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Laplacian Matrix

Given a simple graph G on n vertices, let A = A(G) be its
adjacency matrix, where rows and columns are indexed by V (G)
and auv = 1 if u is adjacent to v and auv = 0 otherwise. If
D = D(G) is the diagonal matrix with vertex degrees on the
diagonal, the matrix L(G) = D −A is called the Laplacian Matrix.

Example G = (P3 +K1) ∨K1 
4 −1 −1 −1 −1
−1 3 −1 −1 0
−1 −1 2 0 0
−1 −1 0 2 0
−1 0 0 0 1





Preliminaries

I The matrix L(G) is positive semidefinite.

I It has 0 as an eigenvalue associated to the eigenvector 1.

I Let S(G) = {µ1, . . . , µn} be the spectrum of L(G), where the
eigenvalues are arranged in nonincreasing order, then µn = 0
and S(G) ⊆ [0, n].

I The largest Laplacian eigenvalue µ1 is greater than or equal to
d(G) = 2m

n , where m is the number of edges of G.

I The parameter σ(G) counts the number of Laplacian
eigenvalues of G greater than or equal to d(G) (introduced by
Das, Mojallal and Trevisan, 2016).

I 1 ≤ σ(G) ≤ n, for every graph G. If G has at least one edge,
then σ(G) ≤ n− 1.
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Motivation

One of the motivations to study σ(G) is the Laplacian energy
(introduced by Gutman and Zhou, 2006)

LE(G) =

n∑
i=1

∣∣∣µi − 2m

n

∣∣∣.

It is easy to see that

LE(G) = 2Sσ −
4mσ

n
,

where Sσ =
∑σ

i=1 µi(G).
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Basic properties of σ

Theorem (Das, Mojallal and Trevisan, 2016)

Let G be a graph on n vertices. Then

n− 1 ≤ σ(G) + σ(G) ≤ 2n− 1.

Moreover the right equality holds if and only if G ∼= Kn.

Open problem (Das, Mojallal and Trevisan, 2016)

Characterize all graphs G for which σ(G) + σ(G) = n− 1.

Example: Every graph G ∼= Kt + (n− t)K1 satisfies
σ(G) + σ(G) = n− 1 (2 ≤ t ≤ n− 1).
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Basic properties of σ

Proposition (Das, Mojallal and Gutman, 2015)

If G is a graph on n vertices, then the following conditions hold:

1. σ(G) = n iff G ∼= nK1.

2. σ(G) = n− 1 iff G ∼= Kt, . . . , t︸ ︷︷ ︸
k

with k > 1 and n = kt.

Open problem (Das, Mojallal and Trevisan, 2016)

Characterize all graphs G for which σ(G) = 1.

Example: σ(K1,n−1) = 1, because the eigenvalues of K1,n−1 are
n, 1 with multiplicity n− 2 and 0 and d(K1,n−1) = 2

(
1− 1

n

)
.
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Our conjecture and the Laplacian spectrum of G1 +G2

and G1 ∨G2

Conjecture 1 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a graph. Then σ(G) = 1 if and only if G is isomorphic to
K1, K2 + sK1 for some s ≥ 0, or K1,r + sK1 for some r ≥ 2 and
0 ≤ s < r − 1.

Theorem (Folklore)

Let G1 and G2 be two graphs with Laplacian spectrums
S(G1) = {µ1, . . . , µn1−1, 0} and S(G2) = {λ1, . . . , λn2−1, 0},
respectively. Then

1. S(G1 +G2) = S(G1) ∪ S(G2),

2. the Laplacian eigenvalues of G1 ∨G2 are n1 + n2; n2 + µi, for
1 ≤ i ≤ n1 − 1; n1 + λi, for 1 ≤ i ≤ n2 − 1 and 0.
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Previous results

Lemma (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

If G = G1 ∨ · · · ∨Gk, with k ≥ 1, is a graph on n vertices, then n
is a Laplacian eigenvalue of G with multiplicity at least k − 1.

An anticomponent of a graph G is the subgraph of G induced by
the vertex set of a connected component of G.

G G

Corollary (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

If G has k anticomponents, then k ≤ σ(G) + 1.
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Case where k = σ(G) + 1 holds

The graph G = 4K2 ∨
s︷ ︸︸ ︷

K1 ∨ · · · ∨K1 has average degree
s+ 7− 48

s+8 and s+ 1 anticomponents. Its eigenvalues are s+ 8,
s+ 2, s, and 0 with multiplicities s, 4, 3, and 1, respectively.
Therefore, σ(G) = s.

We use `(G) to denote the number of nonempty anticomponents
of a graph G.

Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph having k = σ(G) + 1 anticomponents. Then
`(G) ≤ σ(G). Moreover, if σ(G) = `(G), then the remaining
anticomponent of G is empty but nontrivial.

Corollary (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

If G is a graph with σ(G) = 1 and G is disconnected, then G is a
complete bipartite graph.
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Reduction to co-connected graphs

Theorem (Allem, Cafure, Dratman, G., Safe and Trevisan,
2017+)

Let G be a graph on n vertices such that G is disconnected. Then
σ(G) = 1 if and only if G = K1,n−1.

Proof sketch: ⇐ If G ∼= K1,n−1, it can be easily shown that
σ(G) = 1.

