On graphs with a single large Laplacian eigenvalue

E. Allem³ A. Cafure^{1,5} E. Dratman ^{1,4} L. Grippo ⁴ M. Safe³ V. Trevisan³

 ¹Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
 ²Departamento de Matemática, Universidad Federal do Rio Grande do Sul, Brasil
 ³Departamento de Matemática, Universidad Nacional del Sur, Argentina
 ⁴Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina
 ⁵Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, Argentina

LAGOS 2017, Marseille, France, September 14th

Laplacian Matrix

Given a simple graph G on n vertices, let A = A(G) be its adjacency matrix, where rows and columns are indexed by V(G)and $a_{uv} = 1$ if u is adjacent to v and $a_{uv} = 0$ otherwise. If D = D(G) is the diagonal matrix with vertex degrees on the diagonal, the matrix L(G) = D - A is called the Laplacian Matrix.

Example $G = (P_3 + K_1) \lor K_1$

• The matrix L(G) is positive semidefinite.

- The matrix L(G) is positive semidefinite.
- It has 0 as an eigenvalue associated to the eigenvector 1.

- ► The matrix *L*(*G*) is positive semidefinite.
- It has 0 as an eigenvalue associated to the eigenvector 1.
- Let $S(G) = {\mu_1, \ldots, \mu_n}$ be the spectrum of L(G), where the eigenvalues are arranged in nonincreasing order, then $\mu_n = 0$ and $S(G) \subseteq [0, n]$.

- ► The matrix *L*(*G*) is positive semidefinite.
- It has 0 as an eigenvalue associated to the eigenvector 1.
- Let S(G) = {μ₁,...,μ_n} be the spectrum of L(G), where the eigenvalues are arranged in nonincreasing order, then μ_n = 0 and S(G) ⊆ [0, n].
- The largest Laplacian eigenvalue μ_1 is greater than or equal to $\overline{d}(G) = \frac{2m}{n}$, where m is the number of edges of G.

- ► The matrix *L*(*G*) is positive semidefinite.
- It has 0 as an eigenvalue associated to the eigenvector 1.
- Let S(G) = {μ₁,...,μ_n} be the spectrum of L(G), where the eigenvalues are arranged in nonincreasing order, then μ_n = 0 and S(G) ⊆ [0, n].
- The largest Laplacian eigenvalue μ_1 is greater than or equal to $\overline{d}(G) = \frac{2m}{n}$, where m is the number of edges of G.
- ► The parameter σ(G) counts the number of Laplacian eigenvalues of G greater than or equal to d
 (G) (introduced by Das, Mojallal and Trevisan, 2016).

- ► The matrix *L*(*G*) is positive semidefinite.
- It has 0 as an eigenvalue associated to the eigenvector 1.
- Let S(G) = {μ₁,...,μ_n} be the spectrum of L(G), where the eigenvalues are arranged in nonincreasing order, then μ_n = 0 and S(G) ⊆ [0, n].
- The largest Laplacian eigenvalue μ_1 is greater than or equal to $\overline{d}(G) = \frac{2m}{n}$, where m is the number of edges of G.
- ► The parameter σ(G) counts the number of Laplacian eigenvalues of G greater than or equal to d
 (G) (introduced by Das, Mojallal and Trevisan, 2016).
- ► $1 \le \sigma(G) \le n$, for every graph G. If G has at least one edge, then $\sigma(G) \le n 1$.

Motivation

One of the motivations to study $\sigma(G)$ is the Laplacian energy (introduced by Gutman and Zhou, 2006)

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|.$$

Motivation

One of the motivations to study $\sigma(G)$ is the Laplacian energy (introduced by Gutman and Zhou, 2006)

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|.$$

It is easy to see that

$$LE(G) = 2\mathcal{S}_{\sigma} - \frac{4m\sigma}{n},$$

where $S_{\sigma} = \sum_{i=1}^{\sigma} \mu_i(G)$.

Theorem (Das, Mojallal and Trevisan, 2016) Let G be a graph on n vertices. Then

$$n-1 \le \sigma(G) + \sigma(\overline{G}) \le 2n-1.$$

Moreover the right equality holds if and only if $G \cong K_n$.

