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Models with uncertainty
• Stochastic optimization 

• Robust optimization 

• Some papers with queries 

• A model for data in motion, 
Simon Kahan, STOC’1991 

• The Trapp system,  
Olston and Widom, VLDB’2008 

• Minimum spanning Trees, 
Erlebach et al, STACS'2008

• Input is drawn from known 
distribution 

• Need to produce a solution 
minimizing expected objective 
value 
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(scenarios) 

• Need to produce a solution 
minimizing the worst objective 
value over all scenarios 



Models with uncertainty
• Stochastic optimization 

• Robust optimization 

• Some papers with queries 

• A model for data in motion, 
Simon Kahan, STOC’1991 

• The Trapp system,  
Olston and Widom, VLDB’2008 

• Minimum spanning Trees, 
Erlebach et al, STACS'2008

• Points are moving in space 

• Each point lays in a set, determined by 
last known position and velocity 

• Query minimal number of point positions 
in order to solve some problem 

• see also Bruce et al, ToCS'2005 
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Models with uncertainty
• Stochastic optimization 

• Robust optimization 

• Some papers with queries 

• A model for data in motion, 
Simon Kahan, STOC’1991 

• The Trapp system,  
Olston and Widom, VLDB’2008 

• Minimum spanning Trees, 
Erlebach et al, STACS'2008

• local cache contains intervals of 
values 

• master server contains exact values 

• data base works with intervals, only 
querying the master server when 
more precision is required 

master 

xi=6

cache 

xi∈[1,9]

answer 
data 
base 

queries

update if outside of interval



Minimum spanning tree
• given: graph,  

open edge weight intervals 

• hidden: exact edge weights 

• query: reveals exact edge 
weight 

• goal: identify a minimum 
spanning tree with minimal 
number of queries

{1} 
1

(2,6) 
3

(4,9) 
5
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Minimum spanning tree
• given: graph,  

open edge weight intervals 

• hidden: exact edge weights 

• query: reveals exact edge 
weight 

• goal: identify a minimum 
spanning tree with minimal 
number of queries
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Minimum spanning tree
• measure: An algorithm ALG is 

c-competitive if for all 
instances I 
ALGI ≤ c OPTI 

• For asymptotic competitive 
ratio an additive constant is 
allowed 

• OPTI: minimal number of 
queries, say an adversary 
could make if he knew the 
exact values but still need to 
query them
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Why open intervals?

• if uncertainty intervals were 
closed: Consider this graph. 

• OPTI: is 1 

• ALG: is n-1 

• Ratio: terrible large
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Minimum spanning tree

competitive ratio lower bound upper bound

deterministic
[Erlebach et al. 
STACS’2008]

2 2

randomized
[Megow,Meißner,Skutella, 

ESA’2015]
1,5 1,707
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The witness algorithm
• For a more general setting: 

Cheapest Set Problem 

• Find a feasible set S⊆{1,..,n} 
minimizing Σi∈S xi 

• W is a witness set if it 
impossible to solve the 
problem without querying at 
least one element from W. 

• Algorithm: While instance not 
solved: choose a witness set 
and query all items from it.

(1,7) 
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(3,8) 
5

(2,6) 
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The witness algorithm
• Lemma If each chosen 

witness set has size ≤ c,  
then the algorithm is c-
competitive 

• W is a witness set if it 
impossible to solve the 
problem without querying at 
least one element from W. 

• Algorithm: While instance not 
solved: choose a witness set 
and query all items from it.
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The U-Red algorithm
• given: for edges e we∈(Le,Ue) 

• Red rule: if there is an edge e in a cycle C 
with Le ≥ Uf for all f∈C\e (always maximal 
edge), then there is a minimum spanning 
tree without e 

• U-Red: initially T=empty 
for all edges e in lexicographically 
increasing (Le,Ue) order: 
 add e to T  
 if T has a cycle C 
  if e is always maximal in C 
   remove from T  
  else 
   let f∈C s.t. Uf is maximal  
   let g∈C\f s.t. Ug>Lf  

   query f and g, and restart 
return T

(1,5)

