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Laplacian Matrix

Given a simple graph G on n vertices, let A = A(G) be its
adjacency matrix, where rows and columns are indexed by V(G)
and a,, = 1 if u is adjacent to v and a,, = 0 otherwise. If

D = D(G) is the diagonal matrix with vertex degrees on the
diagonal, the matrix L(G) = D — A is called the Laplacian Matrix.

Example G = (P + K1) V K4

4 -1 -1 -1 -1

-1 3 -1 -1 0
-1 -1 2 0 O
-1 -1 0 2 0

1

-1 0 0 O
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Preliminaries

» The matrix L(G) is positive semidefinite.
» It has 0 as an eigenvalue associated to the eigenvector 1.

> Let S(G) = {p,-.., tn} be the spectrum of L(G), where the
eigenvalues are arranged in nonincreasing order, then p, =0
and S(G) C [0,n].

» The largest Laplacian eigenvalue pu; is greater than or equal to
d(G) = 22, where m is the number of edges of G.

» The parameter o((7) counts the number of Laplacian
eigenvalues of G greater than or equal to d(G) (introduced by
Das, Mojallal and Trevisan, 2016).

» 1 <0(G) <n, for every graph G. If G has at least one edge,
then o(G) <n — 1.



Motivation

One of the motivations to study o(G) is the Laplacian energy
(introduced by Gutman and Zhou, 2006)
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It is easy to see that

LE(G) = 28, — 47%",

where S, = >"7 | 1i(G).
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Theorem (Das, Mojallal and Trevisan, 2016)
Let G be a graph on n vertices. Then

n—1<o0(G)+o(G) <2n-—1.
Moreover the right equality holds if and only if G = K,,.
Open problem (Das, Mojallal and Trevisan, 2016)

Characterize all graphs G for which o(G) + o(G) =n — 1.
Example: Every graph G = K; + (n — t) K satisfies

o(G)+o(G)=n—-1(2<t<n-1).
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Proposition (Das, Mojallal and Gutman, 2015)
If G is a graph on n vertices, then the following conditions hold:
1. 0(G) =niff G = nk;.
2.0(G)=n—-1iffG=K; ¢ withk>1andn=Hkt.
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Open problem (Das, Mojallal and Trevisan, 2016)
Characterize all graphs G for which o(G) = 1.

Example: o(Kj,-1) =1, because thefigenvalues of Ki -1 are
n, 1 with multiplicity n — 2 and 0 and d(K; ,—1) = 2 (1 — %)
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Our conjecture and the Laplacian spectrum of G + G4
and Gl V GQ

Conjecture 1 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a graph. Then o(G) =1 if and only if G is isomorphic to
Ky, Ko + sK; for some s > 0, or K1, + sK; for some r > 2 and
0<s<r-—1.

Theorem (Folklore)

Let G1 and G2 be two graphs with Laplacian spectrums

S(Gl) = {Mh ) /’Ln1*1>0} and S(GQ) = {)‘17 ) )‘ﬂzfla 0}'
respectively. Then

1. S(G1 + Ga) = S(G1) US(Ga),

2. the Laplacian eigenvalues of G1 V G2 are ny + no; no + p;, for
1<i<ni—1,n1+ X, forl <i<mns—1and0.
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Previous results
Lemma (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

If G =GyV- -V G, with k£ > 1, is a graph on n vertices, then n
is a Laplacian eigenvalue of G with multiplicity at least k£ — 1.

An anticomponent of a graph G is the subgraph of G induced by
the vertex set of a connected component of G.
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Corollary (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

If G has k anticomponents, then k < ¢(G) + 1.
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Therefore, o(G) = s.

We use /() to denote the number of nonempty anticomponents

of a graph G.
Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph having k = 0(G) + 1 anticomponents. Then
(G) < o(G). Moreover, if o(G) = £(G), then the remaining
anticomponent of GG is empty but nontrivial.

Corollary (Allem, Cafure, Dratman, G., Safe and Trevisan,

2017+)

If G is a graph with 0(G) =1 and G is disconnected, then G is a
complete bipartite graph.



Reduction to co-connected graphs

Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph on n vertices such that G is disconnected. Then
o(G)=1ifand only if G = K 5,—1.