Theorem (Das, Mojallal and Trevisan, 2016) Let G be a graph on n vertices. Then

$$n-1 \le \sigma(G) + \sigma(\overline{G}) \le 2n-1.$$

Moreover the right equality holds if and only if $G \cong K_n$.

Open problem (Das, Mojallal and Trevisan, 2016) Characterize all graphs G for which $\sigma(G) + \sigma(\overline{G}) = n - 1$.

Theorem (Das, Mojallal and Trevisan, 2016) Let G be a graph on n vertices. Then

$$n-1 \le \sigma(G) + \sigma(\overline{G}) \le 2n-1.$$

Moreover the right equality holds if and only if $G \cong K_n$.

Open problem (Das, Mojallal and Trevisan, 2016) Characterize all graphs G for which $\sigma(G) + \sigma(\overline{G}) = n - 1$. Example: Every graph $G \cong K_t + (n - t)K_1$ satisfies $\sigma(G) + \sigma(\overline{G}) = n - 1$ ($2 \le t \le n - 1$).

Proposition (Das, Mojallal and Gutman, 2015)

If G is a graph on n vertices, then the following conditions hold:

1.
$$\sigma(G) = n$$
 iff $G \cong nK_1$.
2. $\sigma(G) = n - 1$ iff $G \cong K_{\underbrace{t, \dots, t}_k}$ with $k > 1$ and $n = kt$.

Proposition (Das, Mojallal and Gutman, 2015)

If ${\boldsymbol{G}}$ is a graph on n vertices, then the following conditions hold:

1.
$$\sigma(G) = n$$
 iff $G \cong nK_1$.
2. $\sigma(G) = n - 1$ iff $G \cong K_{\underbrace{t, \dots, t}_k}$ with $k > 1$ and $n = kt$.

Open problem (Das, Mojallal and Trevisan, 2016) Characterize all graphs G for which $\sigma(G) = 1$.

Proposition (Das, Mojallal and Gutman, 2015)

If G is a graph on n vertices, then the following conditions hold:

1.
$$\sigma(G) = n$$
 iff $G \cong nK_1$.
2. $\sigma(G) = n - 1$ iff $G \cong K_{\underbrace{t, \dots, t}_k}$ with $k > 1$ and $n = kt$.

Open problem (Das, Mojallal and Trevisan, 2016) Characterize all graphs G for which $\sigma(G) = 1$. Example: $\sigma(K_{1,n-1}) = 1$, because the eigenvalues of $K_{1,n-1}$ are n, 1 with multiplicity n-2 and 0 and $\overline{d}(K_{1,n-1}) = 2\left(1-\frac{1}{n}\right)$. Our conjecture and the Laplacian spectrum of $G_1 + G_2$ and $G_1 \vee G_2$

Conjecture 1 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a graph. Then $\sigma(G) = 1$ if and only if G is isomorphic to K_1 , $K_2 + sK_1$ for some $s \ge 0$, or $K_{1,r} + sK_1$ for some $r \ge 2$ and $0 \le s < r - 1$.

Our conjecture and the Laplacian spectrum of $G_1 + G_2$ and $G_1 \vee G_2$

Conjecture 1 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a graph. Then $\sigma(G) = 1$ if and only if G is isomorphic to K_1 , $K_2 + sK_1$ for some $s \ge 0$, or $K_{1,r} + sK_1$ for some $r \ge 2$ and $0 \le s < r - 1$.

Theorem (Folklore)

Let G_1 and G_2 be two graphs with Laplacian spectrums $\mathcal{S}(G_1) = \{\mu_1, \dots, \mu_{n_1-1}, 0\}$ and $\mathcal{S}(G_2) = \{\lambda_1, \dots, \lambda_{n_2-1}, 0\}$, respectively. Then

1.
$$\mathcal{S}(G_1+G_2) = \mathcal{S}(G_1) \cup \mathcal{S}(G_2)$$
,

2. the Laplacian eigenvalues of $G_1 \vee G_2$ are $n_1 + n_2$; $n_2 + \mu_i$, for $1 \le i \le n_1 - 1$; $n_1 + \lambda_i$, for $1 \le i \le n_2 - 1$ and 0.