(6,8)(1,6)
e

Key argument: {f,g} is a witness set, 
hence the algorithm is 2-competitive



The U-Red algorithm
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Some personal work

• So far: minimize query cost to compute optimal 
solution 

• Now: add query cost to objective value  

• →find compromise between querying and 
improving solution 

• joint work with Thomas Erlebach, Nicole Megow and Nicole Meißner



Warmup
cares about the 
reception time

could compress it 
before sending

has to send a 
single file



This is a scheduling problem

• Single job, has upper limit u 

• Either schedule untested : 
cost u 

• or test (takes 1 unit), which 
reveals processing time 
0≤p≤u, and schedule it : 
cost 1+p

1 p

u

u is given 
p is hidden 

a test reveals p



Minimize competitive ratio

• Produce a solution with a guaranty on 
the cost compared to the optimal 
solution 

• The adversary computes an optimal 
solution. He knows p, but still needs to 
test the job, if he wants to schedule it at 
length p. 

• Ratio ALG/OPT over worst instance 
=competitive ratio 
=price of not knowing p

1 u

uALG:

OPT: 1

ALG:

OPT: u

compare algorithm with an adversary who knows p, 
and therefore knows if it is worth to test

p



1

Minimize competitive ratio
• Adversary chooses 

u=φ=golden ratio=1.618… 
(satisfies φ+1=φ2) 

• If algorithm does not test, 
adversary chooses p=0 and 
tests 

• If algorithm does test, 
adversary chooses p=φ and 
does not test

1 φ

φALG:

OPT: 1

ALG:

OPT: φ



The general problem
cares about ΣCj 
 Cj = reception 

time of file j

could compress 
files before 

sending

has to send files 
of various sizes



Other motivations
Code optimizer

machine could 
run a code 
optimizer before 
executing a 
program 

safe problem 
resolution 
versus heuristic

There are two 
methods to solve 
a problem. A 
safe one and a 
heuristic that 
might be quicker 
or fail 

Scheduling 
medical 
appointements

quick diagnosis 
can estimate 
processing times



• Input: n jobs with upper limits u1,…,un 

• Produce a schedule consisting of job executions or tests. Test of 
job j takes 1 time unit and changes its processing time to 0≤pj≤uj. 
Can be scheduled anytime after its test. 

• Objective = total completion time of jobs. 

• Minimize ratio Objective / optimal objective 

• Notice: if the goal were to minimize objective, one would never test

The general problem

u1 p3 p211 1ALG: 1

defer

p4=p5=0



competitive ratio lower 
bound

upper 
bound algorithm

deterministic ratio 1.8546 2 THRESHOLD

randomized ratio 1.6257 1.7453 
(asymptotic ratio) RANDOM

det. ratio. on uniform 
instances (uj=p) 1.8546 1.9338 BEAT

det. ratio. on extreme uniform 
instances (uj=p, pj∈{0,p}) 1.8546 1.8668 UTE

det. ratio on extreme uniform 
instances with u=1.9896 1.8546 1.8552 UTE

Our results
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Deterministic lower bound

• n uniform jobs with upper limit p 

• Index jobs in order they are touched by 
algorithm (tested or executed untested) 

• pj=0 if j≥δn or job j is executed untested by 
algo. 
pj=p otherwise 

• Algorithm gets even to know δ 

• Any decent algorithm produces a schedule 
with above structure for parameters ν, λ with 
ν+λ≤δ 

• The competitive ratio is 
ALG(δ,ν, λ,n) / OPT(δ,ν,n) 

• Algorithm (minimizer) chooses ν,λ 

• Adversary (maximizer) chooses n,δ 

• Analyzing local optima yields ratio 1.854628  

p111 p p 11ppp p 1 1 1 pp
ν λ δ-ν-λ 1-δ δ-ν-λ

1 1 1 1 1 p p p p p p

1+ν-δ δ-ν

ALG:

OPT:
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Algorithm THRESHOLD

• Execute untested all jobs j 
with uj<2 in order… 

• Test all other jobs in 
arbitrary order. If pj≤2, 
execute, otherwise defer. 

