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Introduction

Introduction

Definition 1: Bandwidth Coloring Problem (BCP).

Let G = (V ,E) be an undirected graph and d : E → Z+. A feasible coloring of G and
d for the BCP is an assignment of colors c : V → Z+ such that for each (i, j) ∈ E , the
condition |c(i)− c(j)| ≥ d(i, j) is true. The span, defined as max

i∈V
c(i), must be the

minimum possible.
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c(3) = 5 c(4) = 4

max
i∈V

c(i) = max{1,3,4,5} → span = 5.
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Important application: channel assignment in mobile wireless
networks.

Network consists of a number of transmitters, each responsible for
calls in its area.
Channels must respect interference constraints.
Spectrum usage must be minimized.
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BCP is a particular case of T-coloring, which asks for a coloring
c : V → Z+ such that |c(i)− c(j)| /∈ Ti,j for every (i , j) ∈ E .

Ti,j : forbidden sets [Hale, 1980].

BCP is equivalent to T-coloring with Ti,j = {0,1, . . . ,di,j − 1} for all
(i , j) ∈ E .

If di,j = 1 for every (i , j) ∈ E , then the BCP is equivalent to the
classic k -coloring problem.

In this case, the span max
i∈V

c(i) is equivalent to the number of used

colors.
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Previous works on the BCP include:

tabu search [Dorne and Hao, 1998, Lai and Lu, 2013];
local search [Lau and Tsang, 1998, Galinier and Hertz, 2006];
heuristic framework [Phan and Skiena, 2002];
integer programming [Mak, 2007];
evolutionary algorithms [Malaguti et al., 2008];
constraint programming [Prestwich, 2008],;
GRASP [Marti et al., 2010].
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Introduction

Our research

Some of our results:

simulated annealing [Dias, Freitas and Maculan, 2013],
constraint programming [Dias, Freitas, Maculan and Michelon,
2016];
graph theoretical properties [Freitas, Dias, Maculan and
Szwarcfiter, 2016],
integer programming [Dias, Freitas, Maculan and Michelon, 2016];
current work: polyhedral combinatorics [Dias, Freitas, Marenco and
Maculan, 2017].
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Happy 75 years old, Jayme!!

At Jayme’s 65 years old
Aconcagua (Andes) 2007/2008

At Jayme’s 70 years old
Elbrus (Russian Caucashs) 2012

I owe a high mountain for your 75 years, Jayme!!
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Integer programming models

Standard IP model

Existing integer programming model [Koster, 1999]:

Variables:

xik =

{
1 if color k is assigned to vertex i ,
0 otherwise.

yk =

{
1 if color k is given to any vertex,
0 otherwise

zmax = maximum used color ()channel).

C = set of possible colors.
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Integer programming models

Improving the standard IP model

Improved IP model with less constraints and variables
[Dias et al., 2016]:
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Orientation model for the BCP

Orientation IP formulation

Based on the model by [Borndörfer et al., 1998] for the classical vertex
coloring problem.

Variables:

xi = color assigned to vertex i (xi ∈ N).

yij =

{
1 if xi < xj ,
0 otherwise.

zmax = maximum used color ()channel).

C = set of possible colors.
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Orientation model for the BCP

Orientation IP formulation

This is a new formulation for BCP!
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Orientation model for the BCP

Orientation IP formulation

The formulation induces an orientation on the input graph, according to
colors.
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3

color(1) = 1 color(2) = 3

color(3) = 5 color(4) = 4

Values of variables in 
the optimal solution:

zmax = 5

x1 = 1
x2 = 3
x3 = 5
x4 = 4

y12 = 1
y13 = 1
y14 = 1
y24 = 1
y34 = 0
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Facet-defining inequalities for
orientation model
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Facet-defining inequalities for orientation model

Polyhedral study

The parameter U ∈ Z+ in the distance constraints must be an
upper bound on available colors.

If no such a bound is imposed, then the convex hull of the
resulting feasible solutions is not a polytope, and an integer
programming formulation is not possible in this case.

Definition 2: BCP Polytope .

We define PO(G,d ,U) to be the convex hull of feasible solutions to the
previous formulation.

Theorem 1. If U ≥ χ(G,d) + 2dmax , then the polytope PO(G,d ,U) is
full-dimensional.
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Facet-defining inequalities for orientation model

Orientation model - Valid inequalities and facets

There are some valid inequalities (facets) proved to the
Orientation model - k-coloring:

Clique inequalities
Double clique inequalities
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Facet-defining inequalities for orientation model

Orientation model - Valid inequalities and facets

For the BCP: additional constraints and variables are needed to
use the inequalities:

Variables yji =

{
1 if xi < xj ,
0 otherwise.

