THE MINIMUM CHROMATIC VIOLATION PROBLEM: A POLYHEDRAL APPROACH

M. Braga^a D. Delle Donne ^a J. Marenco ^a M. Escalante^{b,c} M.E. Ugarte^c M.C. Varaldo ^c

^aICI, Universidad Nacional de General Sarmiento ^bCONICET ^cFCEIA, Universidad Nacional de Rosario

ARGENTINA

Partially supported by PIP CONICET 0277

• Chromatic violation problem in a graph.

- Chromatic violation problem in a graph.
- $P_{CV}(G, E, F)$ chromatic violation polytope.

- Chromatic violation problem in a graph.
- $P_{CV}(G, E, F)$ chromatic violation polytope.
- Limit cases: Coloring polytope $P_{col}(G, E)$ and k-partition polytope $P_k(G)$.

- Chromatic violation problem in a graph.
- $P_{CV}(G, E, F)$ chromatic violation polytope.
- Limit cases: Coloring polytope $P_{col}(G, E)$ and *k*-partition polytope $P_k(G)$.
- Polyhedral study of $P_{CV}(G)$.

- Chromatic violation problem in a graph.
- $P_{CV}(G, E, F)$ chromatic violation polytope.
- Limit cases: Coloring polytope $P_{col}(G, E)$ and k-partition polytope $P_k(G)$.
- Polyhedral study of $P_{CV}(G)$.
- General Lifting Procedure for generating valid inequalities

- Chromatic violation problem in a graph.
- $P_{CV}(G, E, F)$ chromatic violation polytope.
- Limit cases: Coloring polytope $P_{col}(G, E)$ and k-partition polytope $P_k(G)$.
- Polyhedral study of $P_{CV}(G)$.
- General Lifting Procedure for generating valid inequalities
- Families of new facets without using Lifting Procedure

- k-coloring of G = (V, E): partition of V into k stable sets.
- vertex coloring problem (VCP): smallest *k* needed to color the nodes of *G*

- *k*-coloring of *G* = (*V*, *E*): partition of *V* into *k* stable sets.
- vertex coloring problem (VCP): smallest *k* needed to color the nodes of *G*

- *k*-coloring of *G* = (*V*, *E*): partition of *V* into *k* stable sets.
- vertex coloring problem (VCP): smallest *k* needed to color the nodes of *G*

k-partition

- *k*-partition of *G* = (*V*,*E*): partition of *V* into at most *k* nonempty sets
- *k*-partition problem (*k*-P): *G* edge weighted. Minimum weight *r*-partition, *r* ≤ *k*.

- *k*-coloring of *G* = (*V*, *E*): partition of *V* into *k* stable sets.
- vertex coloring problem (VCP): smallest *k* needed to color the nodes of *G*

k-partition

- *k*-partition of *G* = (*V*, *E*): partition of *V* into at most *k* nonempty sets
- *k*-partition problem (*k*-P): *G* edge weighted. Minimum weight *r*-partition, *r* ≤ *k*.

Given
$$G = (V, E)$$
, \mathscr{C} colors, $F \subset E$ weak edges

Minimum chromatic violation problem (MCVP)

Find \mathscr{C} -coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.

Given
$$G = (V, E)$$
, \mathscr{C} colors, $F \subset E$ weak edges

Minimum chromatic violation problem (MCVP)

Find \mathscr{C} -coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.

F = {23, 36, 46, 16}

Given
$$G = (V, E)$$
, \mathscr{C} colors, $F \subset E$ weak edges

Minimum chromatic violation problem (MCVP)

Find \mathscr{C} -coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.

F = {23, 36, 46, 16}

Given
$$G = (V, E)$$
, \mathscr{C} colors, $F \subset E$ weak edges

Minimum chromatic violation problem (MCVP)

Find \mathscr{C} -coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.