• Execute all deferred jobs in 
order… 

• Worst case instance:  
a jobs uj=2,pj=0 
b jobs uj=pj=2 
c jobs uj=pj=2+ε 

• Simple arithmetics: 
ALG(a,b,c)≤2･OPT(a,b,c)

XX:18 Scheduling with Testing

2 2+ε 2+ε 2+ε2

2+ε 2+ε2+ε12 1 1111 2

c

1 1 1

b a c

1 1 11

a b c

ALG:

OPT:

Figure 9 Worst case instance for Threshold.

Proof. For all long jobs, which are tested by the optimum, we reduce the upper limit to
p̄j = 1 + pj . This does not change the algorithm’s solution. But the optimum may as well
run those previously tested jobs also untested and would not change its total objective value.

Now the optimum solution runs all long jobs without testing them. Thus, increasing
the processing time of long jobs to pj = p̄j does not a�ect the optimum cost whereas the
algorithm’s cost increase.

Proposition 16 implies that all long jobs are scheduled in the same order by the algorithm
and an optimum without any small jobs in between. Then, setting p̄ = 2 + ‘ decreases the
objective values of both algorithms by the same amount and thus does not decrease the
ratio. The lemma follows. J

Now we are ready to prove the main result.

I Theorem 6. Algorithm Threshold has competitive ratio at most 2.

Proof. We consider worst-case instances of the type derived above. Let a be the number of
short jobs with pj = 0, let b be the number of short jobs with p̄j = pj = 2, and let c be the
number of long jobs with p̄j = 2 + ‘, see Figure 9.

Threshold’s solution for a worst-case instance first tests all long jobs, then tests and
executes the short jobs in decreasing order of processing times, and completes with the
executions of long jobs. The total objective value ALG is

ALG = (a + b + c)c + b(b + 1)/2 · 3 + 3b(a + c) + a(a + 1)/2 + a · c + c(c + 1)/2 · (2 + ‘).

An optimum solution tests and schedules first all 0-length jobs and then executes the
remaining jobs without tests. The objective value is

OPT = a(a + 1)/2 + a(b + c) + b(b + 1)/2 · 2 + 2bc + c(c + 1)/2 · (2 + ‘).

Simple transformation shows that ALG Æ 2 · OPT is equivalent to

2ab + 2c2 Æ a2 + b2 + a + b + c(c + 1)(2 + ‘) … 0 Æ (a ≠ b)2 + a + b + c2‘ + c(2 + ‘),

which is obviously satisfied and the theorem follows. J

B.2 Deterministic lower bound
In this section we give a lower bound on the competitive ratio of any deterministic algorithm.
The instances constructed by the adversary have a very special form: All jobs have the same
upper limit p̄, and the processing time of every job is either 0 or p̄.

Consider instances of n jobs with uniform upper limit p̄ > 1, and consider any deter-
ministic algorithm. We say that the algorithm touches a job when it either tests the job or
executes it untested. We re-index jobs in the order in which they are first touched by the
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Algorithm UTE

• for extrem uniform instances, uj=p, pj∈{0,p} 

• has ratio 

• Parameter  

• Execute all jobs untested if p≤ρ 

• Otherwise test all jobs. Execute right after 
their test the first max{0,β} fraction of jobs. 
Then only if pj=0. Finally execute deferred 
jobs. 

• Worst case instance defined by 
length p 
fraction γ: the first γn tested jobs have pj=p 
and the remaining pj=0 

• Second order analysis to optimize p,γ and β

C. Dürr, T. Erlebach, N. Megow, and J. Meißner XX:11
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Figure 6 Competitive ratio depending on p̄.

employing Threshold at T
2

¥ 2.2948, the crossing point of the two functions describing
the competitive ratio of Beat and Threshold in (2, 3).
I Algorithm. Execute all jobs without test, if the upper limit p̄ is less than T

1

¥ 1.9338. Oth-
erwise, if the upper limit p̄ is greater than T

2

¥ 2.2948, execute the algorithm Threshold.
For all upper limits between T

1

and T
2

, execute the algorithm Beat.
The function describing the asymptotic competitive ratio depending on p̄ is displayed in
Figure 6. Its maximum is attained at T

1

, which is a fixpoint. Thus we have

I Theorem 12. The asymptotic competitive ratio of our algorithm is flŒ = T
1

¥ 1.9338,
which is the only real root of 2p̄3 ≠ 4p̄2 + 4p̄ ≠ 1 ≠


(1 ≠ 2p̄)2(4p̄ ≠ 3).

