An Adversarial Model for Scheduling with Testing Optimizing with explorable uncertainty

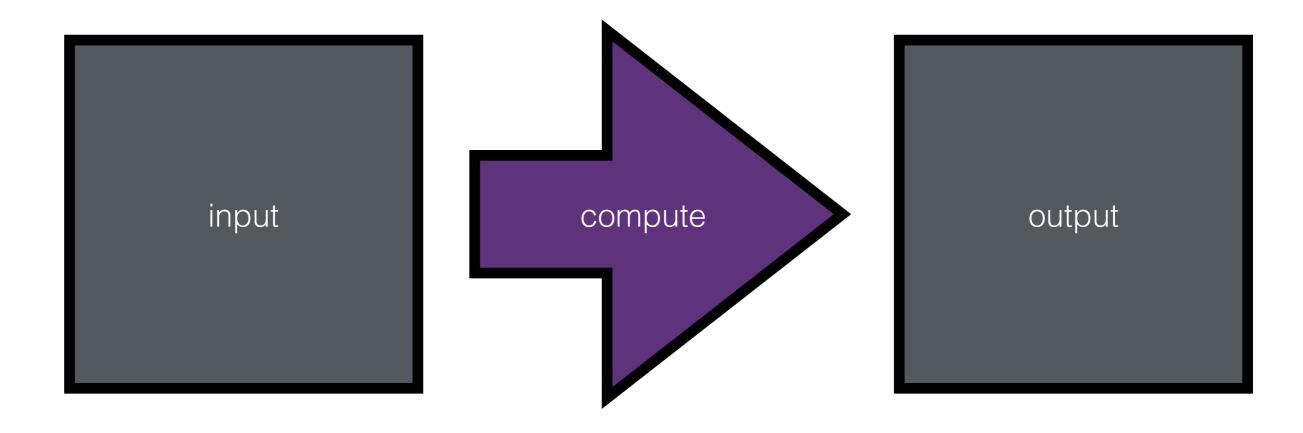
C. Dürr University Pierre et Marie Curie, Paris-6

LAGOS 2017

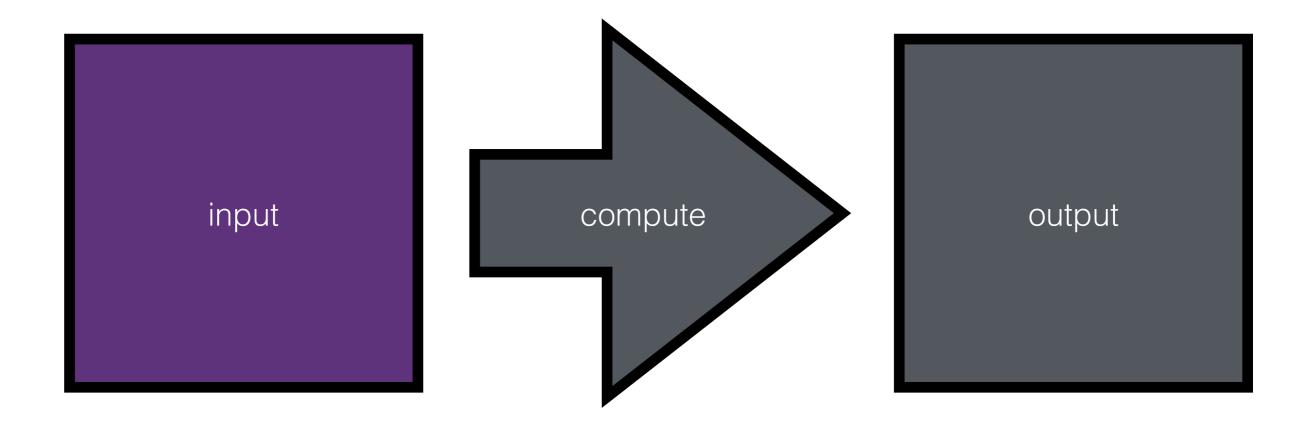
Outline

- 1. The model
- 2. Minimum Spanning Tree
- 3. Scheduling

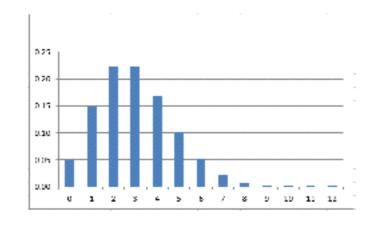
Computing paradigm



Computing paradigm

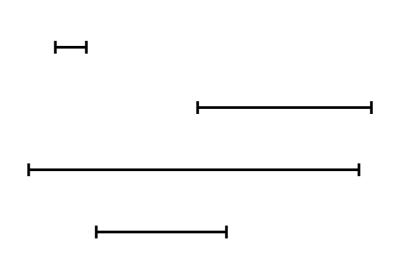


- Stochastic optimization
- Robust optimization
- Some papers with queries
 - A model for data in motion, Simon Kahan, STOC'1991
 - The Trapp system, Olston and Widom, VLDB'2008
 - Minimum spanning Trees, Erlebach et al, STACS'2008



