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A cycle passing through all the vertices of a graph is called a Hamiltonian cycle.
A graph containing a Hamiltonian cycle is called a Hamiltonian graph.
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A cycle passing through all the vertices of a graph is called a Hamiltonian cycle.
A graph containing a Hamiltonian cycle is called a Hamiltonian graph.

A graph G is said to be hyper-Hamiltonian when G is Hamiltonian and G− v is

also Hamiltonian for any vertex v of G.
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Regarding the hyper-Hamiltonicity of a graph, only few articles are known, as
[9] where hyper-Hamiltonian generalized Petersen graphs are investigated.
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Regarding the hyper-Hamiltonicity of a graph, only few articles are known, as
[9] where hyper-Hamiltonian generalized Petersen graphs are investigated.

In this work, we present some sufficient conditions to ensure that an arbitrary

graph is hyper-Hamiltonian, in analogy to results on Hamiltonicity.
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1. General conditions for hyper - Hamiltonian graphs

Let dG(w) indicates the degree of vertex w in G.
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1. General conditions for hyper - Hamiltonian graphs

Let dG(w) indicates the degree of vertex w in G.

Our first theorem is an analogous to Ore’s theorem for hyper-Hamiltonian graphs.
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1. General conditions for hyper - Hamiltonian graphs

Let dG(w) indicates the degree of vertex w in G.

Our first theorem is an analogous to Ore’s theorem for hyper-Hamiltonian graphs.

Theorem 1 Let G be a graph with n ≥ 3 vertices, such that for every pair of

nonadjacent vertices u and v, dG(u)+dG(v) ≥ n+1. Then G is hyper-Hamiltonian.
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Sketch of the proof: It is enough to apply Ore’s theorem to G′ = G − {w},
considering the three possibilities on vertices u, v and w:
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Sketch of the proof: It is enough to apply Ore’s theorem to G′ = G − {w},
considering the three possibilities on vertices u, v and w:

uw and vw ∈ E(G);

uw and vw /∈ E(G);

uw ∈ E(G) and vw /∈ E(G).
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As an immediate consequence we also have an analogous to Dirac’s theorem.

Corollary 2 If δ(G) ≥ n+1

2
then G is hyper-Hamiltonian.
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For the next result we need to set some notation. Let denote by:
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For the next result we need to set some notation. Let denote by:
⋄ Pn : the graph obtained from the complete graph on n vertices by adding a

pendent vertex;
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For the next result we need to set some notation. Let denote by:
⋄ Pn : the graph obtained from the complete graph on n vertices by adding a

pendent vertex;

⋄ Pn + e the graph obtained from Pn by inserting an edge.

Figure 1: P6 and P6 + e
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The next theorem is the correspondent for hyper-Hamiltonian to a result for
Hamiltonian graphs which is a consequence of Ore’s theorem [7].
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The next theorem is the correspondent for hyper-Hamiltonian to a result for
Hamiltonian graphs which is a consequence of Ore’s theorem [7].

Theorem 3 Let G be a graph with n ≥ 3 vertices and m edges. If m ≥ n2−3n+6

2

then G is hyper-Hamiltonian or G = Pn−1 + e.
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Definition 4 ([2]) For an integer k > 0, the k-closure of the graph G is a graph

obtained from G by successively joining pairs of nonadjacent vertices whose degree

sum is at least k until no such pair remains.
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Definition 4 ([2]) For an integer k > 0, the k-closure of the graph G is a graph

obtained from G by successively joining pairs of nonadjacent vertices whose degree

sum is at least k until no such pair remains.

The k-closure of a graph allows to state the following proposition, analogous to
one found in [2], for hamiltonian graphs.
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Definition 4 ([2]) For an integer k > 0, the k-closure of the graph G is a graph

obtained from G by successively joining pairs of nonadjacent vertices whose degree

sum is at least k until no such pair remains.

The k-closure of a graph allows to state the following proposition, analogous to
one found in [2], for hamiltonian graphs.

Proposition. 5 A graph G on n vertices is hyper-Hamiltonian if, and only if, the

(n+ 1)-closure of G is hyper-Hamiltonian.
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2. Spectral conditions for hyper-Hamiltonicity

2.1. Conditions based on spectral radius of adjacency matrix

• Let G = (V, E) be a simple undirected graph on n vertices;

• Adjacency matrix of G: A(G) = (aij) where

aij =

{

1, if vi ∼ vj
0, otherwise.

