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Skeleton based modeling

In nature

Mathematically
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Skeleton

De�nition

A skeleton is a �nite set S of spatial line segments satisfying the following

property: any two line segments intersect at most at one of their

endpoints (then called joints).
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Sca�old

Sca�old for a skeleton

A quad mesh around the skeleton, such that the volume it encloses can be

contracted towards the skeleton, and the distance from the mesh to the

skeleton is bounded by some constant.
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Goal and previous work

Objective

To construct a quad mesh around a segment-based skeleton that follows

the structure of the skeleton.

Previous work:

Skeleton to Quad-dominant Mesh (SQM): cannot handle closed

skeletons.
1. B�rentzen JA, Misztal MK, We lnicka K. Converting skeletal structures to

quad dominant meshes. Computers and Graphics. 2012;36(5):555-561.

Sca�olding a skeleton: quadrangular cells, problems with convexity.
2. Panotopoulou A, Welker K, Ross E, Hubert E, Morin G. Sca�olding a

Skeleton. 2017. https://hal.inria.fr/hal-01532765.

We want:

General method for skeleton with cycles.

Optimal solution in terms of the number of quads.
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General idea

Steps to construct a sca�old:

1 Partition the unit sphere centered at the joints

into regions around the segments incident to

the joint.

2 Discretize the regions as a set of points in the

boundary to form cells.

3 Link the cells corresponding to the same

segment to form quads.

Constrain: The linked cells must have the same number of points.
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Formalization

S de�nes naturally a graph GS = (VS ; ES) (embedded in R3).

Sv the unit sphere centered at v 2 VS .

Av = fe \ Sv j e 2 ES ; e( vg (e( a � e incident to a).

v 2 VS Sv Av
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Formalization (cont.)

The regions fRv
ege(v partition the sphere Sv, such that

(Sv \ e) 2 Rv
e .

The cell Cv
e is an ordered set of points describing the boundary of the

region Rv
e .

De�nition (Sca�old)

A sca�old KS is a pair (PS ;�S), satisfying

1 PS = fCv j v 2 VSg where each Cv = fCv
e j e 2 ES ; e( vg is a

family of cells representing a partition of Sv.

2 �S = f�e j e 2 ESg is a family of bijections �e between Ca
e and Cb

e

for e = ab.

Quads are de�ned as (pi; �e(pi); �e(pi+1); pi+1) for C
v
e = (p1; p2; � � � ; pn).
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Voronoi diagram and Delaunay triangulation

Voronoi sites

Region boundary

Voronoi region

Delaunay triangulation

Voronoi diagram and Delaunay triangulation [from Wikipedia]

Notation

A set of points on a 2-dimensional sphere.

Vor(A) 2-dimensional Voronoi diagram of A on the sphere.

Del(A) Delaunay triangulation of Vor(A) (dual of Vor(A)).
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Partition and cells in practice

In our method:

The regions fRv
ege(v are de�ned as Vor(Av).

Boundary between regions are arcs of great circles

Cv
e is de�ned by taking points in each arc on the boundary.

Points in an arc form a polyline, the number of segments in the

polyline is called the number of subdivision of the arc.

Joint Intersections Regions Subdivision Cells
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Partition and cells (cont.)

Notation

Ev the set of edges of Del(Av) (for v 2 VS).
xvf the number of subdivisions of the corresponding arc (for f 2 Ev).

Observation

The number of elements in a cell Cv
e (v 2 VS , e 2 ES and e( v) is given

by

jCv
e j =

X

f2Ev

f((Sv\e)

xvf :
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Integer programming model

Minimize: X

v2VS

X

h2Ev

xvh

Subject to:
jCa

e j = jCb
e j 8e = ab 2 ES

xvh 2 Z; x
v
h � 2; 8h 2 Ev; v 2 VS

Recall that

jCv
e j =

X

f2Ev

f((Sv\e)

xvf

Is this feasible?
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Theorem

X

f2Ea

f((Sa\e)

xaf =
X

g2Eb

g((Sb\e)

xbg; 8e = ab 2 ES

Theorem

There is a solution for the system with all entries in the set of positive

integers.
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Proof

Idea: \all cells with the same number of points"

For v 2 VS , the local linear system

jCv
e j =

X

f2Ev

f((Sv\e)

xvf = �v 8e( v; e 2 ES (1)

has a solution in the positive integers with �v also a positive integer.

Assuming there are local solutions (~xvf ;
~�v) for each v 2 VS then there is a

global solution x̂f given by x̂f = x̂vf = (�=~�v) � ~x
v
f where � =

Q
u2VS

~�u.
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Proof (cont.)

There is a positive real solution for the local linear system:

Del(Av) is combinatorially equivalent to the convex hull of Av.
3. Brown KQ. Geometric Transforms for Fast Geometric Algorithms. Phd thesis,

Carnegie-Mellon University. 1979.

Del(Av) dual of Vor(Av) =) Ev set of edges of convex hull of

Av.

Numerical characterization for inscribable polyhedral graphs due to

Rivin.
4. Rivin I. A Characterization of Ideal Polyhedra in Hyperbolic 3-Space. Annals

of Mathematics. 1996;143:51-70.
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Proof (cont.)

5. Dillencourt MB, Smith WD. Graph-theoretical conditions for inscribability and

Delaunay realizability. Discrete Mathematics. 1996;161(1):63-77.

Proposition (I. Rivin 1996, extracted from [5])

If a graph is of inscribable type then weights w can be assigned to its

edges such that:

1 For each edge e, 0 < w(e) < 1=2.

2 For each vertex v, the total weight of all edges incident to v is equal

to 1.

xvf = w(f) de�nes a positive real solution for the local system (with

�v = 1).
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Proof (end)

Claim

A homogeneous linear system with integer coe�cients has a positive

integer solution whenever it has a positive real solution.

Proof sketch (of claim).

A positive real solution implies the space of solutions is non-empty.

Take a rational basis for the space.

The rational solutions are dense in this space.

Approximate the real solution by a positive rational solution.

Multiply by a common multiple of denominators of the entries.
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Examples
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Application
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Thank you
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