For $ij \in F$ let

 $x_{ic} = \begin{cases} 1 & \text{if } i \text{ colored by } c \\ 0 & \text{otherwise} \end{cases}$

$$z_{ij} = \begin{cases} 1 \\ 0 \end{cases}$$

{ 1 if i and j have the same color 0 otherwise

For $ij \in F$ let

$$x_{ic} = \begin{cases} 1 & \text{if } i \text{ colored by } c \\ 0 & \text{otherwise} \end{cases} \qquad z_{ij} = \begin{cases} \end{cases}$$

1 if *i* and *j* have the same color0 otherwise

The MCVP is

$$\min \sum_{ij \in F} z_{ij}$$

$$\sum_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc} \leq 1 \\ x_{ic} + x_{jc} \leq 1 + z_{ij} \\ x_{ic}, x_{jc}, z_{ij} \in \{0, 1\}}$$

$$i \in V, j \in V, ij \in F, c \in \mathscr{C}.$$

For $ij \in F$ let

$$x_{ic} = \begin{cases} 1 & \text{if } i \text{ colored by } c \\ 0 & \text{otherwise} \end{cases} \qquad z_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ have the same color} \\ 0 & \text{otherwise} \end{cases}$$

The MCVP is

$$\min \sum_{ij \in F} z_{ij}$$

$$\sum_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc} \leq 1 \\ x_{ic} + x_{jc} \leq 1 + z_{ij} \\ x_{ic}, x_{jc}, z_{ij} \in \{0, 1\}}$$

$$i \in V, j \in V, ij \in F, c \in \mathscr{C}.$$

For $ij \in F$ let

$$x_{ic} = \begin{cases} 1 & \text{if } i \text{ colored by } c \\ 0 & \text{otherwise} \end{cases} \qquad z_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ have the same color} \\ 0 & \text{otherwise} \end{cases}$$

The MCVP is

$$\min \sum_{ij \in F} z_{ij}$$

$$\sum_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc} \leq 1 \\ x_{ic} + x_{jc} \leq 1 + z_{ij} \\ x_{ic}, x_{jc}, z_{ij} \in \{0, 1\} \\ \hline i \in V, j \in V, ij \in F, c \in \mathscr{C}.$$

For $ij \in F$ let

$$x_{ic} = \begin{cases} 1 & \text{if } i \text{ colored by } c \\ 0 & \text{otherwise} \end{cases} \qquad z_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ have the same color} \\ 0 & \text{otherwise} \end{cases}$$

The MCVP is

$$\min \sum_{ij \in F} z_{ij}$$

$$\sum_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc} \leq 1 \\ x_{ic} + x_{jc} \leq 1 + z_{ij} \\ x_{ic}, x_{jc}, z_{ij} \in \{0, 1\}}$$

$$i \in V, i \in V, i \in F, c \in \mathscr{C}.$$

$$P_{CV}(G,F,\mathscr{C}) = \operatorname{conv} \begin{cases} \sum_{\substack{c \in \mathscr{C} \\ c \in \mathscr{C}}} x_{ic} &= 1 & i \in V \\ (x,z) \in \{0,1\}^s : \begin{array}{c} \sum_{\substack{c \in \mathscr{C} \\ c \in \mathscr{C}}} x_{ic} + x_{jc} &\leq 1 & ij \in E \setminus F, c \in \mathscr{C} \\ x_{ic} + x_{jc} &\leq 1 + z_{ij} & ij \in F, c \in \mathscr{C} \end{cases}$$

where $s = |V||\mathscr{C}| + |F|$.

$$P_{CV}(G,F,\mathscr{C}) = \operatorname{conv} \begin{cases} \sum_{\substack{c \in \mathscr{C} \\ c \in \mathscr{C}}} x_{ic} &= 1 & i \in V \\ (x,z) \in \{0,1\}^s : \begin{array}{c} \sum_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc}} &\leq 1 & ij \in E \setminus F, c \in \mathscr{C} \\ x_{ic} + x_{jc} &\leq 1 + z_{ij} & ij \in F, c \in \mathscr{C} \end{cases}$$
where $s = |V||\mathscr{C}| + |F|$.

