19 / 30

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma $(K_{1,4}\text{-}free)$

The biclique graph of \mathcal{BPG} is $K_{1,4}$ -free.

Biclique graph of \mathcal{BPG}	LAGOS'2017	19 / 30

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma $(K_{1,4}\text{-}free)$

The biclique graph of \mathcal{BPG} is $K_{1,4}$ -free.

Biclique graph of \mathcal{BPG}	LAGOS'2017	19 / 30

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$K_{1,4}$ -free interval graph

Theorem $(K_{1,4}$ -free interval)

The biclique graph of \mathcal{BPG} is a $K_{1,4}$ -free interval graph.

Groshaus, Guedes, Puppo

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Simplification of a \mathcal{BPG}

Definition

The set of extremal edges of G is the set T(G) defines as:

 $\{\{u,v\} \in E \mid (u = f_G(v) \text{ and } v = I_G(u)) \text{ or } (u = I_G(v) \text{ and } v = f_G(u))\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

Simplification of a \mathcal{BPG}

Definition

The set of extremal edges of G is the set T(G) defines as:

$$\{\{u,v\} \in E \mid (u = f_G(v) \text{ and } v = l_G(u)) \text{ or } (u = l_G(v) \text{ and } v = f_G(u))\}.$$

Simplification of \boldsymbol{G}

Definition

The simplification of G is the graph S(G) = (T(G), E') such that:

 $E' = \{\{a, b\} \mid a \text{ and } b \text{ of } G \text{ are "crossed" or has a vertex in common}\}$

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

Simplification of \boldsymbol{G}

Definition

The simplification of G is the graph S(G) = (T(G), E') such that:

 $E' = \{\{a, b\} \mid a \text{ and } b \text{ of } G \text{ are "crossed" or has a vertex in common}\}$

Simplification of G

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

Simplification of G

• bijection: bicliques of $G \leftrightarrow$ edge "crossings" of T(G).

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

Simplification of G

• bijection: bicliques of $G \leftrightarrow$ edges of S(G).

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

```
Simplification of G
```

- bijection: bicliques of $G \leftrightarrow$ edges of S(G).
- S(G) is a \mathcal{BPG} (permutations are easily obtained).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

```
Simplification of G
```

- bijection: bicliques of $G \leftrightarrow$ edges of S(G).
- S(G) is a \mathcal{BPG} (permutations are easily obtained).
- for every \mathcal{BPG} H there is a \mathcal{BPG} G such that $H \simeq S(G)$.

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

Line graph and the square of a graph

Definition

L(H) is the intersection graph of its edges.

Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 24 / 30

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Line graph and the square of a graph

Definition

L(H) is the intersection graph of its edges.

Definition

 G^2 is the graph G plus edges between vertices of distance 2.

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで

Theorem

If $G \in \mathcal{BPG}$ then $KB(G) \simeq (L(S(G)))^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem

```
If G \in \mathcal{BPG} then KB(G) \simeq (L(S(G)))^2.
```


Theorem

```
If G \in \mathcal{BPG} then KB(G) \simeq (L(S(G)))^2.
```


Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 25 / 30

Theorem

```
If G \in \mathcal{BPG} then KB(G) \simeq (L(S(G)))^2.
```


< 🗇 🕨

 $KB(\mathcal{BPG}) = (L(\mathcal{BPG}))^2$

Characterization of KB(BPG)

Theorem

 $KB(\mathcal{BPG}) = (L(\mathcal{BPG}))^2.$

Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 26 / 30

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

Characterization of KB(BPG)

Theorem

 $KB(\mathcal{BPG}) = (L(\mathcal{BPG}))^2.$

• $\forall G \in \mathcal{BPG}, S(G) \in \mathcal{BPG}$ $\Rightarrow KB(\mathcal{BPG}) \subseteq (L(\mathcal{BPG}))^2.$

◆□ > ◆□ > ◆三 > ◆三 > 三 ● のへで
Characterization of KB(BPG)

Theorem

 $KB(\mathcal{BPG}) = (L(\mathcal{BPG}))^2.$

- $\forall G \in \mathcal{BPG}, S(G) \in \mathcal{BPG}$ $\Rightarrow KB(\mathcal{BPG}) \subseteq (L(\mathcal{BPG}))^2.$
- $\forall H \in \mathcal{BPG}$, there is a $G \in \mathcal{BPG}$ such that $H \simeq S(G)$ $\Rightarrow KB(\mathcal{BPG}) \supseteq (L(\mathcal{BPG}))^2$.

• Consider the graph $G \in \mathcal{BPG}$ such that S(G) is acyclic.