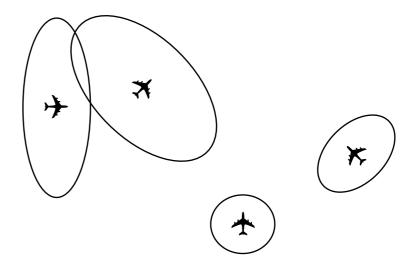
- Input is drawn from known distribution
- Need to produce a solution minimizing expected objective value

- Stochastic optimization
- Robust optimization
- Some papers with queries
 - A model for data in motion, Simon Kahan, STOC'1991
 - The Trapp system, Olston and Widom, VLDB'2008
 - Minimum spanning Trees, Erlebach et al, STACS'2008



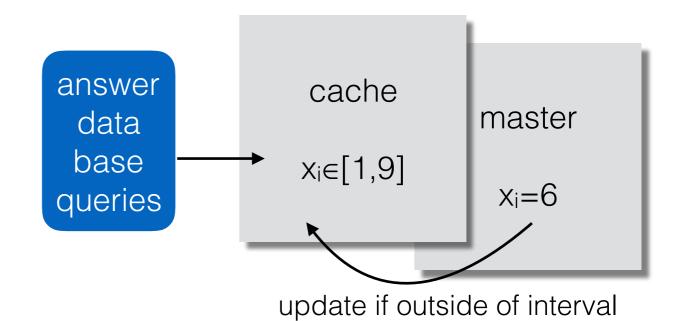
- Input is drawn from known set (scenarios)
- Need to produce a solution minimizing the worst objective value over all scenarios

- Stochastic optimization
- Robust optimization
- Some papers with queries
 - A model for data in motion, Simon Kahan, STOC'1991
 - The Trapp system, Olston and Widom, VLDB'2008
 - Minimum spanning Trees, Erlebach et al, STACS'2008



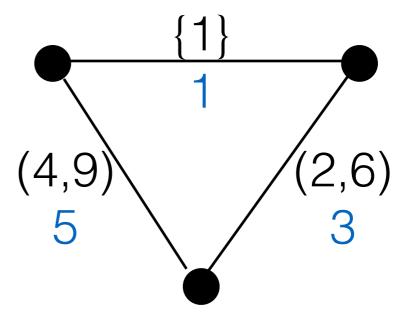
- Points are moving in space
- Each point lays in a set, determined by last known position and velocity
- Query minimal number of point positions in order to solve some problem
- see also Bruce et al, ToCS'2005

- Stochastic optimization
- Robust optimization
- Some papers with queries
 - A model for data in motion, Simon Kahan, STOC'1991
 - The Trapp system, Olston and Widom, VLDB'2008
 - Minimum spanning Trees, Erlebach et al, STACS'2008

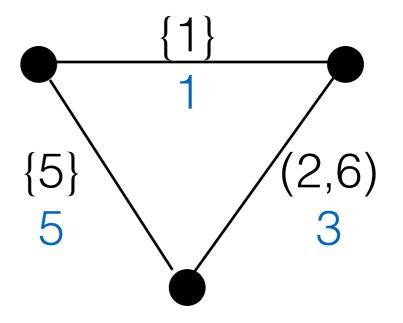


- local cache contains intervals of values
- master server contains exact values
- data base works with intervals, only querying the master server when more precision is required

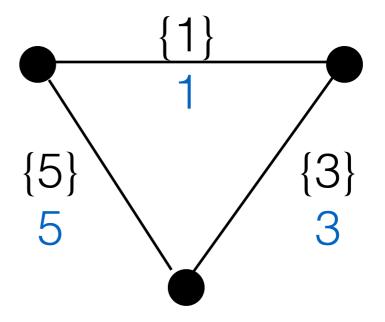
- **given**: graph, open edge weight intervals
- hidden: exact edge weights
- query: reveals exact edge weight
- **goal**: identify a minimum spanning tree with minimal number of queries