5.2 Nearly tight deterministic algorithm for extreme uniform instances
We present a deterministic algorithm for the class of extreme uniform instances, that is
almost tight for the instance that yields the deterministic lower bound. An extreme uniform
instance consists of jobs with uniform upper limit p̄ and processing times in {0, p̄}. Our
algorithm UTE attains asymptotic competitive ratio flŒ ¥ 1.8668 for this class of instances.
I Algorithm (UTE). If the upper limit p̄ is at most fl, then all jobs are executed without
test. Otherwise, all jobs are tested. The first max{0, —} fraction of the jobs are executed
immediately after their test. The remaining fraction of the jobs are executed immediately
after their test if they have processing time 0 and are delayed otherwise, see Figure 7. The
parameter — is defined as

— = 1 ≠ p̄ + p̄2 ≠ fl + 2p̄fl ≠ p̄2fl

1 ≠ p̄ + p̄2 ≠ fl + p̄fl
. (1)

I Theorem 13. The competitive ratio of UTE is at most fl = 1+

Ô
3+2

Ô
5

2

¥ 1.8668.

Proof sketch. An instance is defined by the job number n, an upper limit p̄ and a fraction
“ such that the first “ fraction of the jobs tested by UTE have processing time p̄, while the
jobs in the remaining 1 ≠ “ fraction have processing time 0. The algorithm chooses — so as
to have the smallest ratio fl.

First we observe that there is a value pú such that — Ø 0 only when p̄ Æ pú. Then we
analyze the competitive ratio of UTE, distinguishing the cases p̄ Æ fl (covered by Lemma 1),
p̄ Ø pú and p̄ Æ pú. The last case is furthermore subdivided into cases “ Ø 1≠— and “ Æ 1≠—.
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1 1 p p p p p p

γ 1-γ

ALG
if γ≥1-β:

OPT:

11 p p1 p 1

1-γ γ

ALG
if γ≤1-β:

Figure 7 The schedule produced by UTE and the optimal schedule.

For each of these cases we use first and second order analysis to determine the worst values
p̄ and “ for the ratio, and the best response — the algorithm can choose, optimizing — and
fl on the way, and obtaining the claimed values. J

I Remark. The deterministic lower bound 1.8546 in Theorem 8 uses the upper limit p̄ ¥
1.9896. Plugging this choice of p̄ into a precise form of the competitive ratio which we
obtained in the proof of the theorem, we can show that UTE has asymptotic competitive
ratio flŒ ¥ 1.8552 on this instance. This is almost tight.

6 Optimal Testing for Minimizing the Makespan

We consider scheduling with testing with the objective of minimizing the makespan, i.e., the
completion time of the last job. For this problem we give the best possible competitive ratio
for deterministic and randomized algorithms. The key insight is that for any algorithm that
treats each job independent of its position in the schedule, there is a worst-case instance
containing only a single job. The reason is that the execution of a job (possibly including
testing) has a linear contribution to the makespan.

I Theorem 14. Let Ï ¥ 1.618 be the golden ratio. Testing each job j if and only if p̄j > Ï

is an algorithm with competitive ratio Ï. This is best possible for deterministic algorithms.

I Theorem 15. The randomized algorithm that tests each job with p̄j > 1 with probability
1 ≠ 1/(p̄2

j ≠ p̄j + 1) has competitive ratio 4/3. No randomized algorithm can achieve a better
competitive ratio against an oblivious adversary.

