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Overview

Classification into P or NP-complete of challenging problems in graph
theory

Full dichotomy: class of problems where each problem is classified into
P or NP-complete

Coloring problems: vertex, edge, total



NP-completeness ongoing guide

|dentification of an interesting problem, of an interesting graph class
Categorization of the problem according to its complexity status
Problems and complexity-separating graph classes

Graph classes and complexity-separating problems

Johnson’s NP-completeness column 1985
Spinrad’s book 2003



Ongoing Guide — graph restrictions and their effect

GRAPH CLASS MEMBER | INDSET CLIQUE CLIPAR CHRNuUM CHRIND HaMCiR DomMSET MaxCur STTREE Gralso
Trees/Forests P [T] |P [GI]] P [T] P [GI] P [T] P [GI] P [T] P [GIl P [GI] P |[T] P |[G]]
Almost Trees (k) | P P [24] P [T] P? P? P? P? P [45] P? P? P?
Partial k-Trees P [21 |P [11 P [T] P? P (11 0O? P [31 P [3]1 P? P? (o)
Bandwidth-k P [68] |P [64] P [T] P? P [64] P? P? P [64 P [64] P? P [58]
Degree-k P [T] N [GIl P [T] N [GI] N [G]I] N [49] N |[GI] N [G]] N [G]] N [GI1 P [58]
Planar P [GI]|N [G]] P [T] N J[I10] N [GI] O N [G]] N [GI]l P [G]] N [35 P [GI
Series Parallel P [ |P [75] P [T] P? P [74] P [74] P [74] P [54] P [GI] P [82] P [GI]
Outerplanar P P [6) P [T] P 6] P [67] P 671 P [T P [6] P [GI] P [81] P [GI]
Halin P P [6) P [T] P 6] P [74] P [74] P [T] P [6] P [GI] P? P [G]]
k-Outerplanar P P [6) P [T] P 6] P [6] O? P [6] P [6] P [G]] P? P [G]]
Grid P P [GI] P [T] P [GI] P [T] P [G]] N [51] N [55] P [T] N [35] P |[GI]
K, 1-Free P [4 |N [GI] P [T] N [10] N [G]] O? N [G] N [G] P [5] N [G]] O?
Thickness-k N [60] | N [GI] P [T] N [i0] N [G]] N [49] N [GI] N [GI] N [71 N [GI] 0O?
Genus-k P [34]|N [GI] P [T] N [10] N [GI] O? N [GI] N [GI] O? N [GI] P [6]1]
Perfect O! P [42] P [42] P [42] P [42] O? N [11 N [14 O? N [GI] 1 [GI]
Chordal P [76] |P [40] P [40] P [40] P [40] O? N [22] N [14 O? N [83] 1 [GI]
Split P [40] |P [40] P [40] P [40] P [40] O? N [22] N [199 O? N [83] 1 [15]
Strongly Chordal | P [31] |P [40] P [40] P [40] P [40] O? 0? P [32] O? P [83] O?
Comparability P [40] |P [40] P [40] P [40] P [40] O? N [11 N [28 O? N [GI] 1 [GI]
Bipartite P [T] |P [GI] P [T] P [G]I] P [T] P [G]] N J[1] N [28] P [T N [GI] 1 [GI]
Permutation P [40] |P [40] P [40] P [40] P [40] O? 0] P [33] O? P [23] P [21]
Cographs P [T] |P [40] P [40] P [40] P [40] O? P [25]1 P [33] O? P [23] P [25]
Undirected Path [P [39] |P [40] P [40] P [40] P [40] O? 0? N [16] 0O? 0? 1 [GI]
Directed Path P [38]|P [40] P [40] P [40] P [40] O? 0? P [16] O? P [83] O?
Interval P [17]1|P [44] P [44] P [44] P [44] O? P [53] P [16] O? P [83] P [57]
Circular Arc P [78] |P [44] P [50] P [44] N [36] O? 0? P [13] O? P [83] O?

Circle P [71]1|P [GI] P [50] O? N [36] O? P [12] O? o? P [70] O?
Proper Circ. Arc |P  [77] |P [44] P [50] P [44] P [66] O? P [12] P [13] O? P [83] O?

