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Bicliques

Definition

A biclique of a graph G is a set B of vertices of G such that B induces a
maximal complete bipartite graph.
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Biclique Graph

Definition
The biclique graph KB(G) is the intersection graph of the bicliques of G.
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Biclique Graph

e Introduced and characterized by Groshaus and Szwarcfiter (2010).
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Biclique Graph

e Introduced and characterized by Groshaus and Szwarcfiter (2010).

@ The characterization does not lead to a polynomial time recognition
algorithm.

@ It remains open the time complexity of the problem of recognizing
biclique graphs.
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Our work

We study the problem of deciding if a graph G is the biclique graph of a
bipartite permutation graph (BPG).
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Our work

We study the problem of deciding if a graph G is the biclique graph of a
bipartite permutation graph (BPG).

Results:
e KB(BPG) C Kis-free interval graph.
o KB(BPG) = (L(BPG))? (the square of the line graph).

@ a characterization of the biclique graph of a particular subclass of
BPG, which lead to a polynomial time recognition algorithm.
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Bipartite permutation graphs

Definition

A graph G is a permutation graph if there are two permutations, m; and
mp of V(G) such that there is an edge {u, v} if and only if v and v are in
one order in 71 and in the reversed order in 5.
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Bipartite permutation graphs
Definition
A graph G is a permutation graph if there are two permutations, m; and

mp of V(G) such that there is an edge {u, v} if and only if v and v are in
one order in 71 and in the reversed order in 5.
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Bipartite permutation graphs

Definition
A graph G is BPG if it is bipartite and is a permutation graph.
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Bipartite permutation graphs

Definition
A graph G is BPG if it is bipartite and is a permutation graph.

BPG = proper bi-interval graphs (Hell and Huang, 2004).
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Ordering properties

Definition (adjacency property)

The order <¢ has the adjacency property if the vertices in Ng(v) are
consecutive in <¢ for each v € V(G).
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Definition (adjacency property)

The order <¢ has the adjacency property if the vertices in Ng(v) are
consecutive in <¢ for each v € V(G).
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Ordering properties

Definition (enclosure property)

The order <¢ has the enclosure property when for all u,v € V(G), if
Ng(u) € Ng(v) then the vertices in Ng(v) \ Ng(u) are consecutive.
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Ordering properties

Definition (strong ordering property)

The order <¢ of the vertices of a bipartite graph G = (AU B, E) has the
strong ordering property if u,v € A, u <¢g v, w,x € B where w <¢ x,
and {u,x},{v,w} € E, then {u,w},{v,x} € E.
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Ordering properties

A BPG G has an ordering <¢ with these properties (Spinrad at al., 1987).
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Ordering properties

A BPG G has an ordering <¢ with these properties (Spinrad at al., 1987).

Definition
o fo(u) = minc {v|{u,v} € E} - first neighbour of v in G, and
o Ig(u) = max< {v|{u,v} € E} - last neighbour of u in G.

Biclique graph of BPG LAGOS’2017 11 / 30



KB(BPG)

Bicliques of a bipartite permutation graph

For every biclique S of a BPG G,
@ SN A s a subset of consecutive vertices of A and
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KB(BPG)

Bicliques of a bipartite permutation graph

For every biclique S of a BPG G,
@ SN A s a subset of consecutive vertices of A and

@ SN B is a subset of consecutive vertices of B.

fa(S) and [4(S) be, respectively, first and last vertices of S in A, and

fs(S) and Ig(S) be, respectively, first and last vertices of S in B.
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KB(BPG)

Bicliques of a bipartite permutation graph

Lemma (first and last)
S is a biclique of a BPG G if and only if
o Ig(fa(S)) = I8(S), fc(la(5)) = f8(5),
o Ig(f8(S)) = 1a(S), and fs(Ig(S)) = fa(S).
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KB(BPG)

Bicliques of a bipartite permutation graph

Lemma (order)

S and S’ are bicliques of a BPG G.
o fa(S) <¢ fa(S') iff Ig(S) <¢ 18(S).
o Ia(S) <¢ Ia(S) iff f5(S) <¢ f&(S').
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Bicliques of a bipartite permutation graph

Lemma (order)

S and S’ are bicliques of a BPG G.
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KB(BPG)

Non intersecting bicliques

Corollary (non intersecting)
S and S’ be two non intersecting bicliques of a BPG G. IFSNA is
completely before S’ N A then S N B is completely before S’ N B.
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Asteroidal triple

Definition

An asteroidal triple (AT) in a graph G is an independent set of 3 vertices
such that there is a path for every two of them avoiding the
neighbourhood of the third.
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AT-free

Lemma (AT-free)
The biclique graph of BPG has no asteroidal triple (AT-free).
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Chordal

Lemma (chordal)
The biclique graph of BPG is chordal.
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Chordal

Lemma (chordal)
The biclique graph of BPG is chordal.

