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Lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
ex. δ(3,3) = 6 and is achieved  
by a truncated cube 

 



Lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
Ø  δ(P) : lower bound for the worst case number of iterations required 

by pivoting methods (simplex) to optimize a linear function over P 

Ø  Hirsch conjecture : δ(P) ≤ n – d   (n  number of inequalities) 
     was disproved [Santos 2012] 

 



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
upper bounds : 
 

 δ(d,1) ≤ d     [Naddef 1989] 
 

 δ(2,k) = O(k2/3)     [Balog-Bárány 1991] 
 

 δ(2,k) = 6(k/2π)2/3 +O(k1/3 log k)   [Thiele 1991]  
      [Acketa-Žunić 1995] 

 
 δ(d,k) ≤ kd     [Kleinschmid-Onn 1992] 

 
 δ(d,k) ≤ kd -  d/2             for k ≥ 2  [Del Pia-Michini 2016] 

 
 δ(d,k) ≤ kd -   2d/3  - (k - 3)    for k ≥ 3  [Deza-Pournin 2017] 

 

Lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
lower bounds : 
 

 δ(d,1) ≥ d    [Naddef 1989] 
 

 δ(d,2) ≥   3d/2    [Del Pia-Michini 2016] 
 

 δ(d,k) = Ω(k2/3 d)    [Del Pia-Michini 2016] 
 

 δ(d,k) ≥  (k+1)d /2   for k < 2d  [Deza-Manoussakis-Onn 2017] 
 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 

3 3 

4 4 

5 5 

δ(d,1) = d    [Naddef 1989] 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 

4 4 

5 5 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 

  

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 

4 4 6 

5 5 7 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016]   

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 

4 4 6 8 

5 5 7 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016] 
δ(4,3) =  8    [Deza-Pournin 2017]   
δ(3,4) =  7, δ(3,5) =  9   [Chadder-Deza 2017]   

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10+ 11+ 12+ 13+ 

4 4 6 8 10+ 12+ 14+ 16+ 17+ 18+ 

5 5 7 10+ 12+ 15+ 17+ 20+ 22+ 25+ 

Ø  Conjecture [Deza-Manoussakis-Onn 2017]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  



Q. What is δ(2,k) : largest diameter of a polygon which vertices are 
drawn form the k x k grid? 
 
A polygon can be associated to a set of vectors (edges) summing up to 
zero, and without a pair of positively multiple vectors  
 
 
 
 
 
 
 
 
 
δ(2,3) = 4 is achieved by the 8 vectors : (±1,0), (0,±1), (±1,±1) 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

||x||1 ≤ 1 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 

||x||1 ≤ 2 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 

||x||1 ≤ 3 

Lattice polygons with many vertices 
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δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!

||x||1 ≤ p 

Lattice polygons with many vertices 



 
δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!2 !(!)

!

!!!
!

δ(2,k) 
                           k 

1 2 3 4 5 6 7 8 9 

p 1 2 3 

v 4 6 8 8 10 12 12 14 16 

δ 2 3 4 4 5 6 6 7 8 

Lattice polygons 
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H1(2,p) : Minkowski sum generated by {x ∈ Z2 : ||x||1 ≤ p, gcd(x)=1, x ≻ 0} 
 
H1(2,p) has diameter δ(2,k) =    for k =   
 
 
Ex. H1(2,2) generated by (1,0), (0,1), (1,1), (1,-1)  (fits, up to translation, in 3x3 grid) 
 

    x ≻ 0 : first nonzero coordinate of x is nonnegative  

2 !(!)
!

!!!
!

 
 

||x||1 ≤ p 

Primitive polygons 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Given a set G of m vectors (generators) 
 
Minkowski (G) : convex hull of the 2m sums of the m vectors in G 
Zonotope (G) : convex hull of the 2m signed  sums of the m vectors in G 
 

 up to translation Z(G) is the image of H(G) by an homothety of factor 2 
 
v  Primitive zonotopes: zonotopes generated by short integer vectors which 

are pairwise linearly independent  
 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  Hq(d, 1) : [0, 1]d cube for q ≠∞ 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  Z1(d,2) : permutahedron of type Bd 

 
 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  H1(3,2) : truncated cuboctahedron  
     (great rhombicuboctahedron) 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  H∞(3,1) : truncated small rhombicuboctahedron 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative 
   H+ / Z+: positive primitive lattice polytope x ∈ Zd

+ 
 
Ø  H1(d,2)+ : Minkowski sum of the permutahedron with the {0,1}d, i.e., 
     graphical zonotope obtained by the d-clique with a loop at each node 

  graphical zonotope ZG: Minkowski sum of segments [ei,ej] 
  for all edges {i,j} of a given graph G 

 
 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative 
   H+ / Z+: positive primitive lattice polytope x ∈ Zd

+ 
 
 
Ø  For k < 2d, Minkowski sum of a subset of the generators of H1(d,2 is, 
     up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 