• spectral radius of A(G): λ(G), (the largest eigenvalue of A(G)).
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In 2010, Fiedler and Nikiforov [7] gave some bounds on the spectral radius of
a graph G and also on the spectral radius of its complement, G, implying the

existence of Hamiltonian cycles in G.
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In 2010, Fiedler and Nikiforov [7] gave some bounds on the spectral radius of
a graph G and also on the spectral radius of its complement, G, implying the

existence of Hamiltonian cycles in G.

These results motivated many other spectral conditions for Hamiltonicity, as in
[13] and [12], for instance.
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Theorem 6 Let G be a graph with n vertices. If λ(G) > −1

2
+

√

(

n− 3

2

)2
+ 2

then G is hyper-Hamiltonian or G = Pn−1 + e.
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Theorem 6 Let G be a graph with n vertices. If λ(G) > −1

2
+

√

(

n− 3

2

)2
+ 2

then G is hyper-Hamiltonian or G = Pn−1 + e.

Sketch of the proof: We have −1

2
+
√

(

n− 3

2

)2
+ 2 > n− 2
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Theorem 6 Let G be a graph with n vertices. If λ(G) > −1

2
+

√

(

n− 3

2

)2
+ 2

then G is hyper-Hamiltonian or G = Pn−1 + e.

Sketch of the proof: We have −1

2
+
√

(

n− 3

2

)2
+ 2 > n− 2

⇒ λ(G) > n− 2
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Theorem 6 Let G be a graph with n vertices. If λ(G) > −1

2
+

√

(

n− 3

2

)2
+ 2

then G is hyper-Hamiltonian or G = Pn−1 + e.

Sketch of the proof: We have −1

2
+
√

(

n− 3

2

)2
+ 2 > n− 2

⇒ λ(G) > n− 2

⇒ G is Hamiltonian. (Fiedler and Nikiforov Theorem)
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Theorem 6 Let G be a graph with n vertices. If λ(G) > −1

2
+

√

(

n− 3

2

)2
+ 2

then G is hyper-Hamiltonian or G = Pn−1 + e.

Sketch of the proof: We have −1

2
+
√

(

n− 3

2

)2
+ 2 > n− 2

⇒ λ(G) > n− 2

⇒ G is Hamiltonian. (Fiedler and Nikiforov Theorem)

By Stanley’s inequality: λ(G) ≤ −1

2
+

√

2m+ 1

4
, where m is the number of

edges in G)

m ≥
n2 − 3n+ 6

2
,

which allows the use of Theorem 3, concluding the proof.
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Theorem 7 Let G be a graph with n vertices and λ(G) be the spectral radius of

its complement G. If λ(G) ≤
√

(

n−2

2

)

−
(

n−2

n

)

then G is hyper-Hamiltonian or

G = Pn−1 + e.
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Theorem 7 Let G be a graph with n vertices and λ(G) be the spectral radius of

its complement G. If λ(G) ≤
√

(

n−2

2

)

−
(

n−2

n

)

then G is hyper-Hamiltonian or

G = Pn−1 + e.

Sketch of the proof: Suppose that G is not hyper-Hamiltonian,
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Theorem 7 Let G be a graph with n vertices and λ(G) be the spectral radius of

its complement G. If λ(G) ≤
√

(

n−2

2

)

−
(

n−2

n

)

then G is hyper-Hamiltonian or

G = Pn−1 + e.

Sketch of the proof: Suppose that G is not hyper-Hamiltonian,

(Proposition 5) ⇒ (n+ 1)-closure I is not hyper-Hamiltonian.
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Theorem 7 Let G be a graph with n vertices and λ(G) be the spectral radius of

its complement G. If λ(G) ≤
√

(

n−2

2

)

−
(

n−2

n

)

then G is hyper-Hamiltonian or

G = Pn−1 + e.

Sketch of the proof: Suppose that G is not hyper-Hamiltonian,

(Proposition 5) ⇒ (n+ 1)-closure I is not hyper-Hamiltonian.

Furthermore, ∀u, v ∈ I, u ≁ v, dI(u) + dI(v) ≤ n.
Applying Hofmeister’s inequality to the complement I, we have:

√

1

n
(d2(v1) + . . .+ d2(vn) ≤ λ(I)
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Theorem 7 Let G be a graph with n vertices and λ(G) be the spectral radius of

its complement G. If λ(G) ≤
√

(

n−2

2

)

−
(

n−2

n

)

then G is hyper-Hamiltonian or

G = Pn−1 + e.

Sketch of the proof: Suppose that G is not hyper-Hamiltonian,

(Proposition 5) ⇒ (n+ 1)-closure I is not hyper-Hamiltonian.

