On Generalizations of the Parking Permit Problem and Network Leasing Problems

Murilo S. de Lima¹, Mário C. San Felice², Orlando Lee¹

¹Unicamp – Brazil ²USP – Brazil

LAGOS 2017 September 11-15, 2017

Introduction

Parking Permit Problem

Johnny goes to work every day

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

 \blacktriangleright sunny \rightarrow walks

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

- $\blacktriangleright \text{ sunny} \rightarrow \text{walks}$
- rains \rightarrow clean-fuel car

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

- $\blacktriangleright \text{ sunny} \rightarrow \text{walks}$
- rains \rightarrow clean-fuel car

Parking costs money!

► K different permit lengths: e.g., daily, weekly, monthly

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

- $\blacktriangleright \text{ sunny} \rightarrow \text{walks}$
- rains \rightarrow clean-fuel car

Parking costs money!

- ► K different permit lengths: e.g., daily, weekly, monthly
- each rainy day \rightarrow valid permit

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

- $\blacktriangleright \text{ sunny} \rightarrow \text{walks}$
- rains \rightarrow clean-fuel car

Parking costs money!

- ► K different permit lengths: e.g., daily, weekly, monthly
- each rainy day \rightarrow valid permit
- permits expire (even if not used!)

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

- $\blacktriangleright \text{ sunny} \rightarrow \text{walks}$
- rains \rightarrow clean-fuel car

Parking costs money!

- ► K different permit lengths: e.g., daily, weekly, monthly
- each rainy day \rightarrow valid permit
- > permits expire (even if not used!)
- sub-additive costs (economy of scale)

Parking Permit Problem

Johnny goes to work every day

He lives close to his job

He is a hipster an environmental-aware person

- $\blacktriangleright \text{ sunny} \rightarrow \text{walks}$
- rains \rightarrow clean-fuel car

Parking costs money!

- ► K different permit lengths: e.g., daily, weekly, monthly
- each rainy day \rightarrow valid permit
- permits expire (even if not used!)
- sub-additive costs (economy of scale)

How can Johnny save money for a trip to Marseille?

Parking Permit Problem (2)

Parking Permit Problem (2)

Parking Permit Problem (2)

Solvable via dynamic programming (Meyerson, 2005)

Parking Permit Problem (2)

Solvable via dynamic programming (Meyerson, 2005)

Not very realistic

- Johnny does not know the future!
- weather forecast \rightarrow unreliable for long-term

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

length	cost
1	2
2	3
4	4

Online Parking Permit Problem

cost: 10

Online Parking Permit Problem

length	cost
1	2
2	3
4	4

cost: 10

optimum costs 6

Online Parking Permit Problem (2)

(Meyerson, 2005)

- deterministic O(K)-competitive algorithm
- deterministic $\Omega(K)$ lower bound

Online Parking Permit Problem (2)

(Meyerson, 2005)

- deterministic O(K)-competitive algorithm
- deterministic $\Omega(K)$ lower bound
- randomized O(lg K)-competitive algorithm
- randomized $\Omega(\lg K)$ lower bound

Online Parking Permit Problem (2)

(Meyerson, 2005)

- deterministic O(K)-competitive algorithm
- deterministic $\Omega(K)$ lower bound
- randomized O(lg K)-competitive algorithm
- randomized $\Omega(\lg K)$ lower bound

Seminal problem for leasing optimization

Online Parking Permit Problem (2)

(Meyerson, 2005)

- deterministic O(K)-competitive algorithm
- deterministic $\Omega(K)$ lower bound
- randomized O(lg K)-competitive algorithm
- randomized $\Omega(\lg K)$ lower bound

Seminal problem for leasing optimization

cloud service allocation

Online Parking Permit Problem (2)

(Meyerson, 2005)

- deterministic O(K)-competitive algorithm
- deterministic $\Omega(K)$ lower bound
- randomized O(lg K)-competitive algorithm
- randomized $\Omega(\lg K)$ lower bound

Seminal problem for leasing optimization

cloud service allocation

Imply results for Steiner Leasing Problem (Meyerson, 2005)

 approximation by tree metrics (Bartal, 1996; Fakcharoenphol *et al.*, 2004)

Interval Model
Interval Model

Permit lengths divide each other

Interval Model

Permit lengths divide each other

Permits start on multiples of their lenghts

Interval Model

Permit lengths divide each other

Permits start on multiples of their lenghts

Interval Model

Permit lengths divide each other

Permits start on multiples of their lenghts

 α -competitive under IM \rightarrow 4 α -competitive in general

Multi Parking Permit Problem

Communists Labor union obliges Johnny's company to pay employees' permits

Communists Labor union obliges Johnny's company to pay employees' permits

Communists Labor union obliges Johnny's company to pay employees' permits

Communists Labor union obliges Johnny's company to pay employees' permits

Communists Labor union obliges Johnny's company to pay employees' permits

Hanoi Tower Property

opt on each level \rightarrow opt for the whole input

Hanoi Tower Property

opt on each level \rightarrow opt for the whole input

Permits are stacked as in Hanoi tower

Hanoi Tower Property

opt on each level \rightarrow opt for the whole input

Permits are stacked as in Hanoi tower

Induces a simple reduction algorithm (pseudo-polynomial!)

Hanoi Tower Property

opt on each level \rightarrow opt for the whole input

Permits are stacked as in Hanoi tower

Induces a simple reduction algorithm (pseudo-polynomial!) Relies on Interval Model

Hanoi Tower Property (2)

No Interval Model \rightarrow no Hanoi Tower Property!

Hanoi Tower Property (2)

No Interval Model \rightarrow no Hanoi Tower Property!

Hanoi Tower Property (2)

No Interval Model \rightarrow no Hanoi Tower Property!