Previous results

Lemma (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

If $G = G_1 \vee \cdots \vee G_k$, with $k \ge 1$, is a graph on n vertices, then n is a Laplacian eigenvalue of G with multiplicity at least k - 1.

Previous results

Lemma (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

If $G = G_1 \vee \cdots \vee G_k$, with $k \ge 1$, is a graph on n vertices, then n is a Laplacian eigenvalue of G with multiplicity at least k - 1.

An anticomponent of a graph G is the subgraph of G induced by the vertex set of a connected component of \overline{G} .

Previous results

Lemma (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

If $G = G_1 \vee \cdots \vee G_k$, with $k \ge 1$, is a graph on n vertices, then n is a Laplacian eigenvalue of G with multiplicity at least k - 1.

An anticomponent of a graph G is the subgraph of G induced by the vertex set of a connected component of \overline{G} .

Corollary (Allem, Cafure, Dratman, **G**., Safe and Trevisan, 2017+) If G has k anticomponents, then $k \le \sigma(G) + 1$.

The graph $G = 4K_2 \vee \overbrace{K_1 \vee \cdots \vee K_1}^{s}$ has average degree $s + 7 - \frac{48}{s+8}$ and s + 1 anticomponents. Its eigenvalues are s + 8, s + 2, s, and 0 with multiplicities s, 4, 3, and 1, respectively. Therefore, $\sigma(G) = s$.

The graph $G = 4K_2 \vee \overbrace{K_1 \vee \cdots \vee K_1}^{48}$ has average degree $s + 7 - \frac{48}{s+8}$ and s + 1 anticomponents. Its eigenvalues are s + 8, s + 2, s, and 0 with multiplicities s, 4, 3, and 1, respectively. Therefore, $\sigma(G) = s$. We use $\ell(G)$ to denote the number of nonempty anticomponents

of a graph G.

The graph $G = 4K_2 \vee \overbrace{K_1 \vee \cdots \vee K_1}^{\text{The graph}}$ has average degree $s + 7 - \frac{48}{s+8}$ and s + 1 anticomponents. Its eigenvalues are s + 8, s + 2, s, and 0 with multiplicities s, 4, 3, and 1, respectively. Therefore, $\sigma(G) = s$.

We use $\ell(G)$ to denote the number of nonempty anticomponents of a graph G.

Theorem (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

Let G be a graph having $k = \sigma(G) + 1$ anticomponents. Then $\ell(G) \leq \sigma(G)$. Moreover, if $\sigma(G) = \ell(G)$, then the remaining anticomponent of G is empty but nontrivial.

The graph $G = 4K_2 \vee \overbrace{K_1 \vee \cdots \vee K_1}^{\text{The graph}}$ has average degree $s + 7 - \frac{48}{s+8}$ and s + 1 anticomponents. Its eigenvalues are s + 8, s + 2, s, and 0 with multiplicities s, 4, 3, and 1, respectively. Therefore, $\sigma(G) = s$.

We use $\ell(G)$ to denote the number of nonempty anticomponents of a graph G.

Theorem (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

Let G be a graph having $k = \sigma(G) + 1$ anticomponents. Then $\ell(G) \leq \sigma(G)$. Moreover, if $\sigma(G) = \ell(G)$, then the remaining anticomponent of G is empty but nontrivial.

Corollary (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

If G is a graph with $\sigma(G) = 1$ and \overline{G} is disconnected, then G is a complete bipartite graph.

Theorem (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

Let G be a graph on n vertices such that \overline{G} is disconnected. Then $\sigma(G) = 1$ if and only if $G = K_{1,n-1}$.

Proof sketch: \Leftarrow If $G \cong K_{1,n-1}$, it can be easily shown that $\sigma(G) = 1$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

Let G be a graph on n vertices such that \overline{G} is disconnected. Then $\sigma(G) = 1$ if and only if $G = K_{1,n-1}$.

Proof sketch: \Leftarrow If $G \cong K_{1,n-1}$, it can be easily shown that $\sigma(G) = 1$. \Rightarrow Assume that $\sigma(G) = 1$. Hence $G \cong K_{r,s}$ (with $s \ge r$) and

 $\overline{d}(G) = \frac{2sr}{n}.$

Theorem (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

Let G be a graph on n vertices such that \overline{G} is disconnected. Then $\sigma(G) = 1$ if and only if $G = K_{1,n-1}$.