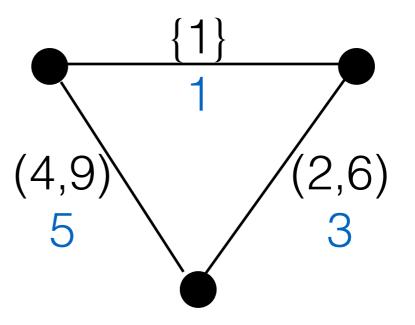
- **given**: graph, open edge weight intervals
- hidden: exact edge weights
- query: reveals exact edge weight
- **goal**: identify a minimum spanning tree with minimal number of queries



- **given**: graph, open edge weight intervals
- hidden: exact edge weights
- query: reveals exact edge weight
- **goal**: identify a minimum spanning tree with minimal number of queries

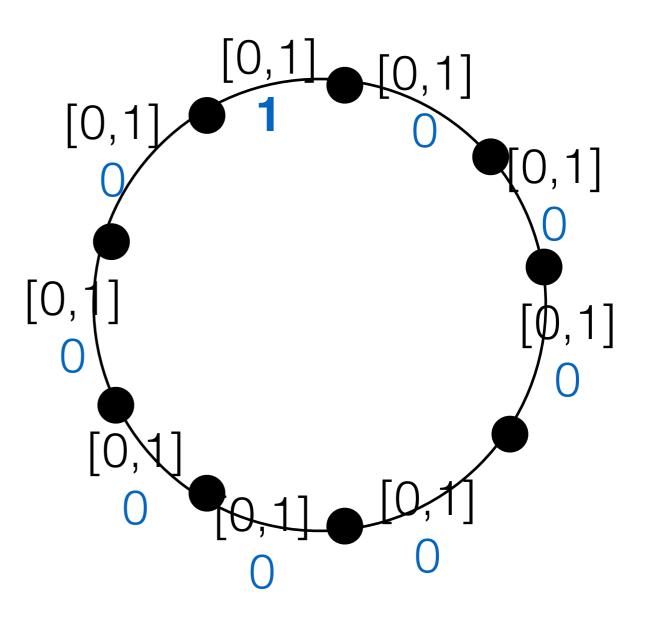


- measure: An algorithm ALG is c-competitive if for all instances I ALG_I ≤ c OPT_I
- For asymptotic competitive ratio an additive constant is allowed
- OPT_I: minimal number of queries, say an adversary could make if he knew the exact values but still need to query them



Why open intervals?

- if uncertainty intervals were closed: Consider this graph.
- **OPT**I: is 1
- **ALG**: is n-1
- Ratio: terrible large

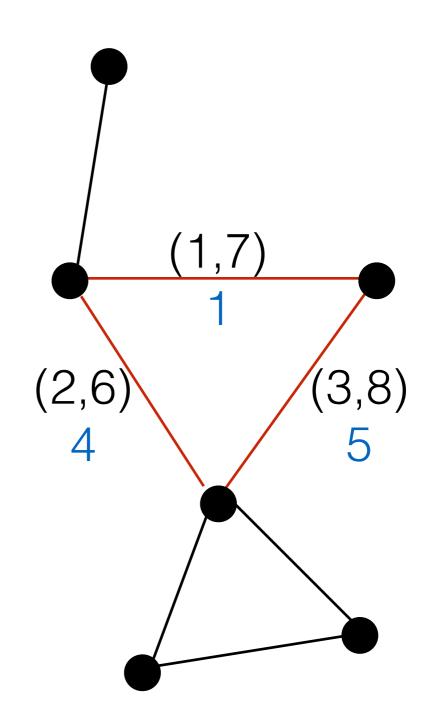


competitive ratio	lower bound	upper bound
deterministic [Erlebach et al. STACS'2008]	2	2
randomized [Megow,Meißner,Skutella, ESA'2015]	1,5	1,707

competitive ratio	lower bound	upper bound
deterministic [Erlebach et al. STACS'2008]	2	2
randomized [Megow,Meißner,Skutella, ESA'2015]	1,5	1,707