Furthermore, ∀u, v ∈ I, u ≁ v, dI(u) + dI(v) ≤ n.
Applying Hofmeister’s inequality to the complement I, we have:

√

1

n
(d2(v1) + . . .+ d2(vn) ≤ λ(I)

Also, (n− 2).m(I) ≤ d2(v1) + . . .+ d2(vn),
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Theorem 7 Let G be a graph with n vertices and λ(G) be the spectral radius of

its complement G. If λ(G) ≤
√

(

n−2

2

)

−
(

n−2

n

)

then G is hyper-Hamiltonian or

G = Pn−1 + e.

Sketch of the proof: Suppose that G is not hyper-Hamiltonian,

(Proposition 5) ⇒ (n+ 1)-closure I is not hyper-Hamiltonian.

Furthermore, ∀u, v ∈ I, u ≁ v, dI(u) + dI(v) ≤ n.
Applying Hofmeister’s inequality to the complement I, we have:

√

1

n
(d2(v1) + . . .+ d2(vn) ≤ λ(I)

Also, (n− 2).m(I) ≤ d2(v1) + . . .+ d2(vn),

As I ⊆ G, we have λ(I) ≤ λ(G) ≤
√

(

n−2

2

)

−
(

n−2

n

)

.

This implies m(I) ≤ n
2
− 1.

After some algebraic manipulation,if G 6= Pn−1 + e, we achieve a contradiction.
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2.2. Conditions based on spectral radius of the Signless Laplacian

matrix

• Deg(G): the diagonal matrix whose entries are the vertex degrees of G;

• signless Laplacian matrix of G: Q(G) = Deg(G) + A(G);

• spectral radius of Q(G): q1(G), (the largest eigenvalue of Q(G)).
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2.2. Conditions based on spectral radius of the Signless Laplacian

matrix

• Deg(G): the diagonal matrix whose entries are the vertex degrees of G;

• signless Laplacian matrix of G: Q(G) = Deg(G) + A(G);

• spectral radius of Q(G): q1(G), (the largest eigenvalue of Q(G)).

Similar to what is done in [13], we obtain a condition for hyper-Hamiltonicity,
based on this parameter.
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Consider the set En of graphs G on n vertices such that:

• G = P2 ∨ (Ka ∪Kn−a−2), a < n− 2;

• G is n/2-regular , n even;

• G = H ∨ F , H is
(

n
2
− r

)

-regular and | F |= r < n
2

where ∨ indicates the join operation.
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Consider the set En of graphs G on n vertices such that:

• G = P2 ∨ (Ka ∪Kn−a−2), a < n− 2;

• G is n/2-regular , n even;

• G = H ∨ F , H is
(

n
2
− r

)

-regular and | F |= r < n
2

where ∨ indicates the join operation.

Theorem 8 Let G be a graph with n vertices, for n ≥ 3. If q1(G) ≤ n − 2 and

G /∈ En then G is hyper-Hamiltonian.
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2.3. Conditions based on spectral radius of the Distance matrix

• Distance matrix of G: D(G) = (dij) where

dij = d(vi, vj), the distance between vertices vi and vj.
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2.3. Conditions based on spectral radius of the Distance matrix

• Distance matrix of G: D(G) = (dij) where

dij = d(vi, vj), the distance between vertices vi and vj.

• spectral radius of D(G): ρ(G), (the largest eigenvalue of D(G)).
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2.3. Conditions based on spectral radius of the Distance matrix

• Distance matrix of G: D(G) = (dij) where

dij = d(vi, vj), the distance between vertices vi and vj.

• spectral radius of D(G): ρ(G), (the largest eigenvalue of D(G)).

Theorem 9 Let G be a connected graph with n ≥ 2 vertices.

If ρ(G) <
(n− 1)(n+ 2)− 2

n
then G is hyper-Hamiltonian or G = Pn−1 + e.
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Theorem 10 Let G be a graph with n ≥ 2 vertices, such that G is connected.

If ρ(G) > n− 5

2
+3

√

(

n− 3

2

)2
+ 2 then G is hyper-Hamiltonian or G = Pn−1+e.
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Theorem 10 Let G be a graph with n ≥ 2 vertices, such that G is connected.

If ρ(G) > n− 5

2
+3

√

(

n− 3

2

)2
+ 2 then G is hyper-Hamiltonian or G = Pn−1+e.

Sketch of the proof: In [12] it is proved that: If d(u)+d(v) ≥ n for every pair of

adjacent vertices u and v of a graph, then this graph has diameter no greater than
4.
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Theorem 10 Let G be a graph with n ≥ 2 vertices, such that G is connected.

If ρ(G) > n− 5

2
+3

√

(

n− 3

2

)2
+ 2 then G is hyper-Hamiltonian or G = Pn−1+e.

