An Adversarial Model for
Scheduling with Testing

Optimizing with explorable uncertainty

C. Darr
University Pierre et Marie Curie, Paris-6

LAGOS 2017

Outline

1. The model
2. Minimum Spanning Tree

3. Scheduling

Computing paradigm

Computing paradigm

Models with uncertainty

Stochastic optimization

Robust optimization m

Some papers with queries Sy

« A model for data in motion,
Simon Kahan, STOC 1991 * Input is drawn from known
distributi
 The Trapp system, strbution

Olston and Widom, VLDB'2008 Need to produce a solution

« Minimum spanning Trees, minimizing expected objective

Erlebach et al, STACS'2008 value

Models with uncertainty

Stochastic optimization —

Robust optimization

Some papers with queries

* A model for data in motion,
Simon Kahan, STOC 1991 * Inputis drawn from known set

 The Trapp system, (scenarios)

Olston and Widom, VLDB'2008 Need to produce a solution

« Minimum spanning Trees minimizing the worst objective
Erlebach et al STACS'ZObB value over all scenarios

Models with uncertainty

Stochastic optimization
Robust optimization @
Some papers with queries @

A model for data in motion,
Simon Kahan, STOC’1991 Points are moving in space

e Each point lays in a set, determined by
 The Trapp system, last known position and velocity

Olston and Widom, VLDB’2008

Query minimal number of point positions

e Minimum spanning Trees, In order to solve some problem

Erlebach et al, STACS'2008 e see also Bruce et al, ToCS'2005

Models with uncertainty

Stochastic optimization
Robust optimization
Some papers with queries

« A model for data in motion,
Simon Kahan, STOC’ 1991

 [The Trapp system,

answer
data master

queries Xi=6

update if outside of interval

e |ocal cache contains intervals of
values

Olston and Widom. VLDB’2008 e master server contains exact values

e Minimum spanning Trees,

Erlebach et al, STACS'2008

e data base works with intervals, only
querying the master server when
more precision is required

Minimum spanning tree

given: graph, {—]}

open edge weight intervals @

hidden: exact edge weights (4 9) (2 6)
query: reveals exact edge O 3
weight

goal: identify a minimum
spanning tree with minimal
number of queries

Minimum spanning tree

given: graph, {1}

open edge weight intervals @

hidden: exact edge weights {5} (2 6)
D 3

query: reveals exact edge
weight

goal: identify a minimum
spanning tree with minimal
number of queries

Minimum spanning tree

given: graph, {1}
open edge weight intervals @

hidden: exact edge weights {5}
®

N

query: reveals exact edge
weight

goal: identify a minimum
spanning tree with minimal
number of queries

Minimum spanning tree

* measure: An algorithm ALG is
c-competitive if for all

instances | ® {1}
ALG < ¢ OPT,

» For asymptotic competitive (4,9) (2,0)
ratio an additive constant is 5 3
allowed

 OPT:: minimal number of
gueries, say an adversary
could make it he knew the
exact values but still need to
query them

e OPTi: is 1

e ALG: is n-1

Why open intervals?

* if uncertainty intervals were
closed: Consider this graph.

* Ratio: terrible large

Minimum spanning tree

competitive ratio lower bound upper bound

deterministic
[Erlebach et al.
STACS'2008]

randomized

[Megow,MeiBner,Skutella,
ESA'2015]

Minimum spanning tree

competitive ratio lower bound upper bound

deterministic
[Erlebach et al.
STACS'2008]

randomized

[Megow,MeiBner,Skutella,
ESA'2015]

I'he witness algorithm

For a more general setting:
Cheapest Set Problem

Find a feasible set Sc{1,..,n}
MINIMIZINg 2ies Xi

W is a withess set if it
impossible to solve the
problem without querying at
least one element from W.

Algorithm: While instance not
solved: choose a witness set
and query all items from it.

I'he witness algorithm

e Lemma |f each chosen
witness set has size < ¢,
then the algorithm is c-
competitive

« \Wis awitness set if it
impossible to solve the
problem without querying at
least one element from W.

* Algorithm: While instance not
solved: choose a witness set
and query all items from it.