Observe that

• $P_{col}(G, \mathscr{C}) = P_{CV}(G, \emptyset, \mathscr{C})$ where

$$P_{col}(G,\mathscr{C}) = \operatorname{conv}\left\{ x \in \{0,1\}^s : \begin{array}{ll} \sum\limits_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc}}} x_{ic} &= 1 \\ i \in V \\ ij \in E, c \in \mathscr{C} \end{array} \right\}$$

$$P_{CV}(G,F,\mathscr{C}) = \operatorname{conv} \begin{cases} \sum_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc}}} x_{ic} = 1 & i \in V \\ (x,z) \in \{0,1\}^s : \begin{array}{c} \sum_{\substack{c \in \mathscr{C} \\ x_{ic} + x_{jc}}} x_{ic} = 1 & ij \in E \setminus F, c \in \mathscr{C} \\ x_{ic} + x_{jc} & \leq 1 + z_{ij} & ij \in F, c \in \mathscr{C} \end{cases} \end{cases}$$

where $s = |V||\mathscr{C}| + |F|$.

Observe that

•
$$P_{col}(G, \mathscr{C}) = P_{CV}(G, \emptyset, \mathscr{C})$$

• $P_k(G) \subset P_{CV}(G, E, \mathscr{C})$ where

$$P_k(G) = \operatorname{conv} \left\{ \begin{array}{ccc} \sum\limits_{c \in \mathscr{C}} x_{ic} &= 1 & i \in V \\ (x, z) \in \{0, 1\}^s : & x_{ic} + x_{jc} &\leq 1 + z_{ij} & ij \in E, c \in \mathscr{C} \\ & -x_{ic} + x_{jc} &\leq 1 - z_{ij} & ij \in E, c \in \mathscr{C} \\ & x_{ic} - x_{jc} &\leq 1 - z_{ij} & ij \in E, c \in \mathscr{C} \end{array} \right\}$$

$$P_{CV}(G,F,\mathscr{C}) = \operatorname{conv} \begin{cases} \sum_{\substack{c \in \mathscr{C} \\ c \in \mathscr{C}}} x_{ic} &= 1 & i \in V \\ (x,z) \in \{0,1\}^s : \begin{array}{c} \sum_{\substack{c \in \mathscr{C} \\ c \in \mathscr{C}}} x_{ic} + x_{jc} &\leq 1 & ij \in E \setminus F, c \in \mathscr{C} \\ x_{ic} + x_{jc} &\leq 1 + z_{ij} & ij \in F, c \in \mathscr{C} \end{cases} \end{cases}$$
where $s = |V||\mathscr{C}| + |F|$.

Observe that

•
$$P_{col}(G, \mathscr{C}) = P_{CV}(G, \emptyset, \mathscr{C})$$

• $P_k(G) \subset P_{CV}(G, E, \mathscr{C})$

LEMMA

If $|\mathscr{C}| > \chi(G - F)$ then

•
$$\sum_{c \in \mathscr{C}} x_{ic} = 1, i \in V$$
 minimal equation system for $P_{CV}(G)$

$$P_{CV}(G,F,\mathscr{C}) = \operatorname{conv} \begin{cases} \sum_{\substack{c \in \mathscr{C} \\ (x,z) \in \{0,1\}^s : \\ x_{ic} + x_{jc} \\ x_{ic} \\ x_{ic} + x_{ic} \\ x_{ic} \\ x_{ic} + x_{jc} \\$$

Observe that

•
$$P_{col}(G, \mathscr{C}) = P_{CV}(G, \emptyset, \mathscr{C})$$

• $P_k(G) \subset P_{CV}(G, E, \mathscr{C})$

LEMMA

If $|\mathscr{C}| > \chi(G - F)$ then

• $\sum_{c \in \mathscr{C}} x_{ic} = 1, i \in V$ minimal equation system for $P_{CV}(G)$

• dim $(P_{CV}(G)) = |V|(|\mathcal{C}| - 1) + |F|.$

If $|\mathscr{C}| > \chi(G - F)$ then

- $x_{ic} \ge 0$, $i \in V, c \in \mathscr{C}$
- $z_{ij} \leq 1$, $ij \in F$
- $z_{ij} \ge 0$, $ij \in F$ such that $|\mathscr{C}| > \chi(G (F \setminus \{ij\}))$,
- $x_{ic} + x_{jc} \le 1 + z_{ij}$, $ij \in F$ maximal clique in $G (F \setminus \{ij\})$
- $x_{ic} + x_{jc} \le 1$, $ij \in E \setminus F$ maximal clique in G F

are facet defining inequalities for $P_{CV}(G)$.