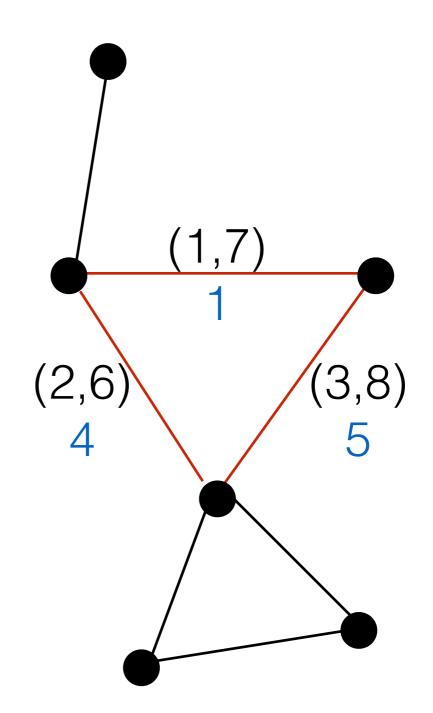
The witness algorithm

- For a more general setting:
 Cheapest Set Problem
- Find a *feasible* set S⊆{1,..,n} minimizing Σ_{i∈S} x_i
- W is a **witness set** if it impossible to solve the problem without querying at least one element from W.
- Algorithm: While instance not solved: choose a witness set and query all items from it.



The witness algorithm

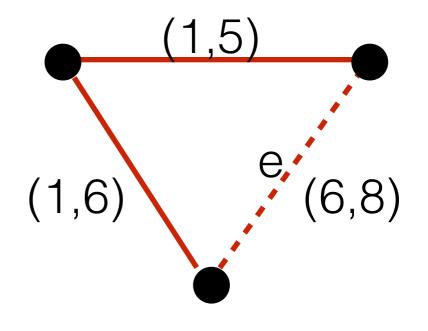
- Lemma If each chosen witness set has size ≤ c, then the algorithm is ccompetitive
- W is a witness set if it impossible to solve the problem without querying at least one element from W.
- Algorithm: While instance not solved: choose a witness set and query all items from it.