The U- Red algorithm

given: for edges e wee(le,U

Red rule: if there is an edge e ina cycle C ‘JL.

with Le > Us for all feC\e (always maximal ’
edge), then there is a minimum spanning y

tree without e (1,6) ?' (6,8)

U-Red: initially T=empty ,
for all edges e in lexicographically ®
increasing (Le,Ue) order:
addeto T
if T has a cycle C
if e is always maximal in C
remove from T
else
let feC s.t. Ur is maximal

let geC\f s.t. Ug>L;

query f and g, and restart
return T

Key argument: {f,g} is a withess set,
hence the algorithm is 2-competitive

—
N
i

~—"

—~

1,9)

1,9) (3,9) (2,4)

—~

5 (2,4)

(7.9 Al

Some personal work

* SO far: minimize query cost to compute optimal
solution

* Now: add query cost to objective value

e —find compromise between querying and
improving solution

* joint work with Thomas Erlebach, Nicole Megow and Nicole Meil3ner

Warmup

has to send a

. . cares about the
single file

reception time

36 mdd

could compress it
before sending

I'his Is a scheduling problem

* Single job, has upper limit u

« Either schedule untested : ! |
cost u

* or test (takes 1 unit), which
reveals processing time
O<p<u, and schedule it ;
cost 1+p

uis given
P Is hidden

a test reveals p

Minimize competitive ratio

compare algorithm with an adversary who knows p,
and therefore knows if it is worth to test

* Produce a solution with a guaranty on
the cost compared to the optimal ALG: u |
solution

OPT: | 1 p‘

 The adversary computes an optimal
solution. He knows p, but still needs to
test the job, if he wants to schedule it at

length p. ALG | } |
e Ratio ALG/OPT over worst instance OPT |
=competitive ratio PT: u

=price of not knowing p

Minimize competitive ratio

* Adversary chooses
u=¢p=golden ratio=1.618...

ALG: | ¢ |
* If algorithm does not test, | ‘
adversary chooses p=0 anad OFT: | 1
tests
ALG: | 1 ¢ ‘

* |If algorithm does test,
adversary chooses p=¢ and op1 | ‘
does not test

T'he general problem

has to send files Cares about 2C;
Of various sizes = reception
tlme of file |

ﬁ'ﬁ

could compress
files before
sending

N
N
N
n

Other motivations

Code optimizer

machine coula
run a code
optimizer betore
executing a
program

safe problem
resolution
versus heuristic

There are two
methods to solve
a problem. A
safe one and a
heuristic that
might be quicker
or fall

Scheduling
medical
appointements

guick diagnosis
can estimate
processing times

T'he general problem

Input: n jolbs with upper limits ui,...,u,

Produce a schedule consisting of job executions or tests. Test of
job | takes 1 time unit and changes its processing time to 0<p;<u;.

/ defer \‘

Can be scheduled anytime after its test.

ALG: U | 1

1

pa 1] 1] e |

Objective = total completion time of jobs.

Minimize ratio Objective / optimal objective

P4=P5=0

Notice: if the goal were to minimize objective, one would never test

Qur results

_---
_ | 8546 FHRESHOLD
_ Le2s7 17453 panpou
_ 1.85406 1.9338 BEAT
_ I oTE
_ I oTE

Qur results

2 THRESHOLD
1.6257 (asyjn-;ifg?atio) RANDOM
1.9338 BEAT
1.8668 UTE

1.8652 UTE

Deterministic lower bound

ALG:p|p|p|1p|1p|1p|1111|1|p|p|p|
ste— §-v-A —>fe 1-§ >f=—— §-v-A ——>

1I1I1I1I1Ir>lplplplplpl
le—— 1+v-6

* Any decent algorithm produces a schedule
with above structure for parameters v, A with

n uniform jobs with upper limit p VAASS

Index jobs in order they are touched by * The competitive ratio is

algorithm (tested or executed untested) ALG(5.v, A.n) / OPT(8,v.n)

p,;=0 if >bn or job j is executed untested by « Algorithm (minimizer) chooses v,\
algo.

p;=p otherwise * Adversary (maximizer) chooses n,6
Algorithm gets even to know 6 .

Analyzing local optima yields ratio 1.854628

Qur results

1.6257 1.7493 RANDOM
(asymptotic ratio)

1.8546 1.9338 BEAT

1.8546 1.8068 UTE

1.8546 1.8652 UTE

Algorithm HRESHOLD

AG: (1 [1]1]1 2|1 2

1|1|1|1 2+8|2+8|2+8|
a

>t< C >|

[C >}< b >}<

OPT. 1|1|1|1| 2 | 2 |2+a|2+e|2+a|
< a >t< b >}< c >|

* Execute untested all jobs |

with uj<2
 Worst case instance:
* Test all other jobs in a jobs u;=2,p;=0
arbitrary order. If pi<2, b jobs uj=p;=2
execute, otherwise defer. C Jobs uj=p;=2+¢