Sketch of the proof: In [12] it is proved that: If d(u)+d(v) ≥ n for every pair of

adjacent vertices u and v of a graph, then this graph has diameter no greater than
4.

As dG(u) + dG(v) ≥ n, we obtain that D(G) ≤ Jn − In + 3A(G), where Jn is
the n× n all one matrix and In, the identity matrix.
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Theorem 10 Let G be a graph with n ≥ 2 vertices, such that G is connected.

If ρ(G) > n− 5

2
+3

√

(

n− 3

2

)2
+ 2 then G is hyper-Hamiltonian or G = Pn−1+e.

Sketch of the proof: In [12] it is proved that: If d(u)+d(v) ≥ n for every pair of

adjacent vertices u and v of a graph, then this graph has diameter no greater than
4.

As dG(u) + dG(v) ≥ n, we obtain that D(G) ≤ Jn − In + 3A(G), where Jn is
the n× n all one matrix and In, the identity matrix.

So, ρ(G) < n− 1 + 3λ(G). Then we can apply Hofmeister’s inequality to λ(G)
and get the result.
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3. Hyper-Hamiltonian threshold graphs

In this section, unlike what was done previously, we will restrict our results to a
specific class of graphs, namely, threshold graphs.
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3. Hyper-Hamiltonian threshold graphs

In this section, unlike what was done previously, we will restrict our results to a
specific class of graphs, namely, threshold graphs.

• L(G) = Deg(G)− A(G).

• the eigenvalues of L(G) in non increasing order:

µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0.
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3. Hyper-Hamiltonian threshold graphs

In this section, unlike what was done previously, we will restrict our results to a
specific class of graphs, namely, threshold graphs.

• L(G) = Deg(G)− A(G).

• the eigenvalues of L(G) in non increasing order:

µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0.

• µn−1 is called the algebraic connectivity of G and denoted a(G).
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Threshold graphs are graphs free of P4, C4 and 2K2.

Hamiltonicity in threshold graphs is studied in [6] under a non spectral approach.
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In [10] it is shown that Laplacian eigenvalues of a threshold graph can be obtained
from its degree sequence. This result and Theorem 1 imply the following theorem.
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In [10] it is shown that Laplacian eigenvalues of a threshold graph can be obtained
from its degree sequence. This result and Theorem 1 imply the following theorem.

Theorem 11 Let G be a threshold graph with n vertices.

If µn−1 + µn−2 ≥ n+ 1 then G is hyper-Hamiltonian.
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In [10] it is shown that Laplacian eigenvalues of a threshold graph can be obtained
from its degree sequence. This result and Theorem 1 imply the following theorem.

Theorem 11 Let G be a threshold graph with n vertices.

If µn−1 + µn−2 ≥ n+ 1 then G is hyper-Hamiltonian.

An immediate consequence is the next corollary.

Corollary 12 Let G be a threshold graph with n vertices.

If a(G) ≥ n+1

2
then G is hyper-Hamiltonian.
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We may note that different matrices do not produce the same conclusion con-
sidering hyperhmiltonicity of graphs as can be seen in the following example:

Exemplo 13 Hyper-Hamiltonian graph G1 with 10 vertices and non connected

complement.

Figure 2: G1.

G1 has m = 39, λ(G1) = 8, 126, λ(G1) = 2, 44, q1(G1) = 7, ρ(G1) = 10, 43,
µn−1(G1) = 3 and µn−2(G1) = 9.
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The graph G1 satisfies the conditions based on:

• number of edges;

• λ(G1);

• q1(G1);

• ρ(G1);

• µn−1(G1) + µn−2(G1).
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The graph G1 satisfies the conditions based on:

• number of edges;

• λ(G1);

• q1(G1);

• ρ(G1);

• µn−1(G1) + µn−2(G1).

but it does not satisfy conditions:

• λ(G1);

• algebraic connectivity.
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Exemplo 14 Hyper-Hamiltonian graph G2 with 10 vertices and non connected

complement.

Figure 3: G2.

G2 has m = 38, λ(G2) = 7, 93, λ(G2) = 2, 68, q1(G2) = 7, 13, ρ(G2) = 10, 64,

µn−1(G2) = 3 and µn−2(G2) = 7.
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The graph G2 satisfies the conditions based on:

• number of edges;

• q1(G2);
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The graph G2 satisfies the conditions based on:

• number of edges;

• q1(G2);

but it does not satisfy conditions:

• λ(G2);

• λ(G2);

• ρ(G2);

• µn−1(G2) + µn−2(G2)
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Thank you
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