If $|\mathscr{C}| > \chi(G - F)$ then

- $x_{ic} \ge 0$, $i \in V, c \in \mathscr{C}$
- $z_{ij} \leq 1$, $ij \in F$
- $z_{ij} \ge 0$, $ij \in F$ such that $|\mathscr{C}| > \chi(G (F \setminus \{ij\}))$,
- $x_{ic} + x_{jc} \le 1 + z_{ij}$, $ij \in F$ maximal clique in $G (F \setminus \{ij\})$
- $x_{ic} + x_{jc} \le 1$, $ij \in E \setminus F$ maximal clique in G F

are facet defining inequalities for $P_{CV}(G)$.

 $G \quad F = \{23, 36, 46, 16\}$

If $|\mathscr{C}| > \chi(G - F)$ then

- $x_{ic} \ge 0$, $i \in V, c \in \mathscr{C}$
- $z_{ij} \leq 1$, $ij \in F$
- $z_{ij} \ge 0$, $ij \in F$ such that $|\mathscr{C}| > \chi(G (F \setminus \{ij\}))$,
- $x_{ic} + x_{jc} \le 1 + z_{ij}$, $ij \in F$ maximal clique in $G (F \setminus \{ij\})$
- $x_{ic} + x_{jc} \le 1$, $ij \in E \setminus F$ maximal clique in G F

are facet defining inequalities for $P_{CV}(G)$.

 $G - (F \setminus \{16\})$

If $|\mathscr{C}| > \chi(G - F)$ then

- $x_{ic} \ge 0$, $i \in V, c \in \mathscr{C}$
- $z_{ij} \leq 1$, $ij \in F$
- $z_{ij} \ge 0$, $ij \in F$ such that $|\mathscr{C}| > \chi(G (F \setminus \{ij\}))$,
- $x_{ic} + x_{jc} \le 1 + z_{ij}$, $ij \in F$ maximal clique in $G (F \setminus \{ij\})$
- $x_{ic} + x_{jc} \le 1$, $ij \in E \setminus F$ maximal clique in G F

are facet defining inequalities for $P_{CV}(G)$.

G-F

Lemma

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

An instance $(G_1, F_1, \mathscr{C}_1)$ of MCVP is stronger than $(G_2, F_2, \mathscr{C}_2)$ if $G_1 = G_2$, $\mathscr{C}_1 = \mathscr{C}_2$ and $F_1 \subset F_2$.

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

THEOREM

Let $H \subset F$.

 $\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

THEOREM

Let $H \subset F$.

 $\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$

Note that: $\lambda x \leq \lambda_0$ facet of $P_{col}(G') \Leftrightarrow$ facet of $P_{CV}(G, F)$ where $G' = (V, E \setminus F)$.

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

THEOREM

Let $H \subset F$.

 $\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$

Relationship with the *k*-partition problem.

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

THEOREM

Let $H \subset F$.

 $\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$

Relationship with the *k*-partition problem.

Recall that $P_k(G) \subset P_{CV}(G, E)$.

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

THEOREM

Let $H \subset F$.

 $\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$

Relationship with the *k*-partition problem.

Recall that $P_k(G) \subset P_{CV}(G, E)$.

LEMMA

Let $\lambda x + \mu z \leq \lambda_0$ valid for $P_k(G)$.

• Facet for $P_k(G)$ and valid for $P_{CV}(G, E) \Rightarrow$ facet for $P_{CV}(G, E)$.

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

THEOREM

Let $H \subset F$.

 $\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$

Relationship with the *k*-partition problem.