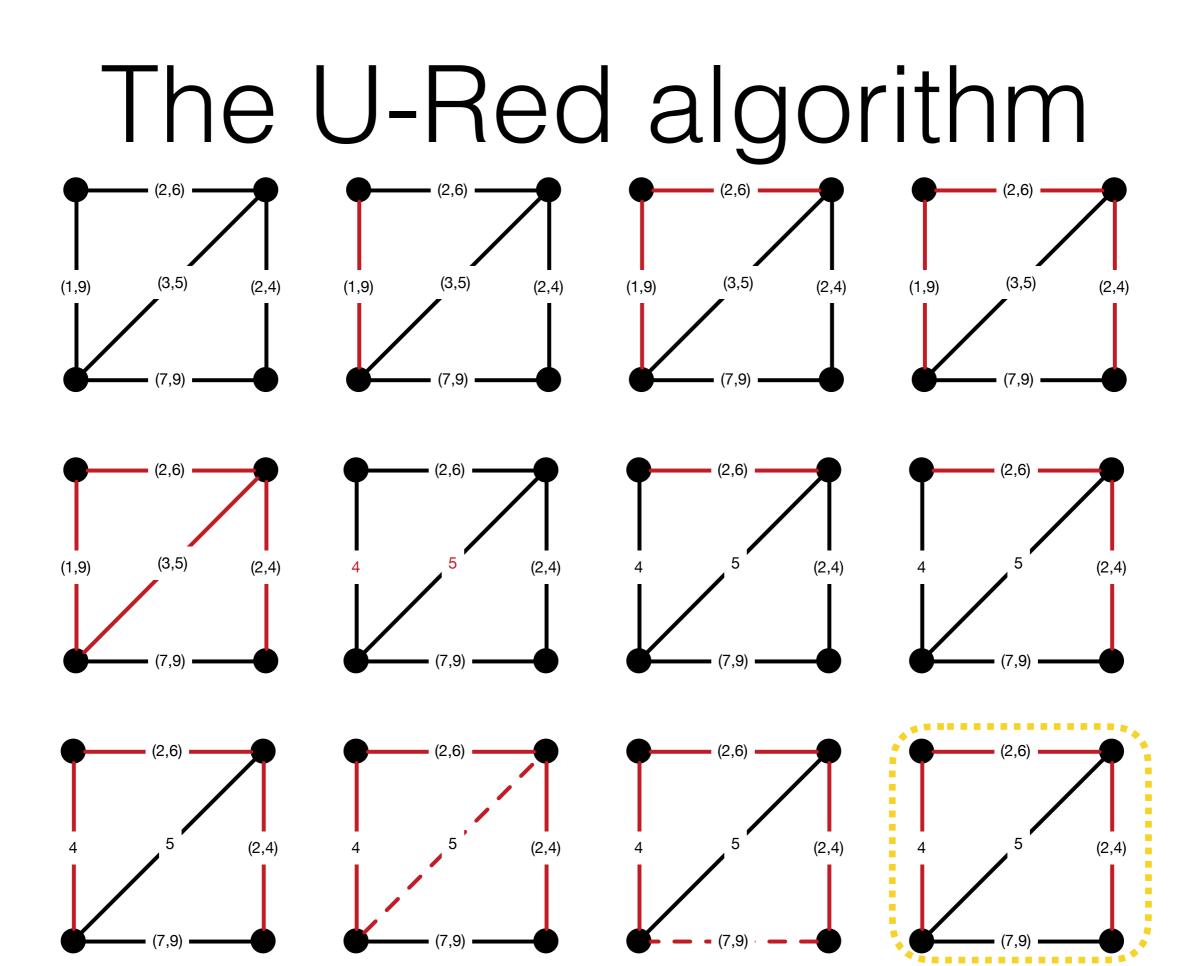


The U-Red algorithm

- given: for edges e $w_e \in (L_e, U_e)$
- Red rule: if there is an edge e in a cycle C with L_e ≥ U_f for all f∈C\e (*always maximal edge*), then there is a minimum spanning tree without e

U-Red: initially T=empty
 for all edges e in lexicographically
 increasing (L_e,U_e) order:
 add e to T
 if T has a cycle C
 if e is always maximal in C
 remove from T
 else
 let f∈C s.t. U_f is maximal
 let g∈C\f s.t. U_g>L_f
 query f and g, and restart
 return T





Some personal work

- So far: minimize query cost to compute optimal solution
- Now: add query cost to objective value
- →find compromise between querying and improving solution
- joint work with Thomas Erlebach, Nicole Megow and Nicole Meißner

Warmup

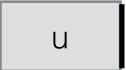
has to send a **single** file

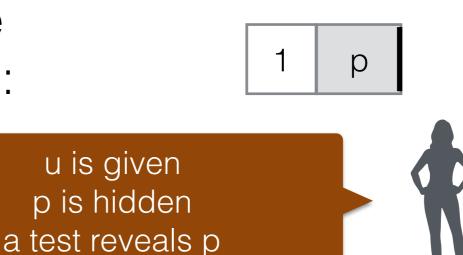
cares about the reception time

could compress it before sending

This is a scheduling problem

- Single job, has upper limit u
- Either schedule untested : cost u
- or test (takes 1 unit), which reveals processing time
 0≤p≤u, and schedule it :
 cost 1+p

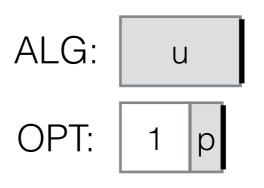


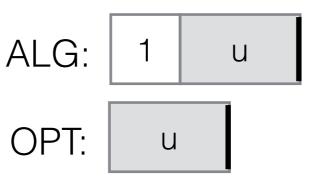


Minimize competitive ratio

compare algorithm with an adversary who knows p, and therefore knows if it is worth to test

- Produce a solution with a guaranty on the cost compared to the optimal solution
- The adversary computes an optimal solution. He knows p, but still needs to test the job, if he wants to schedule it at length p.
- Ratio ALG/OPT over worst instance
 =competitive ratio
 =price of not knowing p





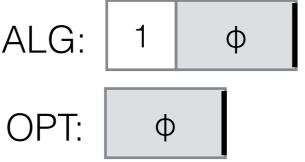
Minimize competitive ratio

- Adversary chooses

 u=φ=golden ratio=1.618...
 (satisfies φ+1=φ²)
- If algorithm does not test, adversary chooses p=0 and tests
- If algorithm does test, ALG: adversary chooses p=φ and OPT: does not test

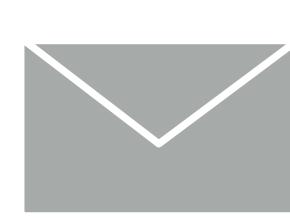
ALG:
$$\phi$$

OPT: 1



The general problem

has to send files of various sizes cares about ΣC_j C_j = reception time of file j



could compress files before sending

Other motivations

Code optimizer

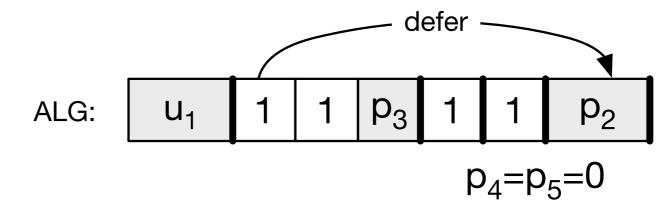
safe problem resolution versus heuristic Scheduling medical appointements

machine could run a code optimizer before executing a program

There are two methods to solve a problem. A safe one and a heuristic that might be quicker or fail quick diagnosis can estimate processing times

The general problem

- **Input**: n jobs with upper limits u_1, \ldots, u_n
- Produce a schedule consisting of job executions or tests. Test of job j takes 1 time unit and changes its processing time to 0≤p_j≤u_j. Can be scheduled anytime after its test.