⇒ Assume that σ(G) = 1. Hence G ∼= Kr,s (with s ≥ r) and
d(G) = 2sr

n . The Laplacian eigenvalues of G are n, s, r and 0,
each with multiplicity 1, r − 1, s− 1 and 1, respectively. Suppose,
by the way of contradiction, that r ≥ 2. Hence µ2(G) = s. Since
2r ≤ n we deduce that d(G) = 2rs

n ≤ µ2(G), which contradicts
the fact that σ(G) = 1. This contradiction proves that r = 1 and
therefore we conclude that G is a star.�
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A weaker conjecture

Conjecture 1 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a graph. Then σ(G) = 1 if and only if G is isomorphic to
K1, K2 + sK1 for some s ≥ 0, or K1,r + sK1 for some r ≥ 2 and
0 ≤ s < r − 1.

Remark
Conjecture 1 holds for graphs having disconnected complement.

Conjecture 2 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a graph with connected complement. Then, σ(G) = 1 if
and only if G is isomorphic to K1, K2 + sK1 for some s > 0, or
K1,r + sK1 for some r ≥ 2 and 0 < s < r − 1.
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Reduction to connected and co-connected graphs

Conjecture 3 (Allem, Cafure, Dratman, G., Safe, Trevisan,
2017+)

Let G be a connected graph with connected complement. Then,
σ(G) = 1 if and only if G is isomorphic to K1.

A graph class G is closed by taking components if every connected
component of every graph in G also belongs to G.

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Let G be a graph class closed by taking components. If Conjecture
3 holds for G, then Conjecture 1 also holds for G.

Proof sketch: Let G be a graph with σ(G) = 1 for which
Conjecture 3 holds. Assume first that G is connected. If G is
co-connected then G ∼= K1. If G is not co-connected, then G is
isomorphic to K1,r for some r ≥ 1. Assume now that G is
disconnected. We can assume w.l.o.g that G = G1 +G2, where G1

is a nonempty connected graph and µ1(G1) ≥ µ1(G2)(...)
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Reduction to connected and co-connected graphs

(...)It can be proved that σ(G1) = 1.

Since G is closed by taking
components, G1 ∈ G. If G1 is co-connected, then G1

∼= K1,
contradicting that G1 is a nonempty graph. Thus G1 is
disconnected and G1

∼= K1,r for some r ≥ 1. It can be proved that
G2 is empty. Therefore, G ∼= K1,r + sK1 with s < r − 1.�

Notice that the class of all graphs is closed by taking components.
Therefore, the validity of Conjecture 1 can be reduced to the
validity of Conjecture 3.
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Validity of conjecture 1 for forests

Theorem (Li and Pan, 2000)

Let G be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn and
Laplacian spectrum µ1 ≥ µ2 ≥ · · · ≥ µn = 0. Then µ2 ≥ d2.

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Conjecture 3 holds for forests.

Proof sketch: Let T be a connected and co-connected forest.
Then T is either K1 or a tree with diameter greater than two. If T
is a tree with diameter greater than two, then there exist
v, w ∈ V (T ) s.t. d(v) ≥ d(w) ≥ 2 > d(T ) = 2

(
1− 1

n

)
. Hence

µ2(T ) ≥ d2 ≥ 2 > d(T ). Therefore σ(T ) ≥ 2.�
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Extended P4-laden graphs

I A split graph is a graph whose vertex set can be partitioned
into a clique C and a stable set S, such a partition (C, S) of
its vertices is called a split partition.

I A pseudo-split graph is a {2K2, C4}-free graph. Hence the
class of pseudo-split graphs is a superclass of the class of split
graphs.

I A cograph is a P4-free graph.

I An extended P4-laden graph is a graph such that every
induced subgraph on at most six vertices that contains more
than two induced P4’s is a pseudo-split graph.

I The class of extended P4-laden graph is a superclass of the
classes of pseudo-split graphs and cographs.
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Spiders
A spider is a graph whose vertex set can be partitioned into three
sets S, C, and R, where S = {s1, . . . , sk} (k ≥ 2) is a stable set;
C = {c1, . . . , ck} is a clique; si is adjacent to cj if and only if i = j
(a thin spider), or si is adjacent to cj if and only if i 6= j (a thick
spider); R is allowed to be empty and all the vertices in R are
adjacent to all the vertices in C and nonadjacent to all the vertices
in S. The sets S, C and R are called legs, body and head of the
spider, respectively.



Extended P4-laden graphs

Theorem (Giakoumakis, 1996)

Each connected and co-connected extended P4-laden graph G
satisfies one of the following assertions:

1. G is isomorphic to K1, P5, P5, or C5;

2. G is a spider or arises from a spider by adding a twin to a
vertex of the body or the legs; or

3. G is a split graph.



Conjecture 3 for extended P4-laden graphs

Theorem (Allem, Cafure, Dratman, G., Safe, Trevisan, 2017+)

Conjecture 3 holds for extended P4-laden graphs

Proof sketch:

1. Let G be a spider or a graph obtained from a spider by adding
a twin to a vertex of the body or the legs. Let k be the
number of vertices in the body and nH the number of vertices
in the head. We prove that d2(G) ≥ d(G) whenever nH 6= 0
or k > 1. Hence σ(G) ≥ 2.

2. We prove that Conjecture 3 holds for split graphs.

3. We prove by inspection that σ(H) = 2 when H is isomorphic
to one of the graphs: P5, P5, or C5.

4. Therefore, the only connected and co-connected extended
P4-laden graph with σ = 1 is K1.�
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Thank you for your attention!