Proof sketch: \leftarrow If $G \cong K_{1,n-1}$, it can be easily shown that $\sigma(G) = 1$.

 \Rightarrow Assume that $\sigma(G) = 1$. Hence $G \cong K_{r,s}$ (with $s \ge r$) and $\overline{d}(G) = \frac{2sr}{n}$. The Laplacian eigenvalues of G are n, s, r and 0, each with multiplicity 1, r - 1, s - 1 and 1, respectively.

Theorem (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

Let G be a graph on n vertices such that \overline{G} is disconnected. Then $\sigma(G) = 1$ if and only if $G = K_{1,n-1}$.

Proof sketch: \leftarrow If $G \cong K_{1,n-1}$, it can be easily shown that $\sigma(G) = 1$.

⇒ Assume that $\sigma(G) = 1$. Hence $G \cong K_{r,s}$ (with $s \ge r$) and $\overline{d}(G) = \frac{2sr}{n}$. The Laplacian eigenvalues of G are n, s, r and 0, each with multiplicity 1, r - 1, s - 1 and 1, respectively. Suppose, by the way of contradiction, that $r \ge 2$. Hence $\mu_2(G) = s$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe and Trevisan, 2017+)

Let G be a graph on n vertices such that \overline{G} is disconnected. Then $\sigma(G) = 1$ if and only if $G = K_{1,n-1}$.

Proof sketch: \leftarrow If $G \cong K_{1,n-1}$, it can be easily shown that $\sigma(G) = 1$.

⇒ Assume that $\sigma(G) = 1$. Hence $G \cong K_{r,s}$ (with $s \ge r$) and $\overline{d}(G) = \frac{2sr}{n}$. The Laplacian eigenvalues of G are n, s, r and 0, each with multiplicity 1, r - 1, s - 1 and 1, respectively. Suppose, by the way of contradiction, that $r \ge 2$. Hence $\mu_2(G) = s$. Since $2r \le n$ we deduce that $\overline{d}(G) = \frac{2rs}{n} \le \mu_2(G)$, which contradicts the fact that $\sigma(G) = 1$. This contradiction proves that r = 1 and therefore we conclude that G is a star. \Box

A weaker conjecture

Conjecture 1 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a graph. Then $\sigma(G) = 1$ if and only if G is isomorphic to K_1 , $K_2 + sK_1$ for some $s \ge 0$, or $K_{1,r} + sK_1$ for some $r \ge 2$ and $0 \le s < r - 1$.

A weaker conjecture

Conjecture 1 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a graph. Then $\sigma(G) = 1$ if and only if G is isomorphic to K_1 , $K_2 + sK_1$ for some $s \ge 0$, or $K_{1,r} + sK_1$ for some $r \ge 2$ and $0 \le s < r - 1$.

Remark

Conjecture 1 holds for graphs having disconnected complement.

A weaker conjecture

Conjecture 1 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a graph. Then $\sigma(G) = 1$ if and only if G is isomorphic to K_1 , $K_2 + sK_1$ for some $s \ge 0$, or $K_{1,r} + sK_1$ for some $r \ge 2$ and $0 \le s < r - 1$.

Remark

Conjecture 1 holds for graphs having disconnected complement.

Conjecture 2 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a graph with connected complement. Then, $\sigma(G) = 1$ if and only if G is isomorphic to K_1 , $K_2 + sK_1$ for some s > 0, or $K_{1,r} + sK_1$ for some $r \ge 2$ and 0 < s < r - 1.

Conjecture 3 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a connected graph with connected complement. Then, $\sigma(G)=1$ if and only if G is isomorphic to $K_1.$

Conjecture 3 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a connected graph with connected complement. Then, $\sigma(G) = 1$ if and only if G is isomorphic to K_1 .

A graph class \mathcal{G} is closed by taking components if every connected component of every graph in \mathcal{G} also belongs to \mathcal{G} .

Conjecture 3 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a connected graph with connected complement. Then, $\sigma(G) = 1$ if and only if G is isomorphic to K_1 .