- Objective = total completion time of jobs.
- **Minimize** ratio Objective / optimal objective
- Notice: if the goal were to minimize objective, one would never test

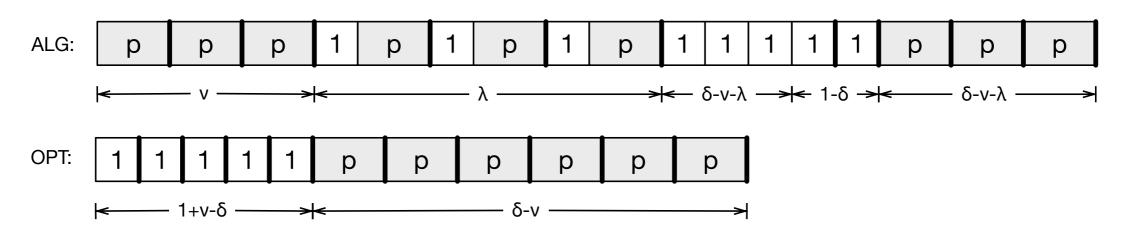
Our results

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. on uniform instances (u _j =p)	1.8546	1.9338	BEAT
det. ratio. on extreme uniform instances (uj=p, pj∈{0,p})	1.8546	1.8668	UTE
det. ratio on extreme uniform instances with u=1.9896	1.8546	1.8552	UTE

Our results

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. on uniform instances (u _j =p)	1.8546	1.9338	BEAT
det. ratio. on extreme uniform instances (uj=p, pj∈{0,p})	1.8546	1.8668	UTE
det. ratio on extreme uniform instances with u=1.9896	1.8546	1.8552	UTE

Deterministic lower bound



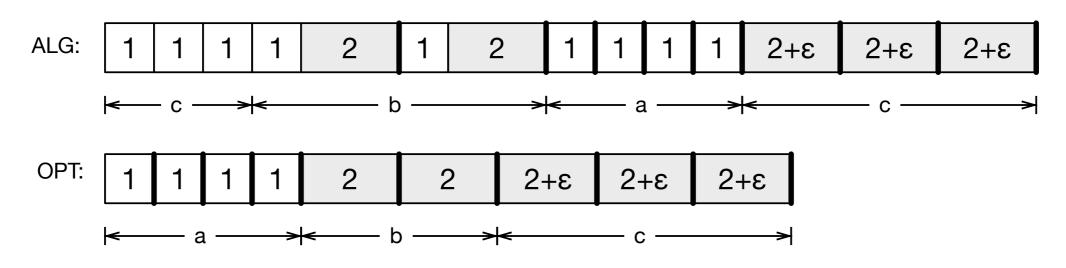
- n uniform jobs with upper limit p
- Index jobs in order they are touched by algorithm (tested or executed untested)
- p_j=0 if j≥δn or job j is executed untested by algo.
 p_i=p otherwise
- Algorithm gets even to know $\boldsymbol{\delta}$

- Any decent algorithm produces a schedule with above structure for parameters v, λ with v+λ≤δ
- The competitive ratio is ALG(δ,v, λ,n) / OPT(δ,v,n)
- Algorithm (minimizer) chooses v,λ
- Adversary (maximizer) chooses n,δ
- Analyzing local optima yields ratio 1.854628

Our results

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. on uniform instances (u _j =p)	1.8546	1.9338	BEAT
det. ratio. on extreme uniform instances (uj=p, pj∈{0,p})	1.8546	1.8668	UTE
det. ratio on extreme uniform instances with u=1.9896	1.8546	1.8552	UTE

