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Total Colouring

Definition 1

A total colouring of a graph is an attribution of colours to its
vertices and edges such that two adjacent or incident elements do
not have the same colour. The total chromatic number T (G ) is
the least n for which G admits a total colouring with n colours.

Figure 1: A total colouring
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Total Colouring

Question 2

Total Colouring Conjecture (Behzad, 1964 - Vizing, 1967)
Every simple graph admits total colouring using at most ∆ + 2
colours.

It was proved for cubic graphs in 1971, independently, by Rosenfeld
and Vijayaditya.
Cubic graphs with T = 4 are said to be Type 1 and cubic graphs
with T = 5 are said to be Type 2.
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Snarks

Definition 3

A snark is a cubic cyclically 4-edge connected graph that admits
no 3-edge colouring (Class 2).

Figure 2: The Petersen graph is the smallest snark

The importance of these graphs arise from the fact that snarks are
counterexamples for many conjectures in Graph Theory.
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Our Problem

In 2003, Cavicchioli et al. [3] verified that all snarks with girth at
least 5 and fewer than 30 vertices are Type 1. In the same paper,
they also proposed the question of finding the smallest Type 2 snark
with girth at least 5.
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Our Problem

In 2015, Brinkmann, Preissmann and Sasaki [2] constructed an in-
finite family of Type 2 snarks with girth 4 for all orders larger than
40.
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Our Problem

Based on the construction of Type 2 snarks given in [2] and inspired
by the dot product, we determine new ways of constructing Type 2
snarks by investigating the dot product between Type 1 snarks. We
also determine infinite families of Class 2 blocks that can be used in
this kind of construction.
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Definitions

Definition 4

A dot product between two snarks is constructed by deleting two
non-adjacent edges in the first one and two adjacent vertices not in
a triangle in the other, and then joining the four exposed vertices
obtained, pair to pair. A dot product between two snarks is still a
snark.
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Figure 3: Dot product:
deleted vertices and
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Figure 4: The resulting
graph
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Definitions

Definition 5

A brick B∗ is a cubic semigraph with exactly four semiedges,
pairwise non-adjacent, such that its underlying graph B, the graph
formed by its vertices and edges, is subgraph of some cubic
cyclically 4-edge connected graph.

Figure 5: Two bricks: s-square (left) and s-domino (right).
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Definitions

Definition 6

A junction of semigraphs B ′ and B ′′ with the same number k of
semiedges is a graph with all the vertices in both B ′ and B ′′ plus k
disjoint edges (x , y) such that (x , ·) is a semiedge of B ′ and (y , ·)
is a semiedge of B ′′.

Figure 6: A junction of an s-square and an s-domino.
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Definitions

Remark 7

If there exists a Class 2 (resp. Type 2) subgraph of G H and ∆(G )
= ∆(H), then G is Class 2 (resp. Type 2).

Lemma 8 (Brinkmann, Preissmann and Sasaki [2])

Any junction of two bricks is a cyclically 4-edge connected graph.
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Previous Work

Brinkmann, Preissmann and Sasaki [2] proved that P∗ is a Class 2
brick and B∗ is a Type 2 brick and any of their junctions results in
a Type 2 snark. Also, from B∗ and P∗ it is possible to build Type 2
snarks for any even order n ≥ 40.

Figure 7: P∗ Figure 8: B∗
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Previous Work

The family of snarks obtained this way will be called here S∗.

Figure 9: One of the smallest elements in S∗.
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Type 2 Cubic Graphs

Theorem 9

The graphs in family S∗ cannot be obtained from the product of
two Type 1 snarks.

B1

B2
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Type 2 Cubic Graphs

Proposition 10

The dot product of two Type 1 snarks can be a Type 2 snark.

S1 and S2 are Type 1 cubic graphs

Figure 10: An equitable 4-total
colouring for S1

Figure 11: An equitable 4-total
colouring for S2
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Type 2 Cubic Graphs

Proposition 11

The dot product of two Type 1 snarks can be a Type 2 snark.
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Type 2 Cubic Graphs

Figure 12: An equitable 5-total colouring for S−v1,v21 · Se1,e2
2
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A New Family of Type 2 Cubic Graphs

Proposition 12

Semigraph L∗ depicted in the figure below is a Class 2 brick.

Figure 13: Brick L∗.
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A New Family of Type 2 Cubic Graphs
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Figure 14: Representation of the 3-edge colourings for blocks L′.
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A New Family of Type 2 Cubic Graphs

Corollary 13

Graphs T1 and T2 shown in Figure 15 are snarks.

Figure 15: Graphs T1 and T2.
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A New Family of Type 2 Cubic Graphs

Theorem 14

Let T = T1 · T2 be the graph depicted in Figure 16. Graph T is a
Type 2 snark obtained from a dot product of two Type 1 snarks.

Figure 16: Type 2 snark T .
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A New Family of Type 2 Cubic Graphs

. . .
. . .

Figure 17: A general Loupekine-based brick.
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Thank you!
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