Complexity-separating graph classes for vertex, edge and total coloring

Celina de Figueiredo

Overview

Classification into P or NP-complete of challenging problems in graph theory

Full dichotomy: class of problems where each problem is classified into P or NP-complete

Coloring problems: vertex, edge, total

NP-completeness ongoing guide

Identification of an interesting problem, of an interesting graph class

Categorization of the problem according to its complexity status

Problems and complexity-separating graph classes

Graph classes and complexity-separating problems

Johnson's NP-completeness column 1985 Spinrad's book 2003

Ongoing Guide – graph restrictions and their effect

GRAPH CLASS	ME	MBER	INI	SET	CLIG	OLIE	CLI	DAD	Сп	RNUM	CHR	IND	Нах	иСіr	Do	мSет	MA	x C ut	СтТ	REE	GRA	Jeo
Trees/Forests	P	[T]	P	[GJ]	P	(T)	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]
Almost Trees (k)	P	[1]	P	[24]	P	[T]	P?	[OJ]	P?	[1]	P?	[UJ]	P?	[1]	P	[45]	P?	[OJ]	P?	[1]	P?	[OJ]
Partial k-Trees	P	[2]	P	[1]	P	[T]	P?		P	[1]	O?		P	[3]	P	[3]	P?		P?		0?	
Bandwidth-k	P	[68]	P	[64]	P	[T]	P?		P	[64]	P?		P?	[2]	P	[64]	P	[64]	P?		P	[58]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[GJ]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[58]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	0		N	[GJ]	N	[GJ]	P	[GJ]	N	[35]	P	[GJ]
Series Parallel	P	[79]	P	[75]	P	[T]	P?	[]	P	[74]	P	[74]	P	[74]	P	[54]	P	[GJ]	P	[82]	P	[GJ]
Outerplanar	P	[]	P	[6]	P	[T]	P	[6]	P	[67]	P	[67]	P	[T]	P	[6]	P	[GJ]	P	[81]	P	[GJ]
Halin	P		P	[6]	P	[T]	P	[6]	P	[74]	P	[74]	P	[T]	P	[6]	P	[GJ]	P ?		P	[GJ]
k-Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[6]	0?		P	[6]	P	[6]	P	[GJ]	P ?		P	[GJ]
Grid	P		P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[51]	N	[55]	P	[T]	N	[35]	P	[GJ]
$K_{3,3}$ -Free	P	[4]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	0?		N	[GJ]	N	[GJ]	P	[5]	N	[GJ]	0?	
Thickness-k	N	[60]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[7]	N	[GJ]	0?	
Genus-k	P	[34]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O ?		N	[GJ]	N	[GJ]	O ?		N	[GJ]	P	[61]
Perfect	0!		P	[42]	P	[42]	P	[42]	P	[42]	O?		N	[1]	N	[14]	Ο?		N	[GJ]	I	[GJ]
Chordal	P	[76]	P	[40]	P	[40]	P	[40]	P	[40]	O ?		N	[22]	N	[14]	O ?		N	[83]	I	[GJ]
Split	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	O ?		N	[22]	N	[19]	O ?		N	[83]	I	[15]
Strongly Chordal	P	[31]	P	[40]	P	[40]	P	[40]	P	[40]	O ?		O ?		P	[32]	O ?		P	[83]	0?	
Comparability	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	O ?		N	[1]	N	[28]	O ?		N	[GJ]	I	[GJ]
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[1]	N	[28]	P	[T]	N	[GJ]	I	[GJ]
Permutation	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	\mathbf{O} ?		O		P	[33]	O ?		P	[23]	P	[21]
Cographs	P	[T]	P	[40]	P	[40]	P	[40]	P	[40]	O?		P	[25]	P	[33]	Ο?		P	[23]	P	[25]
Undirected Path	P	[39]	P	[40]	P	[40]	P	[40]	P	[40]	Ο?		Ο?		N	[16]	Ο?		O ?		I	[GJ]
Directed Path	P	[38]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O ?		P	[16]	O ?		P	[83]	O ?	
Interval	P	[17]	P	[44]	P	[44]	P	[44]	P	[44]	O ?		P	[53]	P	[16]	O ?		P	[83]	P	[57]
Circular Arc	P	[78]	P	[44]	P	[50]	P	[44]	N	[36]	O?		O?		P	[13]	O ?		P	[83]	0?	
Circle	P	[71]	P	[GJ]	P	[50]	O ?		N	[36]	\mathbf{O} ?		P	[12]	O ?		O ?		P	[70]	O ?	
Proper Circ. Arc	P	[77]	P	[44]	P	[50]	P	[44]	P	[66]	O ?		P	[12]	P	[13]	O ?		P	[83]	O ?	
Edge (or Line)	P	[47]	P	[GJ]	P	[T]	N	[GJ]	N	[49]	O ?		N	[11]	N	[GJ]	O ?		N	[70]	Ι	[15]
Claw-Free	P	[T]	P	[63]	Ο?		N	[GJ]	N	[49]	O ?		N	[11]	N	[GJ]	Ο?		N	[70]	I	[15]