Proof sketch: < If G = Ky ,_1, it can be easily shown that
o(G) = 1.



Reduction to co-connected graphs

Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph on n vertices such that G is disconnected. Then
o(G)=1ifand only if G = K 5,—1.

Proof sketch: < If G = Ky ,_1, it can be easily shown that
o(G) = 1.

= Assume that ¢(G) = 1. Hence G = K, ; (with s > ) and
d(G) = %r,

n



Reduction to co-connected graphs

Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph on n vertices such that G is disconnected. Then
o(G)=1ifand only if G = K 5,—1.

Proof sketch: < If G = Ky ,_1, it can be easily shown that
o(G) = 1.

= Assume that ¢(G) = 1. Hence G = K, ; (with s > ) and
d(G) = % The Laplacian eigenvalues of G are n, s, 7 and 0,
each with multiplicity 1, » — 1, s — 1 and 1, respectively.



Reduction to co-connected graphs

Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph on n vertices such that G is disconnected. Then
o(G)=1ifand only if G = K 5,—1.

Proof sketch: < If G = Ky ,_1, it can be easily shown that
o(G) = 1.

= Assume that ¢(G) = 1. Hence G = K, ; (with s > ) and
d(G) = % The Laplacian eigenvalues of G are n, s, 7 and 0,
each with multiplicity 1, r — 1, s — 1 and 1, respectively. Suppose,
by the way of contradiction, that » > 2. Hence u2(G) = s.



Reduction to co-connected graphs

Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph on n vertices such that G is disconnected. Then
o(G)=1ifand only if G = K 5,—1.

Proof sketch: < If G = Ky ,_1, it can be easily shown that
o(G) = 1.

= Assume that ¢(G) = 1. Hence G = K, ; (with s > ) and
d(G) = % The Laplacian eigenvalues of G are n, s, 7 and 0,
each with multiplicity 1, r — 1, s — 1 and 1, respectively. Suppose,
by the way of contradiction, that » > 2. Hence u2(G) = s. Since
2r < n we deduce that d(G) = 22 < 115(G), which contradicts
the fact that o(G) = 1. This contradiction proves that » = 1 and
therefore we conclude that G is a star.[d
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A weaker conjecture

Conjecture 1 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a graph. Then o(G) = 1 if and only if G is isomorphic to
K1, K3 + sK; for some s > 0, or K1, + sK; for some r > 2 and
0<s<r—1.

Remark
Conjecture 1 holds for graphs having disconnected complement.

Conjecture 2 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a graph with connected complement. Then, o(G) =1 if
and only if G is isomorphic to K7, Ko + sK; for some s > 0, or
Ky, +sKy forsomer>2and 0 <s<r—1.
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Let G be a connected graph with connected complement. Then,
0(G) =1 if and only if G is isomorphic to K.

A graph class G is closed by taking components if every connected
component of every graph in G also belongs to G.

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let G be a graph class closed by taking components. If Conjecture
3 holds for G, then Conjecture 1 also holds for G.
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Reduction to connected and co-connected graphs

Conjecture 3 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a connected graph with connected complement. Then,
0(G) =1 if and only if G is isomorphic to K.

A graph class G is closed by taking components if every connected
component of every graph in G also belongs to G.

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let G be a graph class closed by taking components. If Conjecture
3 holds for G, then Conjecture 1 also holds for G.

Proof sketch: Let G be a graph with o(G) = 1 for which
Conjecture 3 holds. Assume first that GG is connected. If G is
co-connected then G = K. If GG is not co-connected, then G is
isomorphic to K, for some r > 1. Assume now that G is
disconnected. We can assume w.l.o.g that G = G1 + G2, where G;
is a nonempty connected graph and p;(G1) > pi(Ga)(...)
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(...)It can be proved that 0(G1) = 1. Since G is closed by taking
components, G1 € G. If G is co-connected, then G1 = K7,
contradicting that Gy is a nonempty graph. Thus G is
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Reduction to connected and co-connected graphs

(...)It can be proved that 0(G1) = 1. Since G is closed by taking
components, G1 € G. If G is co-connected, then G1 = K7,
contradicting that Gy is a nonempty graph. Thus G is
disconnected and G| = K, for some r > 1. It can be proved that
G is empty.