Edge (or Line) P [47]1|P [GIl P [T] N |[GI] N [49] O? N [111 N [GI] O? N [70] 1 [15]
Claw-Free P [T] |P [63] O? N [GI] N [49] O? N [111 N [GI] O? N [70] 1 [15]




Complexity-separating graph classes

VERTEXCOL | EDGECOL

perfect P N

chordal P @)

split P O

strongly chordal P O
comparability P N
bipartite P P
permutation P O
cographs P O
indifference P O
split-indifference P P

N: NP-complete P: polynomial O: open

Johnson’s NP-completeness column 1985
|. Holyer — SIAM J. Comput. 1981



Complexity-separating problems

VERTEXCOL | EDGECOL

perfect P N

chordal P @)

split P O

strongly chordal P O
comparability P N
bipartite P P
permutation P O
cographs P O
indifference P O
split-indifference P P

N: NP-complete P: polynomial O: open

L. Cai, J. Ellis — Discrete Appl. Math. 1991
Spinrad’s book 2003



Complexity-separating problems

VERTEXCOL

EDGECOL

perfect

chordal

split

strongly chordal
comparability
bipartite
permutation
cographs
indifference
split-indifference

U U0 U0 U UTUTTVT

N: NP-complete P: polynomial

N

TOO0OO0OUT=Z2000

O: open

C. Ortiz Z., N. Maculan, J. Szwarcfiter — Discrete Appl. Math. 1998
C. Simone, C. Mello — Theoret. Comput. Sci. 2006



Full dichotomies

Classes of problems for which every problem is classified into
P or NP-complete

Problems: EDGE COLORING, TOTAL COLORING

Graph classes: unichord-free, split-indifference, chordless



Unichord-free graphs

x-bounded graph class: x < f(w)
Perfect graph: x = w

Line graph: x < w + 1, the Vizing bound

A. Gyarfas — Zastos. Mat. 1987



Unichord-free graphs

x-bounded graph class: x < f(w)
Perfect graph: x = w

Line graph: x < w + 1, the Vizing bound
Which choices of forbidden induced subgraphs give x-bounded class?

Unichord-free graphs: x < w + 1

Structure theorem:
every graph in the class can be built from basic graphs

N. Trotignon, K. Vuskovi¢ — J. Graph Theory 2009



Combining edge-colorings with respect to 2-cutset

Decomposition with respect to a proper 2-cutset {a, b}
G is Class 1: A colors suffice, but Gx = P* is Class 2: A+ 1 colors needed



Edge-coloring unichord-free graphs

Class C = unichord-free graphs

A=3|A>4]|regular

graphs of C

4-hole-free graphs of C
6-hole-free graphs of C

{4-hole, 6-hole }-free graphs of C

vV Z2Z2Z2
UV Z2 0V Z2
UV Z2 TV Z

“Chromatic index of graphs with no cycle with a unique chord”
Theoret. Comput. Sci. 2010 (with Raphael Machado, Kristina Vuskovic¢)



Edge-coloring unichord-free graphs

Class C = unichord-free graphs

A=3|A>4]|regular

graphs of C

4-hole-free graphs of C
6-hole-free graphs of C

{4-hole, 6-hole }-free graphs of C

vV Z2Z2Z2
UV Z2 0V Z2
UV Z2 TV Z

EDGECOL is N for k-partite r-regular, foreach k > 3, r > 3

k<2|k>3

k-partite graphs P N

“Chromatic index of graphs with no cycle with a unique chord”
Theoret. Comput. Sci. 2010 (with Raphael Machado, Kristina Vuskovic¢)



Class 2 = overfull implies EDGECOL is P

: V]
Overfull graph: |[E| > A {TJ
Complete multipartite: Class 2 = overfull
Graphs with a universal vertex: Class 2 = overfull
Split-indifference graphs: Class 2 = subgraph overfull
{4-hole,unichord}-free graphs, with A # 3: Class 2 = subgraph overfull

D. Hoffman, C. Rodger — J. Graph Theory 1992
M. Plantholt — J. Graph Theory 1981
C. Ortiz Z., N. Maculan, J. Szwarcfiter — Discrete Appl. Math. 1998



Class 2 = overfull implies EDGECOL is P

: Vi
Overfull graph: |[E| > A {TJ

Complete multipartite: Class 2 = overfull

Graphs with a universal vertex: Class 2 = overfull

Split-indifference graphs: Class 2 = subgraph overfull
{4-hole,unichord}-free graphs, with A # 3: Class 2 = subgraph overfull

D. Hoffman, C. Rodger — J. Graph Theory 1992
M. Plantholt — J. Graph Theory 1981
C. Ortiz Z., N. Maculan, J. Szwarcfiter — Discrete Appl. Math. 1998

Conjecture for edge-coloring chordal graphs:
Class 2 = subgraph overfull

“On edge-colouring indifference graphs”
Theoret. Comput. Sci. 1997 (with Joao Meidanis, Célia Mello)



Total coloring conjecture

Vizing’s edge coloring theorem: every graph is (A + 1)-edge colorable

Total coloring conjecture: every graph is (A + 2)-total colorable
Type 1 = (A + 1)-total colorable, Type 2 = (A + 2)-total colorable