Complexity-separating graph classes

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	P	N
bipartite	Р	Р
permutation	Р	0
cographs	Р	0
indifference	Р	0
split-indifference	Р	Р

N: NP-complete P: polynomial O: open

Johnson's NP-completeness column 1985

I. Holyer – SIAM J. Comput. 1981

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	Р	N
bipartite	Р	P
permutation	Р	O
cographs	Р	0
indifference	Р	0
split-indifference	Р	Р

N: NP-complete P: polynomial O: open

L. Cai, J. Ellis – *Discrete Appl. Math.* 1991 Spinrad's book 2003

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	Р	Ν
bipartite	Р	Р
permutation	Р	0
cographs	Р	O
indifference	Р	O
split-indifference	Р	P

N: NP-complete P: polynomial O: open

- C. Ortiz Z., N. Maculan, J. Szwarcfiter Discrete Appl. Math. 1998
- C. Simone, C. Mello Theoret. Comput. Sci. 2006

Full dichotomies

Classes of problems for which every problem is classified into P or NP-complete

Problems: EDGE COLORING, TOTAL COLORING

Graph classes: unichord-free, split-indifference, chordless

Unichord-free graphs

 χ -bounded graph class: $\chi \leq f(\omega)$

Perfect graph: $\chi = \omega$

Line graph: $\chi \leq \omega + 1$, the Vizing bound

A. Gyárfás – Zastos. Mat. 1987

Unichord-free graphs

 χ -bounded graph class: $\chi \leq f(\omega)$

Perfect graph: $\chi = \omega$

Line graph: $\chi \leq \omega + 1$, the Vizing bound

Which choices of forbidden induced subgraphs give χ -bounded class?

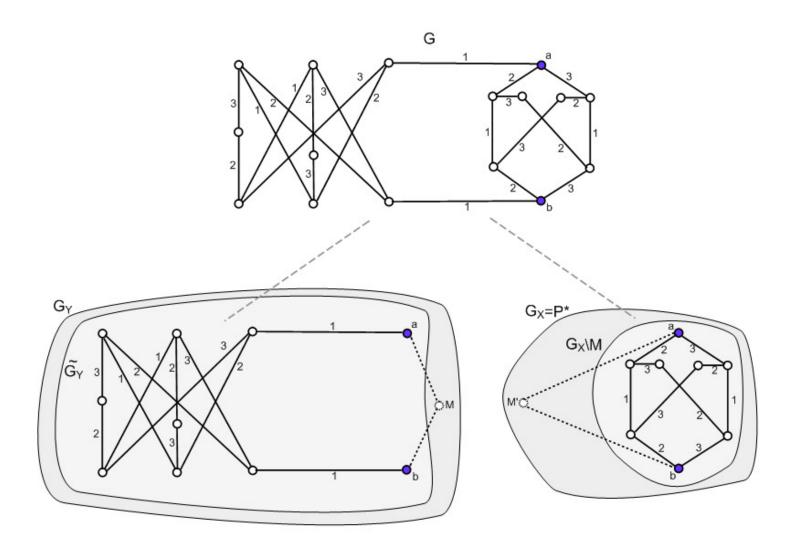
Unichord-free graphs: $\chi \leq \omega + 1$