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

- Consider the graph $G \in \mathcal{BPG}$ such that S(G) is acyclic.
- Acyclic \mathcal{BPG} s are caterpillars.

イロン 不得と 不足と 不足と 一足

- Consider the graph $G \in \mathcal{BPG}$ such that S(G) is acyclic.
- Acyclic \mathcal{BPG} s are caterpillars.
- L(S(G)) has a sequence of cliques such that consecutive cliques has one vertex in common.

イロン 不得と 不足と 不足と 一足

- Consider the graph $G \in \mathcal{BPG}$ such that S(G) is acyclic.
- Acyclic \mathcal{BPG} s are caterpillars.
- L(S(G)) has a sequence of cliques such that consecutive cliques has one vertex in common.

イロン イボン イヨン トヨ

- Consider the graph $G \in \mathcal{BPG}$ such that S(G) is acyclic.
- Acyclic \mathcal{BPG} s are caterpillars.
- L(S(G)) has a sequence of cliques such that consecutive cliques has one vertex in common.
- The cliques of $(L(S(G)))^2$ are the union of consecutive cliques of L(S(G)).

- Consider the graph $G \in \mathcal{BPG}$ such that S(G) is acyclic.
- Acyclic \mathcal{BPG} s are caterpillars.
- L(S(G)) has a sequence of cliques such that consecutive cliques has one vertex in common.
- The cliques of $(L(S(G)))^2$ are the union of consecutive cliques of L(S(G)).

• *H* is a proper interval graph.

<ロ> (四) (四) (三) (三) (三)

- *H* is a proper interval graph.
- Unique perfect elimination ordering of V(H): $(v_1, v_2, ..., v_n)$.

- *H* is a proper interval graph.
- Unique perfect elimination ordering of V(H): $(v_1, v_2, ..., v_n)$.
- There ordering of the cliques of $H(C_1, C_2, ..., C_k)$ such that the first vertex of C_i is before the first vertex of C_j iff i < j (Brandstädt, Le, and Spinrad, 1999, Gilmore and Hoffman, 1964).

◆□ > ◆□ > ◆三 > ◆三 > 三 ● の Q @

- *H* is a proper interval graph.
- Unique perfect elimination ordering of V(H): $(v_1, v_2, ..., v_n)$.
- There ordering of the cliques of $H(C_1, C_2, ..., C_k)$ such that the first vertex of C_i is before the first vertex of C_j iff i < j (Brandstädt, Le, and Spinrad, 1999, Gilmore and Hoffman, 1964).

Definition

A linear proper interval graph is a proper interval graph with the cliques (C_1, C_2, \ldots, C_k) in the above order and such that $|C_i \cap C_{i+1}| > 1$, for $1 \le i \le k-1$, and $|C_i \cap C_{i+2}| = 1$, for $1 \le i \le k-2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Theorem

 $H \simeq KB(G)$, for acyclic S(G) iff H is a linear proper interval graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem

- $H \simeq KB(G)$, for acyclic S(G) iff H is a linear proper interval graph.
 - If S(G) is acyclic, then $(L(S(G)))^2$ is a linear proper interval graph.

Theorem

 $H \simeq KB(G)$, for acyclic S(G) iff H is a linear proper interval graph.

- If S(G) is acyclic, then $(L(S(G)))^2$ is a linear proper interval graph.
- If H is a linear proper interval graph there is a graph G ∈ BPG such that H ≃ (L(S(G)))².

Theorem

 $H \simeq KB(G)$, for acyclic S(G) iff H is a linear proper interval graph.

- If S(G) is acyclic, then $(L(S(G)))^2$ is a linear proper interval graph.
- If H is a linear proper interval graph there is a graph G ∈ BPG such that H ≃ (L(S(G)))².

э

イロト イポト イヨト イヨト

Theorem

 $H \simeq KB(G)$, for acyclic S(G) iff H is a linear proper interval graph.

- If S(G) is acyclic, then $(L(S(G)))^2$ is a linear proper interval graph.
- If H is a linear proper interval graph there is a graph $G \in \mathcal{BPG}$ such that $H \simeq (L(S(G)))^2$.

3

Biclique graph of bipartite permutation graphs

Marina Groshaus^{1 2} André Guedes^{1 3} Juan Pablo Puppo⁴

²CONICET, Argentina

³Universidade Federal do Paraná, Brazil

⁴Universidad Tecnológica Nacional, Argentina

LAGOS'2017

¹Partially supported by CNPq, ANPCyT, UBACyT and CONICET $\exists b \in \exists b \in$

Groshaus, Guedes, Puppo

Biclique graph of \mathcal{BPG}

LAGOS'2017 30 / 30