7 Conclusion

In this paper we have introduced an adversarial model of scheduling with testing where a
test can shorten a job but the time for the test also prolongs the schedule, thus making it
di�cult for an algorithm to find the right balance between tests and executions. We have
presented upper and lower bounds on the competitive ratio of deterministic and randomized
algorithms for a single-machine scheduling problem with the objective of minimizing the sum
of completion times or the makespan. An immediate open question is whether it is possible
to achieve competitive ratio below 2 for minimizing the sum of completion times with a
deterministic algorithm for arbitrary instances. Further interesting directions for future
work include the consideration of job-dependent test times or other scheduling problems
such as parallel machine scheduling or flow shop problems. More generally, the study of
problems with explorable uncertainty in settings where the costs for querying uncertain
data directly contribute to the objective value is a promising direction for future work.
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Algorithm RANDOM

• Algorithm RANDOM: Parameters T≥E  
Schedule untested all jobs with upper limit 
< T in increasing upper limit order  
Test in random order all larger jobs j, if pj≤E 
execute immediately, else defer their 
execution  
Finally schedule deferred jobs  
in increasing processing time order  

• Worst case instances:  
(1-α-β-γ) fraction of jobs : uj=T, pj=0 
αn jobs have uj=T, pj=T 
βn jobs have uj=E, pj=E 
γn jobs have uj=E+ε, pj=E+ε 

• Ratio ≤ T iff 
G := OPT･T - ALG ≥ 0 

• Algorithm chooses T, E to maximize G  
Adversary chooses α,β,γ to minimize G

E+εT E+ε E+εEEEET T

1

tests in random order defered jobs

1 1 1 1

1-α-β-γ α

ALG:

OPT:

1 E1 T1

1-α-β-γfractions: α β γ γ

β γ

E+εE+ε E+ε
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Algorithm RANDOM

• Adversary chooses α,β,γ≥0 with 
α+β+γ≤1 

• Adversary chooses (α,β,γ), s.t. 
G(α,β,γ,T,E) is a local minima  

• These generate conditions on T,E 
G(α,β,γ, T, E) ≥ 0 

• Algorithm chooses T,E satisfying all 
conditions and has ratio ≤T 

• Cases: (α,β,γ) is in the polytope, one 
of the 3 two-dimensional facets, or 
one of the 6 one-dimensional facets 
→ standard but tedious second 
order analysis 

• Optimal T,E are roots to polynomials 
of degree 5

E+εT E+ε E+εEEEET T

1

tests in random order defered jobs

1 1 1 1

1-α-β-γ α

ALG:

OPT:

1 E1 T1

1-α-β-γfractions: α β γ γ

β γ

E+εE+ε E+ε

α

0

1

1

1

β

γ

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

2.82

2.84

2.86

2.88

T

E



Algorithm BEAT

• n uniform jobs with upper limit u, 
short if processing time either ≤ 
E:=max{1,u-1}, long otherwise 

• Algorithm: maintain TotalTest 
and TotalExec times. 

• Test arbitrary job j and execute 
immediately if short or if 
TotalExec + pj ≤ TotalTest 

• Worst case instance:  
Essentially all jobs have 
processing times ∈{0,E,u}, 
presented in decreasing order
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BEAT:

tested and executed

OPT:

all long jobs tested,

some long jobs executed

short jobs with pj = 0

short jobs tested

and executed

delayed long

jobs executed

short jobs with pj = E and

long jobs executed untested

Figure 14 Structure of schedules produced by BEAT and OPT

I Algorithm (Beat). The algorithm Beat balances the time testing jobs and the time
executing jobs while there are untested jobs. A job is called short if its running time is
at most E = max{1, p̄ ≠ 1}, and long otherwise. Let TotalTest denote the time we spend
testing long jobs and let TotalExec be the time long jobs are executed. We iterate testing an
arbitrary job and then execute the job with smallest processing time either, if it is a short
job, or if TotalExec + pk is at most TotalTest. Once all jobs have been tested, we execute
the remaining jobs in order of non-decreasing processing time.
We make a structural observation about the algorithm schedule for a worst-case instance.

I Lemma 11. The adversary gives jobs with pj œ {0, E, p̄} and at most one job with
pj œ (E, p̄) in order of decreasing pj .

Consequently, the schedule produced by Beat and the optimal schedule display a clear
structure, which we depict in Figure 14. We prove that the asymptotic competitive ratio of
Beat for p̄ < 3 is at most

flBEAT
Œ = 1 + 2(≠2 + p̄)p̄ +


(1 ≠ 2p̄)2(≠3 + 4p̄)

2(≠1 + p̄)p̄ .