Structure theorem:

every graph in the class can be built from basic graphs

N. Trotignon, K. Vušković – *J. Graph Theory* 2009

Combining edge-colorings with respect to 2-cutset



Decomposition with respect to a proper 2-cutset $\{a,b\}$ G is Class 1: Δ colors suffice, but $G_X = P^*$ is Class 2: $\Delta + 1$ colors needed

Edge-coloring unichord-free graphs

Class C = unichord-free graphs

	$\Delta = 3$	$\Delta \geq 4$	regular
graphs of C	N	N	N
4-hole-free graphs of C	N	Р	Р
6-hole-free graphs of C	N	N	N
$\{4-hole, 6-hole\}$ -free graphs of C	Р	Р	Р

"Chromatic index of graphs with no cycle with a unique chord"

Theoret. Comput. Sci. 2010 (with Raphael Machado, Kristina Vušković)

Edge-coloring unichord-free graphs

Class C = unichord-free graphs

	$\Delta = 3$	$\Delta \geq 4$	regular
graphs of C	N	Ν	N
4-hole-free graphs of C	N	Р	Р
6-hole-free graphs of C	N	Ν	N
{4-hole, 6-hole}-free graphs of C	Р	Р	Р

EDGECOL is N for k-partite r-regular, for each $k \ge 3$, $r \ge 3$

"Chromatic index of graphs with no cycle with a unique chord"

Theoret. Comput. Sci. 2010 (with Raphael Machado, Kristina Vušković)

Class 2 = overfull implies EDGECOL is P

Overfull graph:
$$|E| > \Delta \left\lfloor \frac{|V|}{2} \right\rfloor$$

Complete multipartite: Class 2 = overfull

Graphs with a universal vertex: Class 2 = overfull

Split-indifference graphs: Class 2 = subgraph overfull

 $\{4\text{-hole}, \text{unichord}\}\$ -free graphs, with $\Delta \neq 3$: Class 2 = subgraph overfull

D. Hoffman, C. Rodger – *J. Graph Theory* 1992

M. Plantholt - J. Graph Theory 1981

C. Ortiz Z., N. Maculan, J. Szwarcfiter – Discrete Appl. Math. 1998

Class 2 = overfull implies EDGECOL is P

Overfull graph:
$$|E| > \Delta \left\lfloor \frac{|V|}{2} \right\rfloor$$

Complete multipartite: Class 2 = overfull

Graphs with a universal vertex: Class 2 = overfull

Split-indifference graphs: Class 2 = subgraph overfull

 $\{4\text{-hole}, \text{unichord}\}\$ -free graphs, with $\Delta \neq 3$: Class 2 = subgraph overfull

D. Hoffman, C. Rodger – *J. Graph Theory* 1992

M. Plantholt – J. Graph Theory 1981

C. Ortiz Z., N. Maculan, J. Szwarcfiter – Discrete Appl. Math. 1998

Conjecture for edge-coloring chordal graphs:

Class 2 = subgraph overfull

"On edge-colouring indifference graphs"

Theoret. Comput. Sci. 1997 (with João Meidanis, Célia Mello)

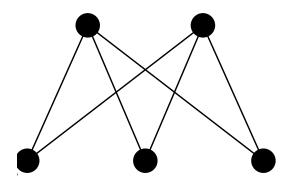
Total coloring conjecture

Vizing's edge coloring theorem: every graph is $(\Delta + 1)$ -edge colorable

Total coloring conjecture: every graph is $(\Delta + 2)$ -total colorable Type 1 = $(\Delta + 1)$ -total colorable, Type 2 = $(\Delta + 2)$ -total colorable