« Execute all deferred jobs o Simple arithmetics:
ALG(a,b,c)<2-0OPT(a,b,c)

Qur results

1.8546 THRESHOLD

1.6257 1.7493 RANDOM
(asymptotic ratio)

1.8546 1.9338 BEAT

Algorithm UTE

ALG 1 P |1 P 1 P

111I1Ir>Ir>Ir>I

if y<1-B:
|

1-B-y —= 1-B-y ——=

ALG 1 pl1 pl1 pl1

e [1[e [1] e [1]7]

if y=1-[3:

: 1-y

e [l e [elele]e]r]

fe— y —i 1-y

for extrem uniform instances, u=p, p;e{0,p}

has ratio » = "5 & 1.8668.

1—p+p*—p+2pp—p?
Parameter g = —— 2T P —PT PO PP
L—=p+p°—p+pp

Execute all jobs untested if p<p

Otherwise test all jobs. Execute right after
their test the first max{0,B} fraction of jobs.
Then only if p;=0. Finally execute deferred
jobs.

 Worst case instance defined by
length p
fraction y. the first yn tested jobs have p;=p
and the remaining p;=0

e Second order analysis to optimize p,y and [3

Qur results

e

_ | 8545 THRESHOLD
e
_ lesi6 198 BEAT
_ L8566 18668 e
_ Les6 18552 e

Algorithm RANDOM

fractions:

1-a-B-y a B | Y
S T I N N I B =1 8
: tests in random order : defered jobs —=|
ot (1A A AT 77 e e EE [ee]erc]Ee]
le— 1-a-B-y I a I B I 4 |

* Algorithm RANDOM: Parameters T>E
Schedule untested all jobs with upper limit
<T
Test in random order all larger jobs j, if p<E
execute immediately, else defer their
execution
Finally schedule deferred jobs

* Worst case instances:

(1-a-B-y) fraction of jobs : u=T, p;=0

an jobs have u=T, p=T

Bn jobs have u=E, p=E
j

yn jobs have

e Ratio < T Iff
G:=0PT:-T-ALG >0

e Algorithm chooses T, E to maximize G
Adversary chooses a,[3,y to minimize G

Qur results

 comeuversio

_ | 8546 FHRESHOLD
_ Le2s7 17453 panpou
Cmmm e e
_ I oTE
_ I oTE

Algorithm RANDOM

fractions: 1-a-B-y a B Y y
ALG: | 1] 17| (1] E]| |1 E+e | E+e | Eve |
: tests in random order : defered jobs —=

ot (1A A AT 77 e e EE [ee]erc]Ee]

f«<— 1-a-B-y I a I B I 4 |

* Adversary chooses q,[3,y=0 with Adversary chooses (a,3,y), s.t. E e . L . B]
a+pB+y< G(a,By,T.E) is a local minima |

* These generate conditions on T,E
G(a,B,y, T, E)=0 ,

2.86| ()

» Algorithm chooses T,E satisfying all *
conditions and has ratio <T

o Cases: (0,B,y) is in the polytope, one
of the 3 two-dimensional facets, or
one of the 6 one-dimensional facets
— standard but tedious second
order analysis

2.82+

* Optimal T,E are roots to polynomials
of degree 5

Algorithm BEAT

BEAT: all long jobs tested,

short jobs tested delayed long

some long jobs executed and executed jobs executed

.| short jobs with p; =0
OPT: tested and executed

short jobs with p; = F and
long jobs executed untested

e N uniform jobs with upper limit u,
short if processing time either <
E:=max{1,u-1}, long otherwise

e Algorithm: maintain TotalTest
and TotalExec times.

e Jest arbitrary job | and execute
immediately if short or if
TotalExec + p; < TotalTest

Worst case instance:
Essentially all jobs have
processing times €{0,E,u},
presented in decreasing order

Algorithm BEAT

Poo ~ 1.9338

\ THRESHOLD
|
|

competitive ratio

o Asymptotic competitive ratio Is

| | |
1 1.93 2.29

jpEar _ 1224 p)p+ V(1L - 2p)2(=3+ 4
~ 2(-1+p)p

e Algorithm: maintain TotalTest
and TotalExec times.

 Worst case instance:
Essentially all jobs have
processing times €{0,E,u},
presented in decreasing order

e Jest arbitrary job | and execute
immediately if short or if
TotalExec + p; < TotalTest

Future directions

* |sthe deterministic ratio < 2 ?
* Consider test times proportional to u;

e Study other classical combinatorial problems