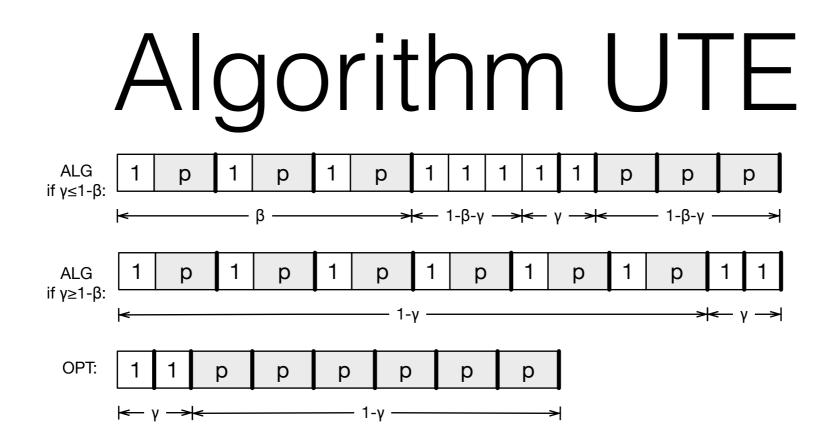
Algorithm THRESHOLD



- Execute untested all jobs j with u_j<2 in order...
- Test all other jobs in arbitrary order. If p_j≤2, execute, otherwise defer.
- Execute all deferred jobs in order...
- Worst case instance:
 a jobs u_j=2,p_j=0
 b jobs u_j=p_j=2
 c jobs u_i=p_i=2+ε
- Simple arithmetics: ALG(a,b,c)≤2.OPT(a,b,c)

Our results

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. on uniform instances (u _j =p)	1.8546	1.9338	BEAT
det. ratio. on extreme uniform instances (uj=p, pj \in {0,p})	1.8546	1.8668	UTE
det. ratio on extreme uniform instances with u=1.9896	1.8546	1.8552	UTE



- for extrem uniform instances, $u_j=p$, $p_j \in \{0,p\}$
- has ratio $\rho = \frac{1+\sqrt{3+2\sqrt{5}}}{2} \approx 1.8668.$

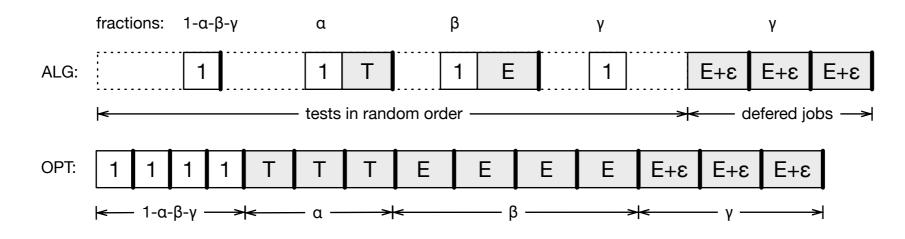
• Parameter
$$\beta = \frac{1 - \bar{p} + \bar{p}^2 - \rho + 2\bar{p}\rho - \bar{p}^2\rho}{1 - \bar{p} + \bar{p}^2 - \rho + \bar{p}\rho}$$

- Execute all jobs untested if p≤p
- Otherwise test all jobs. Execute right after their test the first max{0,β} fraction of jobs. Then only if p_j=0. Finally execute deferred jobs.
- Worst case instance defined by *length p fraction γ*: the first γn tested jobs have p_j=p and the remaining p_j=0
- Second order analysis to optimize p,γ and β

Our results

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. on uniform instances (u _j =p)	1.8546	1.9338	BEAT
det. ratio. on extreme uniform instances (uj=p, pj∈{0,p})	1.8546	1.8668	UTE
det. ratio on extreme uniform instances with u=1.9896	1.8546	1.8552	UTE

Algorithm RANDOM



 Algorithm RANDOM: Parameters T≥E Schedule untested all jobs with upper limit
 < T in increasing upper limit order
 Test in random order all larger jobs j, if p_j≤E execute immediately, else defer their execution
 Finally schedule deferred jobs

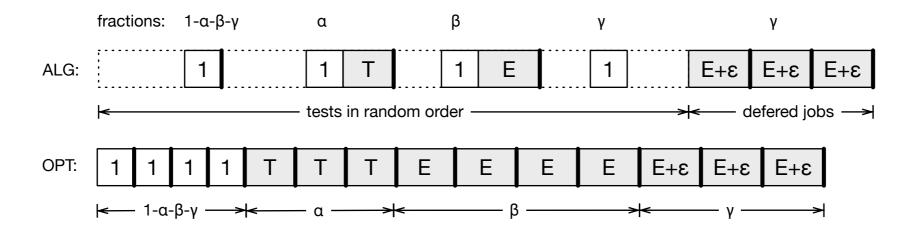
in increasing processing time order

- Worst case instances: $(1-\alpha-\beta-\gamma)$ fraction of jobs : $u_j=T$, $p_j=0$ an jobs have $u_j=T$, $p_j=T$ βn jobs have $u_j=E$, $p_j=E$ γn jobs have $u_j=E+\epsilon$, $p_j=E+\epsilon$
 - Ratio \leq T iff G := OPT • T - ALG \geq 0
 - Algorithm chooses T, E to maximize G Adversary chooses α,β,γ to minimize G