Recall that $P_k(G) \subset P_{CV}(G, E)$.

Lemma

Let $\lambda x + \mu z \leq \lambda_0$ valid for $P_k(G)$.

• Facet for $P_k(G)$ and valid for $P_{CV}(G, E) \Rightarrow$ facet for $P_{CV}(G, E)$.

• $\mu \leq 0 \Rightarrow$ valid for $P_{CV}(G, E)$.

$$\mathscr{F} = \{(x, z) \in P_{CV}(G, F \setminus \{ij\}) : \lambda x + \mu z = \lambda_0\}$$
 non-empty face. Then
 $\lambda x + \mu z \le \lambda_0 + \lambda^* z_{ij},$

with $\lambda^* = \max\{|\lambda_{vc_1} - \lambda_{vc_2}| : v \in \{i, j\} \text{ and } c_1, c_2 \in \mathscr{C}\} \text{ valid for } P_{CV}(G, F).$

(1)

 $\mathscr{F} = \{(x, z) \in P_{CV}(G, F \setminus \{ij\}) : \lambda x + \mu z = \lambda_0\}$ non-empty face. Then

$$\lambda x + \mu z \le \lambda_0 + \lambda^* z_{ij}, \tag{1}$$

with $\lambda^* = \max\{|\lambda_{vc_1} - \lambda_{vc_2}| : v \in \{i, j\} \text{ and } c_1, c_2 \in \mathscr{C}\} \text{ valid for } P_{CV}(G, F).$ If \mathscr{F} facet and $\exists (x, z) \in \mathscr{F}, v \in V \text{ and } c_1, c_2 \in \mathscr{C} \text{ such that}$

•
$$x_{vc_1} = 1$$
 and $\lambda_{vc_2} - \lambda_{vc_1} = \lambda^*$

•
$$x_{uc_2} = 0$$
, $\forall u \in \Gamma_s(v)$,

•
$$x_{uc_2} = 0$$
 or $\mu_{vu} = 0$ or $z_{vu} = 1$, $\forall u \in \Gamma_w(v)$

then (1) defines facet of $P_{CV}(G)$.

Let $K \subseteq V$ clique in G. For $c \in C$, the semi-clique inequality

$$\sum_{v \in K} x_{vc} \le 1 + \sum_{e \in F(K)} z_e$$

is valid for $P_{CV}(G)$.

Let $K \subseteq V$ clique in G. For $c \in \mathscr{C}$, the semi-clique inequality

$$\sum_{v \in K} x_{vc} \le 1 + \sum_{e \in F(K)} z_e$$

is valid for $P_{CV}(G)$. If K maximal clique in $G - (F \setminus F(K))$ and $|\mathscr{C}| > \chi(G - (F \setminus F(K)))$ then it defines a facet of $P_{CV}(G)$.

Let $K \subseteq V$ clique in G. For $c \in \mathcal{C}$, the semi-clique inequality

$$\sum_{v \in K} x_{vc} \le 1 + \sum_{e \in F(K)} z_e$$

is valid for $P_{CV}(G)$. If K maximal clique in $G - (F \setminus F(K))$ and $|\mathscr{C}| > \chi(G - (F \setminus F(K)))$ then it defines a facet of $P_{CV}(G)$.

Let $K \subseteq V$ clique in G. For $c \in \mathcal{C}$, the semi-clique inequality

$$\sum_{v \in K} x_{vc} \leq 1 + \sum_{e \in F(K)} z_e$$

is valid for $P_{CV}(G)$. If K maximal clique in $G - (F \setminus F(K))$ and $|\mathscr{C}| > \chi(G - (F \setminus F(K)))$ then it defines a facet of $P_{CV}(G)$.

$$K = \{3,4,6\} \quad G - (F \setminus F(K))$$

$$egin{aligned} x_{3c} + x_{4c} + x_{6c} &\leq 1 + z_{34} + z_{36} + z_{46}, \ &|\mathscr{C}| > 3 \ & ext{facet of } \mathcal{P}_{CV}(G). \end{aligned}$$

Recursively applying the Lifting Lemma

 $G' \subset_{SG} G$ and F(G') weak edges in G'. For $T \subset \mathscr{C}$, the multirank inequality

$$\sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{V}'} x_{it} \le \alpha(G') |\mathcal{T}| + \sum_{e \in F(G')} z_e$$

is valid for $P_{CV}(G)$.