This function decreases, when p̄ increases. Alternatively, for small upper limit we can execute
each job without test. Then there is a worst-case instance where all jobs have processing
time pj = 0. The optimal schedule tests each job only if the upper limit p̄ is larger than one
and executes it immediately. For p̄ < 1 this means the competitive ratio is 1 and otherwise
it is p̄, which monotonously increases. Thus, we choose a threshold T

1

¥ 1.9338 for p̄, where
we start applying Beat: the fixpoint of the function flBEAT

Œ .
For some upper limit p̄ > 3 the performance behavior of Beat changes and the asymp-

totic competitive ratio increases. Thus, we employ the algorithm Threshold for large
upper limits. Recall that for p̄ > 2 Threshold tests all jobs, executes those with pj Æ 2
immediately and defers the other jobs. We argue that there is a worst-case instance with
short jobs that have processing time 0 or 2 and long jobs with processing time p̄j = p̄ and
that no long job is tested in an optimal solution. This allows us to prove

flT HRESH
Œ =

I
≠3+p̄+

Ô
≠15+p̄(18+p̄)

2(p̄≠1)

if p̄ œ (2, 3)Ô
3 ¥ 1.73 if p̄ Ø 3.

The function for small p̄ is a monotone function decreasing from 2 to
Ô

3 in the limits for
p̄ œ (2, 3). We choose a threshold, where we change from applying Beat to employing
Threshold at T

2

¥ 2.2948, the crossing point of the two functions describing the compet-
itive ratio of Beat and Threshold in (2, 3).
I Algorithm. Execute all jobs without test, if the upper limit p̄ is less than T

1

¥ 1.9338. Oth-
erwise, if the upper limit p̄ is greater than T

2

¥ 2.2948, execute the algorithm Threshold.
For all upper limits between T

1

and T
2

, execute the algorithm Beat.
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Figure 6 Competitive ratio depending on p̄.

employing Threshold at T
2

¥ 2.2948, the crossing point of the two functions describing
the competitive ratio of Beat and Threshold in (2, 3).
I Algorithm. Execute all jobs without test, if the upper limit p̄ is less than T

1

¥ 1.9338. Oth-
erwise, if the upper limit p̄ is greater than T

2

¥ 2.2948, execute the algorithm Threshold.
For all upper limits between T

1

and T
2

, execute the algorithm Beat.
The function describing the asymptotic competitive ratio depending on p̄ is displayed in
Figure 6. Its maximum is attained at T

1

, which is a fixpoint. Thus we have

I Theorem 12. The asymptotic competitive ratio of our algorithm is flŒ = T
1

¥ 1.9338,
which is the only real root of 2p̄3 ≠ 4p̄2 + 4p̄ ≠ 1 ≠


(1 ≠ 2p̄)2(4p̄ ≠ 3).

5.2 Nearly tight deterministic algorithm for extreme uniform instances
We present a deterministic algorithm for the class of extreme uniform instances, that is
almost tight for the instance that yields the deterministic lower bound. An extreme uniform
instance consists of jobs with uniform upper limit p̄ and processing times in {0, p̄}. Our
algorithm UTE attains asymptotic competitive ratio flŒ ¥ 1.8668 for this class of instances.
I Algorithm (UTE). If the upper limit p̄ is at most fl, then all jobs are executed without
test. Otherwise, all jobs are tested. The first max{0, —} fraction of the jobs are executed
immediately after their test. The remaining fraction of the jobs are executed immediately
after their test if they have processing time 0 and are delayed otherwise, see Figure 7. The
parameter — is defined as

— = 1 ≠ p̄ + p̄2 ≠ fl + 2p̄fl ≠ p̄2fl

1 ≠ p̄ + p̄2 ≠ fl + p̄fl
. (1)

I Theorem 13. The competitive ratio of UTE is at most fl = 1+

Ô
3+2

Ô
5

2

¥ 1.8668.