M. Molloy, B. Reed — Combinatorica 1998

Natural to consider classes of graphs for which TCC is established

TCC for bipartite: 2-color vertices, A-color edges



Total coloring is hard

NP-hard for k-regular bipartite

Reduction from edge-coloring

Consider classes of graphs for which edge-coloring is polynomial

Edge-coloring is polynomial for split-indifference graphs

C. McDiarmid, A. Sanchez-Arroyo — Discrete Math. 1994
C. Ortiz Z., N. Maculan, J. Szwarcfiter — Discrete Appl. Math. 1998



Type 2 = Hilton condition implies TOTALCOL is P

A even A odd
complete Type 1 Type 2 (Hilton condition)
univ. vertex Type 1 Hilton condition
split Type 1 open
indifference Type 1 open
split-indifference Type 1 Hilton condition
3 max cliques Type 1 open

A. Hilton — Discrete Math. 1989

What is the largest class of graphs for which:
G Type 2 iff Hilton condition holds for closed neighborhood of A vertex

Necessary condition:
A even implies Type 1

“The total chromatic number of split-indifference graphs”
Discrete Math. 2012 (with Christiane Campos, Raphael Machado, Célia Mello)



Total chromatic number of unichord-free graphs

VERTEXCOL | EDGECOL | TOTALCOL
unichord-free P N N
{4-hole,unichord}-free, A > 4 P P P
{4-hole,unichord}-free, A =3 =) N .

Surprising full-dichotomy wrt EDGECOL:
A > 4 is polynomial whereas A = 3 is NP-complete

Surprising complexity-separating graph class:
EDGECOL is NP-complete whereas TOTALCOL is polynomial

“Complexity of colouring problems restricted to unichord-free and {square,unichord}-free
graphs”, Discrete Appl. Math. 2014 (with Raphael Machado and Nicolas Trotignon)



Edge coloring chordless graphs

G is chordless iff L(G) is wheel-free

Chordless, with A = 3 is Class 1 implies
{wheel,ISK4}-free is 3 vertex colorable

B. Lévéque, F. Maffray, N. Trotignon — J. Comb. Theory, Ser. B 2012

Chordless is a subclass of unichord-free
EDGECOL is NP-complete for unichord-free graphs

Every chordless, with A > 3 is Class 1

“Edge-colouring and total-colouring chordless graphs”
Discrete Math. 2013 (with Raphael Machado and Nicolas Trotignon)



Edge and total coloring complexity-separating classes
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When restricted to {square,unichord}-free graphs,
edge coloring is [NIPSGOMPIEIE] whereas total coloring is polynomial




Clique-colouring unichord-free graphs

A clique-colouring of G is an assignment of colours to the vertices of G such
that no inclusion-wise maximal clique of size at least 2 is monochromatic

Colouring of hypergraphs arising from graphs: clique, biclique

subgraphs may even have a larger biclique-chromatic number

& Q subgraphs may even have a larger clique-chromatic number

“Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs”
Algorithmica 2017 (with Hélio Macedo and Raphael Machado)



Complexity restricted to unichord-free and special subclasses

Colouring problem \ class General Unichord-free {LJ, unichord}-free {A, unichord}-free
Vertex-col. NPC[14] P[26] P [26] P [26]

Edge-col. NPC[13] NPCI[18] NPC [18] NPC [18]
Total-col. NPCI21] NPCI[17] P [16,17] NPC [17]
Clique-col. 25 C [20] P P P (k= x)
Biclique-col. fcriop P P P (kg=2)

[10] M. Groshaus, F. Soulignac, P. Terlisky — J. Graph Algorithms Appl. 2014
[20] D. Marx — Theoret. Comput. Sci. 2011

“Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs”
Algorithmica 2017 (with Hélio Macedo and Raphael Machado)



Are all perfect graphs 3-clique-colourable?

Every diamond-free perfect graph is 3-clique-colourable

G. Bacso, S. Gravier, A. Gyarfas, M. Preissmann, A. Sebo — SIAM J. Discrete Math. 2004
M. Chudnovsky, |. Lo — J. Graph Theory 2017

Every unichord-free graph is 3-clique-colourable
A unichord-free graph is 2-clique-colourable if and only if it is perfect

“Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs”
Algorithmica 2017 (with Hélio Macedo and Raphael Machado)



Daniel Marx plenary talk at ICGT 2014

Every graph is easy or hard:
dichotomy theorems for graph problems

Daniel Marx!

LInstitute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

ICGT 2014
Grenoble, France
July 3, 2014




Daniel Marx plenary talk at ICGT 2014

Dichotomy theorems

@ Dichotomy theorems give good research programs: easy to
formulate, but can be hard to complete.

@ The search for dichotomy theorems may uncover algorithmic
results that no one has thought of.

@ Proving dichotomy theorems may require good command of
both algorithmic and hardness proof techniques.
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