Constraints yij + yji = 1 (∀i , j ∈ V ).
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Facet-defining inequalities for orientation model

Clique cuts

Definition 3. Let i ∈ V and consider a clique K ⊆ N(i). We define the
clique inequality associated with i and K to be∑

j∈K

yji ≤ xi .

The clique inequalities strengthen the bounds xi ≥ 0.
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Facet-defining inequalities for orientation model

Generalized clique cuts

Definition 4. Let i ∈ V and consider a clique K ⊆ N(i). For k ∈ K , we
define δi

K (j) := mint∈K∪{i}\{j} djt . We define the generalized clique
inequality associated with the vertex i and the clique K to be∑

j∈K

δi
K (j) yji ≤ xi .

The generalized clique cuts introduce the distance constraints to
the clique cuts.
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Facet-defining inequalities for orientation model

Generalized clique cuts - example

Definition 4. Let i ∈ V and consider a clique K ⊆ N(i). For k ∈ K , we
define δi

K (j) := mint∈K∪{i}\{j} djt . We define the generalized clique
inequality associated with the vertex i and the clique K to be∑
j∈K

δi
K (j) yji ≤ xi .

1

3

4

5

23
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3
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1
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Facet-defining inequalities for orientation model

Generalized clique cuts

Theorem 2. The generalized clique inequality is valid for PO(G,d ,U).
If
(a) U ≥ χ(G,d) + 3dmax,
(b) dij = δi

K (j) for every j ∈ K , and
(c) for every t ∈ N(i)\K there exists j ∈ K with jt 6∈ E and dit ≤ dij ,

then the generalized clique inequality induces a facet of PO(G,d ,U).
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Facet-defining inequalities for orientation model

Double clique cuts

Definition 5. Let (i , j) ∈ E and consider a clique K ⊆ N(i) ∩ N(j). We
define

xi + 1 +
∑
v∈K

(yik − yjk ) ≤ xj + U(1− yij).

to be the double clique inequality associated with the edge (i , j) and
the clique K .

The double-clique inequalities strengthen the model constraints
xi + di,j ≤ xj + U(1− yij).
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Facet-defining inequalities for orientation model

Generalized double clique cuts

Definition 6. Let (i , j) ∈ E and consider a clique K ⊆ N(i) ∩ N(j). For
v ∈ K , define δij

K (v) := min`∈K∪{i,j}\{v} dv ,`. Also, fix a vertex p ∈ K .
We define

xi + di,j +
∑
v∈K

γv (yiv − yjv ) ≤ xj + (U + di,j − γ(K ))yji

to be the generalized double clique inequality associated with the edge
(i , j), the clique K , and the vertex p, where γp = max{0,2δij

K (p)− di,j},
γv = max{0, δij

K (v)− di,j} for v ∈ K\{p}, and γ(K ) =
∑

v∈K
γv .

The generalized clique cuts introduce the distance constraints to
the double clique cuts.
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Facet-defining inequalities for orientation model

Generalized double clique cuts - example
Definition 6. Let (i, j) ∈ E , K ⊆ N(i) ∩ N(j) be a clique. For v ∈ K , define

δ
ij
K (v) = min`∈K∪{i,j}\{v} dv,`. Fix a vertex p ∈ K . We define

xi + di,j +
∑

v∈K
γv (yiv − yjv ) ≤ xj + (U + di,j − γ(K ))yji to be the double clique inequality

associated with the edge (i, j), the clique K , and the vertex p, where γp = max{0, 2δij
K (p)− di,j},

γv = max{0, δij
K (v)− di,j} for v ∈ K\{p}, and γ(K ) =

∑
v∈K

γv .
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Generalized double clique cuts - example
Definition 6. Let (i, j) ∈ E , K ⊆ N(i) ∩ N(j) be a clique. For v ∈ K , define
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Generalized double clique cuts - example
Definition 6. Let (i, j) ∈ E , K ⊆ N(i) ∩ N(j) be a clique. For v ∈ K , define
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Generalized double clique cuts - example
Definition 6. Let (i, j) ∈ E , K ⊆ N(i) ∩ N(j) be a clique. For v ∈ K , define
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ij
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Facet-defining inequalities for orientation model

Generalized double clique cuts

Theorem 3. The generalized double clique inequality is valid for
PO(G,d ,U). If
(a) U ≥ χ(G,d) + 4dmax, and

(b) di,v = dj,v = δij
K (v) for every v ∈ K ,

(c) dp,v = dp,j for every v ∈ K\{p},

(d) di,j ≤ δij
K (v) for every v ∈ K\{p}, and

(e) (t ,p) 6∈ E and di,t + dt ,j ≤ di,j for every t ∈ [N(i) ∩ N(j)]\K
then the generalized double clique inequality induces a facet of
PO(G,d ,U).
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Computational experiments

Computational experiments
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Computational experiments

Computational experiments

We implemented a preliminary cut-and-branch (C&B) algorithm in
order to test these inequalities.