 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10+ 11+ 12+ 13+ 

4 4 6 8 10+ 12+ 14+ 16+ 17+ 18+ 

5 5 7 10+ 12+ 15+ 17+ 20+ 22+ 25+ 

Ø  Conjecture [Deza-Manoussakis-Onn 2017]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 11 12 13 

4 4 6 8 10 12 14 16 17 18 

5 5 7 10 12 15 17 20 22 25 

Ø  Conjecture [Deza-Manoussakis-Onn 2017]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  



Given a lattice (d,k)-polytope P, two vertices u and v such that δ(P) = d(u,v), 
then d(u,v) ≤ δ(d-1,k) + k  and d(u,v) < δ(d-1,k) + k unless: 
 
Ø  u+v = (k,k,...,k), 

Ø  any edge of P with u or v as vertex is {−1,0,1}-valued, 

Ø  any intersection of P with a facet of the cube [0,k]d is a (d−1)-dimensional 
face of P of diameter δ(d-1,k). 

 
These conditions, combined with combinatorial properties, drastically reduce 
the search space for a lattice (d,k)-polytope P such that δ(P) = δ(d-1,k) + k  
 
Computationally ruling out δ(d,k) = δ(d-1,k) + k and using δ(d,k) ≤  (k+1)d /2 
for k < 2d yields :  δ(3,4) =  7  and  δ(3,5) =  9 

    i.e. :  δ(great rhombicuboctahedron) = δ(3,5)  

Computational determination of δ(d,k)  
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 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A034997 Number of Generalized Retarded Functions in Quantum Field Theory. 1

2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1
COMMENTS a(d) is the number of parts into which d-dimensional space (x_1,...,x_d) is

split by a set of (2^d - 1) hyperplanes c_1 x_1 + c_2 x_2 + ...+ c_d x_d
=0 where c_j are 0 or +1 and we exclude the case with all c=0.

Also, a(d) is the number of independent real-time Green functions of Quantum
Field Theory produced when analytically continuing from euclidean
time/energy (d+1 = number of energy/time variables).  These are also known
as Generalized Retarded Functions.

The numbers up to d=6 were first produced by T. S. Evans using a Pascal
program, strictly as upper bounds only.  M. van Eijck wrote a C program
using a direct enumeration of hyperplanes which confirmed these and
produced the value for d=7. Kamiya et al. showed how to find these numbers
and some associated polynomials using more sophisticated methods, giving
results up to d=7. T. S. Evans added the last number on Aug 01 2011 using
an updated version of van Eijck's program, which took 7 days on a standard
desktop computer.

REFERENCES Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele
Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and
Algebra. Springer International Publishing, 2015. 157-171.

T. S. Evans, N-point finite temperature expectation values at real times,
Nuclear Physics B 374 (1992) 340-370.

H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of
codimension one, Advances in Applied Mathematics 47 (2011) 379 - 400.

M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation
Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.

LINKS Table of n, a(n) for n=1..8.
L. J. Billera, J. T. Moore, C. D. Moraites, Y. Wang and K. Williams, Maximal

unbalanced families, arXiv preprint arXiv:1209.2309, 2012. - From N. J. A.
Sloane, Dec 26 2012

T. S. Evans, What is being calculated with Thermal Field Theory?, arXiv:hep-
ph/9404262 and in "Particle Physics and Cosmology: Proceedings of the
Ninth Lake Louise Winter School", World Scientific, 1995 (ISBN 9810221002)

EXAMPLE a(1)=2 because the point x=0 splits the real line into two parts, the
positive and negative reals.

a(2)=6 because we can split two dimensional space into 6 parts using lines
x=0, y=0 and x+y=0.

CROSSREFS Sequence in context: A056642 A001199 A232469 * A067735 A118077 A013976
Adjacent sequences:  A034994 A034995 A034996 * A034998 A034999 A035000

KEYWORD nonn,more
AUTHOR Tim S. Evans
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Sloane OEI sequences 
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory (determined till d =8) 
 
H∞(d,1) vertices : A009997 = number of regions of hyperplane arrangements 
with {-1,0,1}-valued normals in dimension d (determined till d =7) 
 
 
Estimating the number of vertices of H∞(d,1)+   
[Odlyzko 1988], [Zuev 1992], [Kovijanić-Vukićević 2007] 
 
 

   d2  (1-o(1))  ≤ log2 | H∞(d,1)+ | ≤ d2 
 
 
 
 

Computational determination of the  
number of vertices of primitive zonotopes 



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture : δ(d,k) ≤  (k+1)d/2   and δ(d,k)  is achieved, up to translation, 

by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k) ) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

   
Ø  determination of δ(3,k) and of δ(d,3) ?  (δ(d,3) =2d ?) 

Ø  Convex matroid optimization [Melamed-Onn 2012, Deza-Manoussakis-
Onn 2016] 

Ø  Answer to [Colbourn-Kocay-Stinson 1986] question: 
     Deciding if a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017] 
 

 

Lattice polytopes with large diameter and many vertices 



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture : δ(d,k) ≤  (k+1)d/2   and δ(d,k)  is achieved, up to translation, 

by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k) ) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

   
Ø  determination of δ(3,k) and of δ(d,3) ?  (δ(d,3) =2d ?) 