Reduction to connected and co-connected graphs

(...)It can be proved that 0(G1) = 1. Since G is closed by taking
components, G1 € G. If G is co-connected, then G1 = K7,
contradicting that G is a nonempty graph. Thus G is
disconnected and G| = K, for some r > 1. It can be proved that
G is empty. Therefore, G = K1, + sK; with s <r — 1.0



Reduction to connected and co-connected graphs

(...)It can be proved that 0(G1) = 1. Since G is closed by taking
components, G1 € G. If G is co-connected, then G1 = K7,
contradicting that G is a nonempty graph. Thus G is
disconnected and G| = K, for some r > 1. It can be proved that
G is empty. Therefore, G = K1, + sK; with s <r — 1.0

Notice that the class of all graphs is closed by taking components.
Therefore, the validity of Conjecture 1 can be reduced to the
validity of Conjecture 3.
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Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence d; > do > --- > d,, and
Laplacian spectrum i1 > pg > -+ > p,, = 0. Then po > ds.

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)
Conjecture 3 holds for forests.

Proof sketch: Let T' be a connected and co-connected forest.
Then T is either K7 or a tree with diameter greater than two. If T’
is a tree with diameter greater than two, then there exist

v,w€ V(T) s.t. d(v) > d(w) >2>d(T) =2 (1 —1). Hence
p2(T) > dp > 2 > d(T).



Validity of conjecture 1 for forests

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence d; > do > --- > d,, and
Laplacian spectrum i1 > pg > -+ > p,, = 0. Then po > ds.

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)
Conjecture 3 holds for forests.

Proof sketch: Let T' be a connected and co-connected forest.
Then T is either K7 or a tree with diameter greater than two. If T’
is a tree with diameter greater than two, then there exist

v,w€ V(T) s.t. d(v) > d(w) >2>d(T) =2 (1 —1). Hence
pa(T) > dy > 2 > d(T). Therefore o(T) > 2.0J
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v

A split graph is a graph whose vertex set can be partitioned
into a clique C and a stable set .S, such a partition (C,S) of
its vertices is called a split partition.

A pseudo-split graph is a {2K3, Cy}-free graph. Hence the
class of pseudo-split graphs is a superclass of the class of split
graphs.

A cograph is a Py-free graph.

An extended Pj-laden graph is a graph such that every
induced subgraph on at most six vertices that contains more
than two induced Py's is a pseudo-split graph.

The class of extended Py-laden graph is a superclass of the
classes of pseudo-split graphs and cographs.



Spiders

A spider is a graph whose vertex set can be partitioned into three
sets S, C, and R, where S = {s1,...,s;} (k > 2) is a stable set;
C ={c1,...,c,} is aclique; s; is adjacent to ¢; if and only if i = j
(a thin spider), or s; is adjacent to ¢; if and only if i # j (a thick
spider); R is allowed to be empty and all the vertices in R are
adjacent to all the vertices in C' and nonadjacent to all the vertices
in S. The sets S, C' and R are called legs, body and head of the
spider, respectively.




Extended Pj-laden graphs

Theorem (Giakoumakis, 1996)

Each connected and co-connected extended Pj-laden graph G
satisfies one of the following assertions:

1. G is isomorphic to K1, Ps, Ps, or Cs;

2. G is a spider or arises from a spider by adding a twin to a
vertex of the body or the legs; or

3. G is a split graph.
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Conjecture 3 for extended P,-laden graphs

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)
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Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)
Conjecture 3 holds for extended P,-laden graphs
Proof sketch:

1. Let GG be a spider or a graph obtained from a spider by adding
a twin to a vertex of the body or the legs. Let k£ be the
number of vertices in the body and nj the number of vertices
in the head. We prove that d2(G) > d(G) whenever ny # 0
or k> 1. Hence o(G) > 2.

2. We prove that Conjecture 3 holds for split graphs.

3. We prove by inspection that o(H) = 2 when H is isomorphic
to one of the graphs: Ps5, Ps, or Cs.

4. Therefore, the only connected and co-connected extended
P,-laden graph with ¢ =1 is K7.0



Thank you for your attention!