A graph class \mathcal{G} is closed by taking components if every connected component of every graph in \mathcal{G} also belongs to \mathcal{G} .

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let \mathcal{G} be a graph class closed by taking components. If Conjecture 3 holds for \mathcal{G} , then Conjecture 1 also holds for \mathcal{G} .

Conjecture 3 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a connected graph with connected complement. Then, $\sigma(G) = 1$ if and only if G is isomorphic to K_1 .

A graph class \mathcal{G} is closed by taking components if every connected component of every graph in \mathcal{G} also belongs to \mathcal{G} .

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let \mathcal{G} be a graph class closed by taking components. If Conjecture 3 holds for \mathcal{G} , then Conjecture 1 also holds for \mathcal{G} .

Proof sketch: Let G be a graph with $\sigma(G) = 1$ for which Conjecture 3 holds.

Conjecture 3 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

Let G be a connected graph with connected complement. Then, $\sigma(G) = 1$ if and only if G is isomorphic to K_1 .

A graph class \mathcal{G} is closed by taking components if every connected component of every graph in \mathcal{G} also belongs to \mathcal{G} .

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let \mathcal{G} be a graph class closed by taking components. If Conjecture 3 holds for \mathcal{G} , then Conjecture 1 also holds for \mathcal{G} .

Proof sketch: Let G be a graph with $\sigma(G) = 1$ for which Conjecture 3 holds. Assume first that G is connected.

Conjecture 3 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

- Let G be a connected graph with connected complement. Then, $\sigma(G)=1$ if and only if G is isomorphic to $K_1.$
- A graph class \mathcal{G} is closed by taking components if every connected component of every graph in \mathcal{G} also belongs to \mathcal{G} .

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let \mathcal{G} be a graph class closed by taking components. If Conjecture 3 holds for \mathcal{G} , then Conjecture 1 also holds for \mathcal{G} .

Proof sketch: Let G be a graph with $\sigma(G) = 1$ for which Conjecture 3 holds. Assume first that G is connected. If G is co-connected then $G \cong K_1$. If G is not co-connected, then G is isomorphic to $K_{1,r}$ for some $r \ge 1$.

Conjecture 3 (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+)

- Let G be a connected graph with connected complement. Then, $\sigma(G)=1$ if and only if G is isomorphic to $K_1.$
- A graph class \mathcal{G} is closed by taking components if every connected component of every graph in \mathcal{G} also belongs to \mathcal{G} .

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let \mathcal{G} be a graph class closed by taking components. If Conjecture 3 holds for \mathcal{G} , then Conjecture 1 also holds for \mathcal{G} .

Proof sketch: Let G be a graph with $\sigma(G) = 1$ for which Conjecture 3 holds. Assume first that G is connected. If G is co-connected then $G \cong K_1$. If G is not co-connected, then G is isomorphic to $K_{1,r}$ for some $r \ge 1$. Assume now that G is disconnected. We can assume w.l.o.g that $G = G_1 + G_2$, where G_1 is a nonempty connected graph and $\mu_1(G_1) \ge \mu_1(G_2)(...)$

(...)It can be proved that $\sigma(G_1) = 1$.

(...)It can be proved that $\sigma(G_1) = 1$. Since \mathcal{G} is closed by taking components, $G_1 \in \mathcal{G}$.

(...)It can be proved that $\sigma(G_1) = 1$. Since \mathcal{G} is closed by taking components, $G_1 \in \mathcal{G}$. If G_1 is co-connected, then $G_1 \cong K_1$, contradicting that G_1 is a nonempty graph.

(...)It can be proved that $\sigma(G_1) = 1$. Since \mathcal{G} is closed by taking components, $G_1 \in \mathcal{G}$. If G_1 is co-connected, then $G_1 \cong K_1$, contradicting that G_1 is a nonempty graph. Thus \overline{G}_1 is disconnected and $G_1 \cong K_{1,r}$ for some $r \ge 1$.

(...)It can be proved that $\sigma(G_1) = 1$. Since \mathcal{G} is closed by taking components, $G_1 \in \mathcal{G}$. If G_1 is co-connected, then $G_1 \cong K_1$, contradicting that G_1 is a nonempty graph. Thus \overline{G}_1 is disconnected and $G_1 \cong K_{1,r}$ for some $r \ge 1$. It can be proved that G_2 is empty.