B. B.
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K1 4-free

Lemma (Kia-free)
The biclique graph of BPG is K 4-free.
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K1 4-free

Lemma (Kia-free)
The biclique graph of BPG is K 4-free.

A A
A 2 3
B.
B, B, £l
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KB(BPG)

K1 4-free interval graph

Theorem (K1 a-free interval)

The biclique graph of BPG is a Ky 4-free interval graph.
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KB(BPG) = (L(BPG))?

Simplification of a BPG

Definition
The set of extremal edges of G is the set T(G) defines as:

{{u,v} € E|(u="fg(v)and v=Is(v))or (u=lg(v)and v=fs(u))}.
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KB(BPG) = (L(BPG))?

Simplification of G

Definition
The simplification of G is the graph S(G) = (T(G), E’) such that:

E' = {{a,b} | aand b of G are “crossed” or has a vertex in common}
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KB(BPG) = (L(BPG))?

Simplification of G
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KB(BPG) = (L(BPG))?

Simplification of G

@ bijection: bicliques of G <> edge “crossings” of T(G).
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@ bijection: bicliques of G <> edges of S(G).

e 5(G) is a BPG (permutations are easily obtained).
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KB(BPG) = (L(BPG))?

Simplification of G

@ bijection: bicliques of G <> edges of S(G).
e 5(G) is a BPG (permutations are easily obtained).
o for every BPG H there is a BPG G such that H ~ 5(G).
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KB(BPG) = (L(BPG))?

Line graph and the square of a graph

Definition
L(H) is the intersection graph of its edges.
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KB(BPG) = (L(BPG))?

Line graph and the square of a graph

Definition
L(H) is the intersection graph of its edges.

Definition

G? is the graph G plus edges between vertices of distance 2.
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KB(BPG) = (L(BPG))?

Square of the line graph of the simplification graph of G

Theorem

If G € BPG then KB(G) ~ (L(S(G)))?.
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Square of the line graph of the simplification graph of G

Theorem

If G € BPG then KB(G) ~ (L(S(G)))?.

1 2 3 4 16-46 46-48
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KB(BPG) = (L(BPG))?

Characterization of KB(BPG)

Theorem

KB(BPG) = (L(BPG))>.
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Characterization of KB(BPG)

Theorem

KB(BPG) = (L(BPG))>.

e VG € BPG, S(G) € BPG
= KB(BPG) C (L(BPG))>.
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KB(BPG) = (L(BPG))?

Characterization of KB(BPG)

Theorem

KB(BPG) = (L(BPG))>.

e VG € BPG, S(G) € BPG
= KB(BPG) C (L(BPG))>.

e VH € BPG, there is a G € BPG such that H ~ 5(G)
= KB(BPG) 2 (L(BPG))>.
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Characterization of a subclass

A subclass of BPG

o Consider the graph G € BPG such that S(G) is acyclic.
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Linear proper interval graph

e H is a proper interval graph.
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Linear proper interval graph

e H is a proper interval graph.
e Unique perfect elimination ordering of V(H): (vi,va, ..., Vy).

@ There ordering of the cliques of H (Cy, Gy, . .., C) such that the first
vertex of C; is before the first vertex of C; iff i < j (Brandstadt, Le,
and Spinrad, 1999, Gilmore and Hoffman, 1964).
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Linear proper interval graph

e H is a proper interval graph.
e Unique perfect elimination ordering of V(H): (vi,va, ..., Vy).
@ There ordering of the cliques of H (Cy, Gy, . .., C) such that the first

vertex of C; is before the first vertex of C; iff i < j (Brandstadt, Le,
and Spinrad, 1999, Gilmore and Hoffman, 1964).

Definition

A linear proper interval graph is a proper interval graph with the cliques
(Ci, Gy, ..., Ck) in the above order and such that |C; N Ci41] > 1, for
1<i<k-1,and |GNCyal=1forl1 <i< k-2
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Characterization of a subclass

Theorem

H ~ KB(G), for acyclic S(G) iff H is a linear proper interval graph.
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