M. Molloy, B. Reed – Combinatorica 1998

Natural to consider classes of graphs for which TCC is established



TCC for bipartite: 2-color vertices, Δ -color edges

Total coloring is hard

NP-hard for k-regular bipartite

Reduction from edge-coloring

Consider classes of graphs for which edge-coloring is polynomial

Edge-coloring is polynomial for split-indifference graphs

- C. McDiarmid, A. Sánchez-Arroyo Discrete Math. 1994
- C. Ortiz Z., N. Maculan, J. Szwarcfiter Discrete Appl. Math. 1998

Type 2 = Hilton condition implies TOTALCOL is P

	Δ even	Δ odd
complete	Type 1	Type 2 (Hilton condition)
univ. vertex	Type 1	Hilton condition
split	Type 1	open
indifference	Type 1	open
split-indifference	Type 1 Type 1	Hilton condition
3 max cliques	Type 1	open

A. Hilton – Discrete Math. 1989

What is the largest class of graphs for which:

G Type 2 iff Hilton condition holds for closed neighborhood of Δ vertex

Necessary condition:

 Δ even implies Type 1

"The total chromatic number of split-indifference graphs"

Discrete Math. 2012 (with Christiane Campos, Raphael Machado, Célia Mello)

Total chromatic number of unichord-free graphs

	VERTEXCOL	EDGECOL	TOTALCOL
unichord-free	Р	N	N
$\{4\text{-hole}, \text{unichord}\}$ -free, $\Delta \geq 4$	Р	P	Р
$\{4\text{-hole,unichord}\}\text{-free, }\Delta=3$	Р	N	P

Surprising full-dichotomy wrt EDGECOL:

 $\Delta \geq 4$ is polynomial whereas $\Delta = 3$ is NP-complete

Surprising complexity-separating graph class:

EDGECOL is NP-complete whereas TOTALCOL is polynomial

"Complexity of colouring problems restricted to unichord-free and {square,unichord}-free graphs", *Discrete Appl. Math.* 2014 (with Raphael Machado and Nicolas Trotignon)

Edge coloring chordless graphs

G is chordless iff L(G) is wheel-free

Chordless, with $\Delta = 3$ is Class 1 implies {wheel,ISK₄}-free is 3 vertex colorable

B. Lévêque, F. Maffray, N. Trotignon – J. Comb. Theory, Ser. B 2012

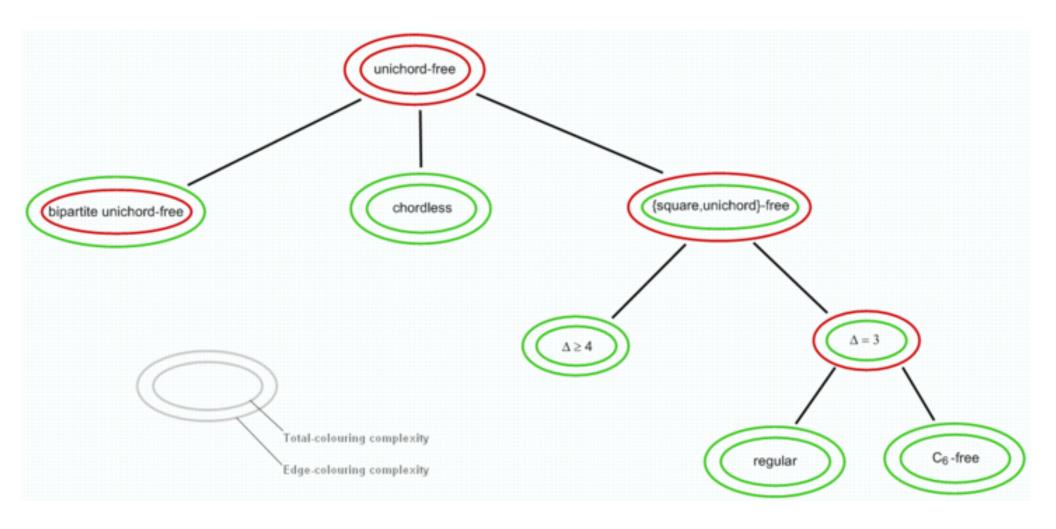
Chordless is a subclass of unichord-free EDGECOL is NP-complete for unichord-free graphs