We conjecture that the problem is NP-hard if we do not assume the Interval Model.

Hanoi Tower Property (2)

No Interval Model \rightarrow no Hanoi Tower Property!

We conjecture that the problem is NP-hard if we do not assume the Interval Model.

Under Interval Model we have:

poly-time exact algorithm (4-approx. in general)

Hanoi Tower Property (2)

No Interval Model \rightarrow no Hanoi Tower Property!

We conjecture that the problem is NP-hard if we do not assume the Interval Model.

Under Interval Model we have:

- poly-time exact algorithm (4-approx. in general)
- poly-time approximation-preserving reduction

 α -competitive Parking Permit $\rightarrow 2\alpha$ -comp. Multi Parking Permit

 $\alpha\text{-competitive Parking Permit} \to 2\alpha\text{-comp.}$ Multi Parking Permit

 α -competitive Parking Permit $\rightarrow 2\alpha$ -comp. Multi Parking Permit

> 2-approximation under Interval Model (8-approx. in general)

 $\alpha\text{-competitive Parking Permit} \to 2\alpha\text{-comp.}$ Multi Parking Permit

- 2-approximation under Interval Model (8-approx. in general)
- ▶ O(K)-competitive deterministic online algorithm
- ▶ O(lg K)-competitive randomized online algorithm
Poly-time exact algorithm

We represent multiset of permits ightarrow set of tuples: (t, ℓ, k, q)

• $t \rightarrow$ starting time

- $t \rightarrow$ starting time
- $\ell \rightarrow$ first level covered

- $t \rightarrow$ starting time
- $\ell \rightarrow$ first level covered
- $k \rightarrow$ permit type

- $t \rightarrow$ starting time
- $\ell \rightarrow$ first level covered
- $k \rightarrow$ permit type
- $q \rightarrow$ multiplicity

- $t \rightarrow$ starting time
- $\ell \rightarrow$ first level covered
- $k \rightarrow$ permit type
- $q \rightarrow$ multiplicity

- $t \rightarrow$ starting time
- $\ell \rightarrow \text{first level covered}$
- $k \rightarrow \text{permit type}$
- $q \rightarrow$ multiplicity

- $t \rightarrow$ starting time
- $\ell \rightarrow$ first level covered
- $k \rightarrow \text{permit type}$
- $q \rightarrow$ multiplicity

We represent multiset of permits ightarrow set of tuples: (t, ℓ, k, q)

- $t \rightarrow$ starting time
- $\ell \rightarrow \text{first level covered}$
- $k \rightarrow \text{permit type}$
- $q \rightarrow$ multiplicity

15 / 21

- $t \rightarrow$ starting time
- $\ell \rightarrow \text{first level covered}$
- $k \rightarrow \text{permit type}$
- $q \rightarrow$ multiplicity

Poly-time exact algorithm (2)

Optimal substructure

Poly-time exact algorithm (2)

Optimal substructure

For $k = 1, \ldots, K \rightarrow$ find optimum using only types $1, \ldots, k$

Poly-time exact algorithm (2)

Optimal substructure

For $k=1,\ldots, \mathcal{K} \to \mathsf{find}$ optimum using only types $1,\ldots, k$

• $k = 1 \rightarrow \text{trivial}$

Optimal substructure

For $k=1,\ldots,K
ightarrow$ find optimum using only types $1,\ldots,k$

- $k = 1 \rightarrow \text{trivial}$
- ▶ suppose we have optimum using types $1, \ldots, k-1$

Optimal substructure

For $k = 1, \ldots, K \rightarrow$ find optimum using only types $1, \ldots, k$

- $k = 1 \rightarrow \text{trivial}$
- ▶ suppose we have optimum using types $1, \ldots, k-1$

Optimal substructure

For $k = 1, \ldots, K \rightarrow$ find optimum using only types $1, \ldots, k$

- $k = 1 \rightarrow \text{trivial}$
- suppose we have optimum using types $1, \ldots, k-1$

How do we find ℓ ?

Poly-time exact algorithm (3)

We can use binary search!

Poly-time exact algorithm (3)

We can use binary search!

 $\ell :$ highest level s.t. optimum using types $1, \ldots, k-1$ is worse than permit of type k

Poly-time exact algorithm (4)

Poly-time exact algorithm (4)

Poly-time exact algorithm (4)

Poly-time exact algorithm (4)

Poly-time exact algorithm (4)

- O(lg n)-approximation
- $O(\lg K \lg |V|)$ -competitive online algorithm

- O(lg n)-approximation
- $O(\lg K \lg |V|)$ -competitive online algorithm
- 2D Parking Permit Problem
 - ▶ Hu et al., 2015: pseudo-polynomial algorithms
 - constant approximation
 - O(K)-competitive online algorithm

- O(lg n)-approximation
- $O(\lg K \lg |V|)$ -competitive online algorithm
- 2D Parking Permit Problem
 - ▶ Hu et al., 2015: pseudo-polynomial algorithms
 - constant approximation
 - O(K)-competitive online algorithm
 - we got poly-time! (dynamic programming + binary search)

Multi Parking Permit \rightarrow Steiner Network Leasing Problem

- O(lg n)-approximation
- $O(\lg K \lg |V|)$ -competitive online algorithm
- 2D Parking Permit Problem
 - ▶ Hu et al., 2015: pseudo-polynomial algorithms
 - constant approximation
 - ▶ O(K)-competitive online algorithm
 - we got poly-time! (dynamic programming + binary search)

2D Parking Permit \rightarrow Leasing Buy-at-Bulk Network Design Problem

- O(lg n)-approximation
- ► O(lg K lg |V|)-competitive online algorithm

Thank you!