 $G' \subset_{SG} G$ and F(G') weak edges in G'. For $T \subset \mathscr{C}$, the multirank inequality

$$\sum_{t\in T}\sum_{i\in V'} x_{it} \leq \alpha(G')|T| + \sum_{e\in F(G')} z_e$$

is valid for $P_{CV}(G)$.

For general G' is not easy to analyze facetness. Two particular structures: cliques and odd holes.

 $G' \subset_{SG} G$ and F(G') weak edges in G'. For $T \subset \mathscr{C}$, the multirank inequality

$$\sum_{t\in T}\sum_{i\in V'} x_{it} \leq \alpha(G')|T| + \sum_{e\in F(G')} z_e$$

is valid for $P_{CV}(G)$.

PROPOSITION

Let $K \subset V$ clique, $T \subset C$. For $|C| > \chi(G - (F \setminus F(K))) + 1$ and $1 \leq |T| \leq |K| \leq |C| + |T|$, the multicolor clique inequality (MKI)

$$\sum_{t \in T} \sum_{i \in V'} x_{it} \le |T| + \sum_{e \in F(K)} z_e$$

valid for $P_{CV}(G)$.

 $G' \subset_{SG} G$ and F(G') weak edges in G'. For $T \subset \mathscr{C}$, the multirank inequality

$$\sum_{t\in T}\sum_{i\in V'} x_{it} \leq \alpha(G')|T| + \sum_{e\in F(G')} z_e$$

is valid for $P_{CV}(G)$.

PROPOSITION

Let $K \subset V$ clique, $T \subset C$. For $|C| > \chi(G - (F \setminus F(K))) + 1$ and $1 \leq |T| \leq |K| \leq |C| + |T|$, the multicolor clique inequality (MKI)

$$\sum_{t \in T} \sum_{i \in V'} x_{it} \le |T| + \sum_{e \in F(K)} z_e$$

valid for $P_{CV}(G)$. Facet of $P_{CV}(G) \Leftrightarrow$

- $1 \le |T| < |K| < |\mathscr{C}| + |T|$
- $\nexists w \in V \setminus K$ with $K \subseteq \Gamma_s(w)$.

Let $H \subset V$ odd hole, $T \subset C$. For $|C| > \chi(G - (F \setminus F(H)))$ the multicolor odd hole inequality

$$\sum_{t\in T}\sum_{i\in H} x_{it} \leq |T| \frac{|H|-1}{2} + \sum_{e\in F(H)} z_e$$

Let $H \subset V$ odd hole, $T \subset C$. For $|C| > \chi(G - (F \setminus F(H)))$ the multicolor odd hole inequality

$$\sum_{t\in T}\sum_{i\in H}x_{it}\leq |T|\frac{|H|-1}{2}+\sum_{e\in F(H)}z_e$$

facet of $P_{CV}(G) \Leftrightarrow$

- |𝔅| > 2,
- $1 \le |T| \le 2$,

• $\nexists w \in V \setminus H$ such that $\Gamma_s(w)$ includes three consecutive vertices from H.

Let $K \subseteq V$ clique with F(K) = E(K), $T \subseteq C$ and $q_t \in \mathbb{N}$ for each $t \in T$, the multicolor combinatorial clique inequality

$$\sum_{t\in T}\sum_{i\in K}q_t x_{it} \leq \sum_{t\in T}\frac{q_t(q_t+1)}{2} + \sum_{ij\in F(K)}z_{ij}$$

valid for $P_{CV}(G)$.