Proof sketch. An instance is defined by the job number n, an upper limit p̄ and a fraction
“ such that the first “ fraction of the jobs tested by UTE have processing time p̄, while the
jobs in the remaining 1 ≠ “ fraction have processing time 0. The algorithm chooses — so as
to have the smallest ratio fl.

First we observe that there is a value pú such that — Ø 0 only when p̄ Æ pú. Then we
analyze the competitive ratio of UTE, distinguishing the cases p̄ Æ fl (covered by Lemma 1),
p̄ Ø pú and p̄ Æ pú. The last case is furthermore subdivided into cases “ Ø 1≠— and “ Æ 1≠—.

u

• Asymptotic competitive ratio is  

• Algorithm: maintain TotalTest 
and TotalExec times. 

• Test arbitrary job j and execute 
immediately if short or if 
TotalExec + pj ≤ TotalTest 

• Worst case instance: 
Essentially all jobs have 
processing times ∈{0,E,u}, 
presented in decreasing order
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all long jobs tested,

some long jobs executed

short jobs with pj = 0
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delayed long
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I Algorithm (Beat). The algorithm Beat balances the time testing jobs and the time
executing jobs while there are untested jobs. A job is called short if its running time is
at most E = max{1, p̄ ≠ 1}, and long otherwise. Let TotalTest denote the time we spend
testing long jobs and let TotalExec be the time long jobs are executed. We iterate testing an
arbitrary job and then execute the job with smallest processing time either, if it is a short
job, or if TotalExec + pk is at most TotalTest. Once all jobs have been tested, we execute
the remaining jobs in order of non-decreasing processing time.
We make a structural observation about the algorithm schedule for a worst-case instance.

I Lemma 11. The adversary gives jobs with pj œ {0, E, p̄} and at most one job with
pj œ (E, p̄) in order of decreasing pj .

Consequently, the schedule produced by Beat and the optimal schedule display a clear
structure, which we depict in Figure 14. We prove that the asymptotic competitive ratio of
Beat for p̄ < 3 is at most

flBEAT
Œ = 1 + 2(≠2 + p̄)p̄ +


(1 ≠ 2p̄)2(≠3 + 4p̄)

2(≠1 + p̄)p̄ .

This function decreases, when p̄ increases. Alternatively, for small upper limit we can execute
each job without test. Then there is a worst-case instance where all jobs have processing
time pj = 0. The optimal schedule tests each job only if the upper limit p̄ is larger than one
and executes it immediately. For p̄ < 1 this means the competitive ratio is 1 and otherwise
it is p̄, which monotonously increases. Thus, we choose a threshold T

1

¥ 1.9338 for p̄, where
we start applying Beat: the fixpoint of the function flBEAT

Œ .
For some upper limit p̄ > 3 the performance behavior of Beat changes and the asymp-

totic competitive ratio increases. Thus, we employ the algorithm Threshold for large
upper limits. Recall that for p̄ > 2 Threshold tests all jobs, executes those with pj Æ 2
immediately and defers the other jobs. We argue that there is a worst-case instance with
short jobs that have processing time 0 or 2 and long jobs with processing time p̄j = p̄ and
that no long job is tested in an optimal solution. This allows us to prove

flT HRESH
Œ =

I
≠3+p̄+

Ô
≠15+p̄(18+p̄)

2(p̄≠1)

if p̄ œ (2, 3)Ô
3 ¥ 1.73 if p̄ Ø 3.

The function for small p̄ is a monotone function decreasing from 2 to
Ô

3 in the limits for
p̄ œ (2, 3). We choose a threshold, where we change from applying Beat to employing
Threshold at T

2

¥ 2.2948, the crossing point of the two functions describing the compet-
itive ratio of Beat and Threshold in (2, 3).
I Algorithm. Execute all jobs without test, if the upper limit p̄ is less than T

1

¥ 1.9338. Oth-
erwise, if the upper limit p̄ is greater than T

2

¥ 2.2948, execute the algorithm Threshold.
For all upper limits between T

1

and T
2

, execute the algorithm Beat.



Future directions

• Is the deterministic ratio < 2 ? 

• Consider test times proportional to uj 

• Study other classical combinatorial problems