(...)It can be proved that $\sigma(G_1) = 1$. Since \mathcal{G} is closed by taking components, $G_1 \in \mathcal{G}$. If G_1 is co-connected, then $G_1 \cong K_1$, contradicting that G_1 is a nonempty graph. Thus \overline{G}_1 is disconnected and $G_1 \cong K_{1,r}$ for some $r \ge 1$. It can be proved that G_2 is empty. Therefore, $G \cong K_{1,r} + sK_1$ with s < r - 1. \Box

(...)It can be proved that $\sigma(G_1) = 1$. Since \mathcal{G} is closed by taking components, $G_1 \in \mathcal{G}$. If G_1 is co-connected, then $G_1 \cong K_1$, contradicting that G_1 is a nonempty graph. Thus \overline{G}_1 is disconnected and $G_1 \cong K_{1,r}$ for some $r \ge 1$. It can be proved that G_2 is empty. Therefore, $G \cong K_{1,r} + sK_1$ with s < r - 1. \Box

Notice that the class of all graphs is closed by taking components. Therefore, the validity of Conjecture 1 can be reduced to the validity of Conjecture 3.

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ and Laplacian spectrum $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Then $\mu_2 \ge d_2$.

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ and Laplacian spectrum $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Then $\mu_2 \ge d_2$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for forests.

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ and Laplacian spectrum $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Then $\mu_2 \ge d_2$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for forests.

Proof sketch: Let T be a connected and co-connected forest.

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ and Laplacian spectrum $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Then $\mu_2 \ge d_2$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for forests.

Proof sketch: Let T be a connected and co-connected forest. Then T is either K_1 or a tree with diameter greater than two.

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ and Laplacian spectrum $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Then $\mu_2 \ge d_2$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for forests.

Proof sketch: Let T be a connected and co-connected forest. Then T is either K_1 or a tree with diameter greater than two. If T is a tree with diameter greater than two, then there exist $v, w \in V(T)$ s.t. $d(v) \ge d(w) \ge 2 > \overline{d}(T) = 2\left(1 - \frac{1}{n}\right)$.

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ and Laplacian spectrum $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Then $\mu_2 \ge d_2$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for forests.

Proof sketch: Let T be a connected and co-connected forest. Then T is either K_1 or a tree with diameter greater than two. If T is a tree with diameter greater than two, then there exist $v, w \in V(T)$ s.t. $d(v) \ge d(w) \ge 2 > \overline{d}(T) = 2\left(1 - \frac{1}{n}\right)$. Hence $\mu_2(T) \ge d_2 \ge 2 > \overline{d}(T)$.

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ and Laplacian spectrum $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Then $\mu_2 \ge d_2$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for forests.

Proof sketch: Let T be a connected and co-connected forest. Then T is either K_1 or a tree with diameter greater than two. If T is a tree with diameter greater than two, then there exist $v, w \in V(T)$ s.t. $d(v) \ge d(w) \ge 2 > \overline{d}(T) = 2\left(1 - \frac{1}{n}\right)$. Hence $\mu_2(T) \ge d_2 \ge 2 > \overline{d}(T)$. Therefore $\sigma(T) \ge 2$.

► A split graph is a graph whose vertex set can be partitioned into a clique C and a stable set S, such a partition (C, S) of its vertices is called a split partition.

- ► A split graph is a graph whose vertex set can be partitioned into a clique C and a stable set S, such a partition (C, S) of its vertices is called a split partition.
- ► A pseudo-split graph is a {2K₂, C₄}-free graph. Hence the class of pseudo-split graphs is a superclass of the class of split graphs.

- ► A split graph is a graph whose vertex set can be partitioned into a clique C and a stable set S, such a partition (C, S) of its vertices is called a split partition.
- ► A pseudo-split graph is a {2K₂, C₄}-free graph. Hence the class of pseudo-split graphs is a superclass of the class of split graphs.
- A cograph is a P_4 -free graph.