Experiments executed on a computer with:

Intel Core i7-3770 (3.4GHz), 8 cores.
8GB of RAM.
Ubuntu Linux 16.04.2 LTS.

Solver software: IBM/ILOG CPLEX 12.6.
Time limit: 3600 seconds (1 hour).
Instances used: GEOM set (without multicoloring demands)
[Trick et al., 2002].
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Computational experiments

Cut-and-branch for BCP - pseudocode

Require: graph G = (V ,E), distances d : E → Z≥0.
function CUTANDBRANCH-BCP-ORIENTATION(G = (V ,E),d)

lpOrient ← ASSEMBLELPMODEL-RELAXATION(G)
(x , y , zmax)← LPSOLVER(lpOrient)
if (x , y , zmax) is not integer then

H ← GENERATEMAXIMALCLIQUES(G)
for each clique K ∈ V do

ADD-GENERALCLIQUECUT(lpOrient , (x , y , zmax), K )
ADD-GENERALDBLCLIQUECUT(lpOrient , (x , y , zmax), K )
(x , y , zmax)← LPSOLVER(lpOrient)
if (x , y , zmax) is integer then

break
if (x , y , zmax) is not integer then

mipOrient ← CHANGEVARSTOINT(lpOrient)
(x , y , zmax)← B&C-MIPSOLVER(mipOrient)

return (x , y , zmax)
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Computational experiments

Computational experiments - Orientation model

Instance
Standard model Orientation model
Best Time Best Time

GEOM20 21 0.33 21

0.03

GEOM30 28 0.88 28

0.22

GEOM40 28 1.97 28

0.19

GEOM50 28 21.44 28

4.26

GEOM60 33 45.73 33

149.60

GEOM70 38 533.53 38

121.61

GEOM80 41 3019.18 41

2167.43

The orientation model has advantages on most problems in
comparison with the standard IP model.
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Computational experiments

Computational experiments - Orientation model: cuts

Instance
CPLEX C&B: CPLEX + cuts

Best Time (s) Best Time (s)
GEOM20 21 0.03 21 0.02
GEOM30 28 0.22 28 0.25
GEOM40 28 0.19 28 0.87
GEOM50 28 4.26 28 43.63
GEOM60 33 149.60 33 18.07
GEOM70 38 121.61 38 11.66
GEOM80 41 2167.43 41 22.76

The clique and double-clique inequalities are quite useful within
the cut-and-branch procedure.
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Computational experiments

Computational experiments - Orientation model: cuts

Instance
CPLEX

Cliques Imp.Bnd. MI Round. 0-Half Gomory
GEOM20 0 7 14 1 1
GEOM30 0 12 52 8 2
GEOM40 0 13 49 14 4
GEOM50 0 53 123 40 4
GEOM60 0 45 233 54 1
GEOM70 0 135 213 51 1
GEOM80 0 182 318 69 1

Instance
C&B: CPLEX + cuts

Cliques Imp.Bnd. MI Round. 0-Half Gomory
GEOM20 0 6 1 4 2
GEOM30 1 24 13 3 7
GEOM40 3 33 37 5 6
GEOM50 17 47 72 16 22
GEOM60 21 85 102 23 26
GEOM70 22 94 161 44 23
GEOM80 16 98 170 43 30

More CPLEX clique and Gomory cuts are added when the valid
inequalities are included.
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Computational experiments

Orientation model and cut-and-branch: discussions

The clique and double-clique inequalities proved to be useful
within a cut-and-branch procedure.
More CPLEX clique and Gomory cuts are added when the valid
inequalities are included.
The orientation model seems to be a better platform than the
standard model for tackling BCP with integer programming.

Further cuts are possible, which indicates that the orientation
model is a very competitive approach to BCP.
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Concluding remarks

Concluding remarks

We proposed a new orientation-based IP formulation for the
Bandwidth Coloring Problem, which seems to be a better platform
than the standard model for tackling BCP with integer
programming.

We made a preliminary study of the polytope associated to the
new model, including the definition of facet-defining cutting planes
for it.
Current work:

Search for more facet-inducing inequalities, and implement a
branch-and-cut procedure for BCP.
Try to apply the distance model for the BCP.
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