Let $K \subseteq V$ clique with F(K) = E(K), $T \subseteq C$ and $q_t \in \mathbb{N}$ for each $t \in T$, the multicolor combinatorial clique inequality

$$\sum_{t\in T}\sum_{i\in K}q_tx_{it}\leq \sum_{t\in T}\frac{q_t(q_t+1)}{2}+\sum_{ij\in F(K)}z_{ij}$$

valid for $P_{CV}(G)$. If $|\mathscr{C}| > \chi(G - (F \setminus F(K))) + 1$, it is facet of $P_{CV}(G) \Leftrightarrow$ • $\nexists w \in V \setminus K$ with $K \subseteq \Gamma_s(w)$ • $1 \leq q_{\Sigma} < |K| < |\mathscr{C}| + q_{\Sigma}$, where $q_{\Sigma} = \sum_{t \in T} q_t$.

Let $K \subseteq V$ clique with F(K) = E(K), $T \subseteq \mathscr{C}$ and $q_t \in \mathbb{N}$ for each $t \in T$, the multicolor combinatorial clique inequality

$$\sum_{t\in T}\sum_{i\in K}q_tx_{it}\leq \sum_{t\in T}\frac{q_t(q_t+1)}{2}+\sum_{ij\in F(K)}z_{ij}$$

valid for $P_{CV}(G)$. If $|\mathscr{C}| > \chi(G - (F \setminus F(K))) + 1$, it is facet of $P_{CV}(G) \Leftrightarrow$ • $\nexists w \in V \setminus K$ with $K \subseteq \Gamma_s(w)$ • $1 \leq q_{\Sigma} < |K| < |\mathscr{C}| + q_{\Sigma}$, where $q_{\Sigma} = \sum_{t \in T} q_t$.

Note that

Not arising from the Lifting Lemma

Let $K \subseteq V$ clique with F(K) = E(K), $T \subseteq \mathscr{C}$ and $q_t \in \mathbb{N}$ for each $t \in T$, the multicolor combinatorial clique inequality

$$\sum_{t\in T}\sum_{i\in K}q_tx_{it}\leq \sum_{t\in T}\frac{q_t(q_t+1)}{2}+\sum_{ij\in F(K)}z_{ij}$$

valid for $P_{CV}(G)$. If $|\mathscr{C}| > \chi(G - (F \setminus F(K))) + 1$, it is facet of $P_{CV}(G) \Leftrightarrow$ • $\nexists w \in V \setminus K$ with $K \subseteq \Gamma_s(w)$ • $1 \leq q_{\Sigma} < |K| < |\mathscr{C}| + q_{\Sigma}$, where $q_{\Sigma} = \sum_{t \in T} q_t$.

Note that

- Not arising from the Lifting Lemma
- Not a generalization of MKI: the complete graph has *no* strong edges

• Polyhedral study of the minimum chromatic violation problem

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with weak subgraphs

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with *weak* subgraphs

To do:

• "Projecting procedure" starting from the k-partition facets?

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with *weak* subgraphs

- "Projecting procedure" starting from the *k*-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with *weak* subgraphs

- "Projecting procedure" starting from the *k*-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
- Families of graphs for which the MCVP can be polynomial time solvable?

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with *weak* subgraphs

- "Projecting procedure" starting from the *k*-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
- Families of graphs for which the MCVP can be polynomial time solvable?
- Separation routine for some of the new valid inequalities?

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with *weak* subgraphs

- "Projecting procedure" starting from the *k*-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
- Families of graphs for which the MCVP can be polynomial time solvable?
- Separation routine for some of the new valid inequalities?

Thanks for your attention!

Let $H \subset V$ odd hole, $T \subset C$. For $|C| > \chi(G - (F \setminus F(H)))$ the multicolor odd hole inequality

$$\sum_{t\in T}\sum_{i\in H}x_{it}\leq |T|\frac{|H|-1}{2}+\sum_{e\in F(H)}z_e$$

facet of $P_{CV}(G) \Leftrightarrow$

- $|\mathscr{C}| > 2$,
- 1 ≤ |T| ≤ 2,

• $\nexists w \in V \setminus H$ such that $\Gamma_s(w)$ includes three consecutive vertices from H.