Ø  Convex matroid optimization [Melamed-Onn 2012, Deza-Manoussakis-
Onn 2016] 

Ø  Answer to [Colbourn-Kocay-Stinson 1986] question: 
     Deciding if a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017] 
 

 

Lattice polytopes with large diameter and many vertices 

ü  thank you 



Convex Matroid Optimization 

The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (W is mostly {0,1,…, p}-valued) 
f : convex function from Rd  to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) when  
S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
obviously  v(d,n) ≤ |WS| = O(nd) 
in particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 



Convex Matroid Optimization 

The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (W is mostly {0,1,…, p}-valued) 
f : convex function from Rd  to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) when  
S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
obviously  v(d,n) ≤ |WS| = O(nd) 
in particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 
 
[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 



[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
Ex: maximum number m(2,1) of vertices of a planar projection conv(WS)  
of matroid S by a binary matrix W is attained by the following matrix and 
uniform matroid of rank 3 and order 8: 
 
 

 W = 
 
 
 
S = U(3,8) = 

                 
             

                                                                                  conv(WS)  

2 3 0 1 

1 

2 

3 

Convex Matroid Optimization 



[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
[Deza-Manoussakis-Onn 2016] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p) 
 

m(d,p) = | H∞(d,p) | 
 
 

Convex Matroid Optimization 
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[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
[Deza-Manoussakis-Onn 2016] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p) 
 

m(d,p) = | H∞(d,p) | 
 

[Melamed-Onn 2014]          [Deza-Manoussakis-Onn 2016] 
 
d 2d ≤ m(d,1) ≤           d! 2d ≤ m(d,1) ≤          - f(d)  
 
m(2,1) = 8            m(3,1) = 96  
24 ≤ m(3,1) ≤ 158           m(4,1) = 5376    
64 ≤ m(4,1) ≤ 19840    

2 (3! − 3)/2
!

!!!

!!!
!2 (3! − 3)/2

!

!!!

!!!
!

Convex Matroid Optimization 

m(2,p) = 8 



 
For fixed p and q, linear optimization over Zq(d,p) is polynomial-time 
solvable, even in variable dimension d (polynomial number of generators) 
 
⇒ for fixed positive integers p and q, the following problems are  
    polynomial time solvable: 
 
Ø  extremality: given x ∈ Zd, decide if x is a vertex of Zq(d,p)  

Ø  adjacency: given x1,x2 ∈  Zd, decide if [x1,x2]  is an edge of Zq(d,p)  

Ø  separation: given rational y ∈ Rd, either assert y ∈ Zq(d,p), or find  
    h ∈ Zd separating y from Zq(d,p) i.e, satisfying hTy > hTx for all x ∈ Zq(d,p) 

Primitive Zonotopes  
(complexity questions)  



 
For fixed p and q, linear optimization over Zq(d,p) is polynomial-time 
solvable, even in variable dimension d (polynomial number of generators) 
 
⇒ for fixed positive integers p and q, the following problems are  
    polynomial time solvable: 
 
Ø  extremality: given x ∈ Zd, decide if x is a vertex of Zq(d,p)  

Ø  adjacency: given x1,x2 ∈  Zd, decide if [x1,x2]  is an edge of Zq(d,p)  

Ø  separation: given rational y ∈ Rd, either assert y ∈ Zq(d,p), or find  
    h ∈ Zd separating y from Zq(d,p) i.e, satisfying hTy > hTx for all x ∈ Zq(d,p) 
 
Q.  existence of a direct algorithm for fixed p and q 
      existence of an algorithms for fixed p and q = ∞ 
      existence of hole : x ∈ Hq(d,p)+ ∩ Zd  which can not be written as a sum 
      of a subset of generators of Hq(d,p)+ 

Primitive Zonotopes  
(complexity questions)  



 
Dd : convex hull of the degree sequences of all hypergraphs on d nodes 

Dd  = H∞(d,1)+ 
 

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs  
 on d nodes 

 
Q: check whether x ∈ Dd (k) ∩ Zd  is the degree sequence of a k-uniform 
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k. 
 
[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient 
 
[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)  
 
Ø  Do Hq(d,p)+ have hole :  x ∈ Hq(d,p)+ ∩ Zd  which can not be written as a 

sum of a subset of generators of Hq(d,p)+ 

Ø  complexity of deciding whether x is a hole? 

Primitive Zonotopes  
(complexity questions)  



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture : δ(d,k) ≤  (k+1)d/2   and δ(d,k)  is achieved, up to translation, 

by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k) ) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

 
Ø  m(d,p) = | H∞(d,p) |    
   
Ø  determination of δ(3,k) and of δ(d,3)  ?  (δ(d,3) =2d  ?) 

Ø  complexity issues, e.g. decide whether a given point is a vertex of Z∞(d,1) 

Ø  existence of hole : x ∈ Hq(d,p)+ ∩ Zd  which can not be written as a sum 
of a subset of generators of Hq(d,p)+ 

Lattice polytopes with large diameter and many vertices 