Every chordless, with $\Delta > 3$ is Class 1

"Edge-colouring and total-colouring chordless graphs"

Discrete Math. 2013 (with Raphael Machado and Nicolas Trotignon)

Edge and total coloring complexity-separating classes

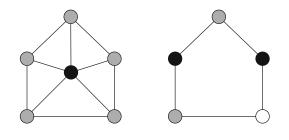


When restricted to {square,unichord}-free graphs, edge coloring is NP-complete whereas total coloring is polynomial

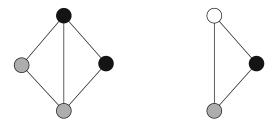
Clique-colouring unichord-free graphs

A clique-colouring of G is an assignment of colours to the vertices of G such that no inclusion-wise maximal clique of size at least 2 is monochromatic sonal copy

Colouring of hypergraphs arising from graphs: clique, biclique



subgraphs may even have a larger clique-chromatic number



subgraphs may even have a larger biclique-chromatic number

"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" *Algorithmica* 2017 (with Hélio Macedo and Raphael Machado)

Complexity restricted to unichord-free and special subclasses

Colouring problem \ class	General	Unichord-free	$\{\Box, \text{unichord}\}$ -free	$\{\triangle, unichord\}$ -free
Vertex-col.	NPC [14]	P [26]	P [26]	P [26]
Edge-col.	\mathcal{NPC} [13]	\mathcal{NPC} [18]	\mathcal{NPC} [18]	\mathcal{NPC} [18]
Total-col.	\mathcal{NPC} [21]	\mathcal{NPC} [17]	P[16,17]	\mathcal{NPC} [17]
Clique-col.	$\Sigma_2^p \mathcal{C}$ [20]	${\cal P}$	${\cal P}$	$\mathcal{P}\left(\kappa=\chi\right)$
Biclique-col.	$\Sigma_2^p \mathcal{C}$ [10]	${\cal P}$	${\cal P}$	$\mathcal{P}\left(\kappa_{B}=2\right)$

[10] M. Groshaus, F. Soulignac, P. Terlisky – J. Graph Algorithms Appl. 2014

[20] D. Marx - Theoret. Comput. Sci. 2011

"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" *Algorithmica* 2017 (with Hélio Macedo and Raphael Machado)

Are all perfect graphs 3-clique-colourable?

Every diamond-free perfect graph is 3-clique-colourable

G. Bacsó, S. Gravier, A. Gyárfás, M. Preissmann, A. Sebő – SIAM J. Discrete Math. 2004

M. Chudnovsky, I. Lo – *J. Graph Theory* 2017

Every unichord-free graph is 3-clique-colourable

A unichord-free graph is 2-clique-colourable if and only if it is perfect

"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" *Algorithmica* 2017 (with Hélio Macedo and Raphael Machado)

Dániel Marx plenary talk at ICGT 2014

Every graph is easy or hard: dichotomy theorems for graph problems

Dániel Marx¹

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> ICGT 2014 Grenoble, France July 3, 2014

Dániel Marx plenary talk at ICGT 2014

Dichotomy theorems

- Dichotomy theorems give good research programs: easy to formulate, but can be hard to complete.
- The search for dichotomy theorems may uncover algorithmic results that no one has thought of.
- Proving dichotomy theorems may require good command of both algorithmic and hardness proof techniques.