- ► A split graph is a graph whose vertex set can be partitioned into a clique C and a stable set S, such a partition (C, S) of its vertices is called a split partition.
- ► A pseudo-split graph is a {2K₂, C₄}-free graph. Hence the class of pseudo-split graphs is a superclass of the class of split graphs.
- ► A cograph is a *P*₄-free graph.
- ► An extended P₄-laden graph is a graph such that every induced subgraph on at most six vertices that contains more than two induced P₄'s is a pseudo-split graph.

- ► A split graph is a graph whose vertex set can be partitioned into a clique C and a stable set S, such a partition (C, S) of its vertices is called a split partition.
- ► A pseudo-split graph is a {2K₂, C₄}-free graph. Hence the class of pseudo-split graphs is a superclass of the class of split graphs.
- ► A cograph is a *P*₄-free graph.
- ► An extended P₄-laden graph is a graph such that every induced subgraph on at most six vertices that contains more than two induced P₄'s is a pseudo-split graph.
- The class of extended P₄-laden graph is a superclass of the classes of pseudo-split graphs and cographs.

Spiders

A spider is a graph whose vertex set can be partitioned into three sets S, C, and R, where $S = \{s_1, \ldots, s_k\}$ $(k \ge 2)$ is a stable set; $C = \{c_1, \ldots, c_k\}$ is a clique; s_i is adjacent to c_j if and only if i = j(a *thin spider*), or s_i is adjacent to c_j if and only if $i \ne j$ (a *thick spider*); R is allowed to be empty and all the vertices in R are adjacent to all the vertices in C and nonadjacent to all the vertices in S. The sets S, C and R are called legs, body and head of the spider, respectively.

Theorem (Giakoumakis, 1996)

Each connected and co-connected extended P_4 -laden graph G satisfies one of the following assertions:

- 1. G is isomorphic to K_1 , P_5 , $\overline{P_5}$, or C_5 ;
- 2. G is a spider or arises from a spider by adding a twin to a vertex of the body or the legs; or
- 3. G is a split graph.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for extended P_4 -laden graphs

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for extended *P*₄-laden graphs Proof sketch:

1. Let G be a spider or a graph obtained from a spider by adding a twin to a vertex of the body or the legs. Let k be the number of vertices in the body and n_H the number of vertices in the head. We prove that $d_2(G) \ge \overline{d}(G)$ whenever $n_H \ne 0$ or k > 1. Hence $\sigma(G) \ge 2$.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for extended *P*₄-laden graphs Proof sketch:

- 1. Let G be a spider or a graph obtained from a spider by adding a twin to a vertex of the body or the legs. Let k be the number of vertices in the body and n_H the number of vertices in the head. We prove that $d_2(G) \ge \overline{d}(G)$ whenever $n_H \ne 0$ or k > 1. Hence $\sigma(G) \ge 2$.
- 2. We prove that Conjecture 3 holds for split graphs.

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for extended *P*₄-laden graphs Proof sketch:

- 1. Let G be a spider or a graph obtained from a spider by adding a twin to a vertex of the body or the legs. Let k be the number of vertices in the body and n_H the number of vertices in the head. We prove that $d_2(G) \ge \overline{d}(G)$ whenever $n_H \ne 0$ or k > 1. Hence $\sigma(G) \ge 2$.
- 2. We prove that Conjecture 3 holds for split graphs.
- 3. We prove by inspection that $\sigma(H) = 2$ when H is isomorphic to one of the graphs: P_5 , $\overline{P_5}$, or C_5 .

Theorem (Allem, Cafure, Dratman, **G.**, Safe, Trevisan, 2017+) Conjecture 3 holds for extended P_4 -laden graphs Proof sketch:

- 1. Let G be a spider or a graph obtained from a spider by adding a twin to a vertex of the body or the legs. Let k be the number of vertices in the body and n_H the number of vertices in the head. We prove that $d_2(G) \ge \overline{d}(G)$ whenever $n_H \ne 0$ or k > 1. Hence $\sigma(G) \ge 2$.
- 2. We prove that Conjecture 3 holds for split graphs.
- 3. We prove by inspection that $\sigma(H) = 2$ when H is isomorphic to one of the graphs: P_5 , $\overline{P_5}$, or C_5 .
- 4. Therefore, the only connected and co-connected extended P_4 -laden graph with $\sigma = 1$ is $K_1.\square$

Thank you for your attention!