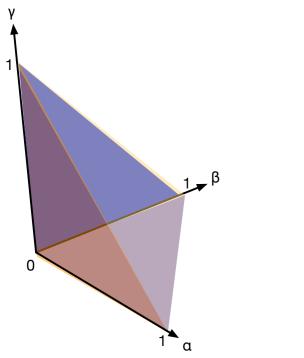
Our results

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. on uniform instances (u _j =p)	1.8546	1.9338	BEAT
det. ratio. on extreme uniform instances (uj=p, pj∈{0,p})	1.8546	1.8668	UTE
det. ratio on extreme uniform instances with u=1.9896	1.8546	1.8552	UTE

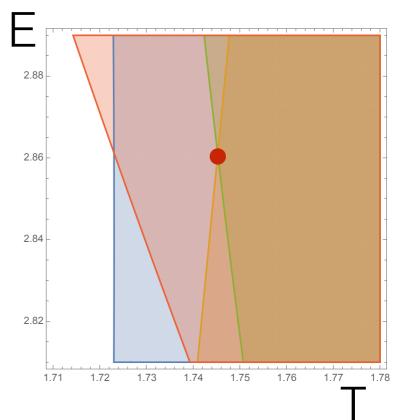
Algorithm RANDOM



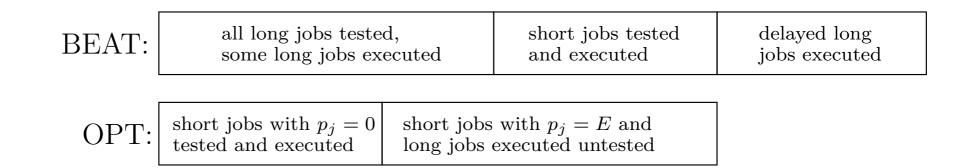
• Adversary chooses $\alpha, \beta, \gamma \ge 0$ with $\alpha + \beta + \gamma \le 1$



- Adversary chooses (α,β,γ), s.t.
 G(α,β,γ,T,E) is a local minima
- These generate conditions on T,E $G(\alpha,\beta,\gamma, T, E) \ge 0$
- Algorithm chooses T,E satisfying all conditions and has ratio ≤T
- Cases: (α,β,γ) is in the polytope, one of the 3 two-dimensional facets, or one of the 6 one-dimensional facets
 → standard but tedious second order analysis
- Optimal T,E are roots to polynomials of degree 5

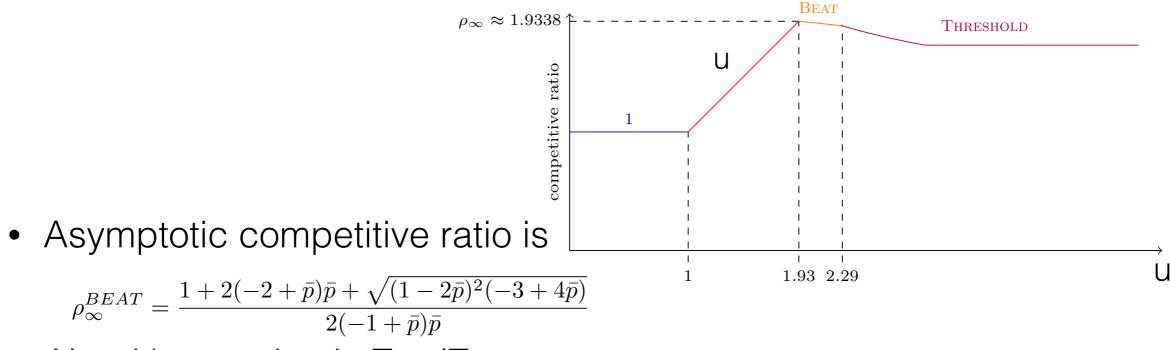


Algorithm BEAT



- n uniform jobs with upper limit u, short if processing time either ≤ E:=max{1,u-1}, long otherwise
- Algorithm: maintain TotalTest and TotalExec times.
- Test arbitrary job j and execute immediately if short or if TotalExec + p_j ≤ TotalTest
- Worst case instance: Essentially all jobs have processing times ∈{0,E,u}, presented in decreasing order

Algorithm BEAT



- Algorithm: maintain TotalTest and TotalExec times.
- Test arbitrary job j and execute immediately if short or if TotalExec + p_j ≤ TotalTest
- Worst case instance: Essentially all jobs have processing times ∈{0,E,u}, presented in decreasing order

Future directions

- Is the deterministic ratio < 2 ?
- Consider test times proportional to uj
- Study other classical combinatorial problems