Minimum Linear Arrangements

Rafael Andrade, Tibérius Bonates, Manoel Câmpelo, Mardson Ferreira

ParGO - Research team in Parallel computing, Graph theory and Optimization Department of Statistics and Applied Mathematics Master and Doctoral Program in Computer Science Federal University of Ceará

IX LAGOS, Marseille, 11-15 September, 2017

2 Mathematical programming model and valid inequalities

- Let G = (V, E) be a simple and undirected graph with set of vertices V and set of edges E.
- The MinLA problem consists in assigning a permutation $\{\pi_1, \pi_2, \ldots, \pi_{|V|}\}$ of $\{1, 2, \ldots, |V|\}$ to the nodes of G, with a one-to-one correspondence, such that the following sum is minimized

2

$$\sum_{uv\in E} \left| \pi_u - \pi_v \right|.$$

• MinLA is NP-Hard [Garey et al., 1976].

(a) Connected graph G.

(b) A feasible layout. (c) An optimal layout.

Figure: Example of a graph G and layouts of its vertices.

- [Díaz et al., 2002] analyzed different combinatorial techniques to obtain lower and upper bounds for the problem.
- [Amaral, 2009] presents a model able to find optimal solutions of the problem for dense graphs with up to 23 vertices.
- [Seitz, 2010] proposed a model based on binary distance and from it presents an interesting polyhedral study of the problem.
- [Moeini et al., 2014] propose a model whose interest is to find relaxed solutions of good quality.

Consider:

- a directed complete graph D = (V, A) obtained from G = (V, E), with $A = \{uv \mid u, v \in V, u \neq v\}$.
- $A(E) \subset A$ the subset of arcs of D where $uv, vu \in A(E) \leftrightarrow uv \in E$.
- π a permutation of $\{1, \cdots, |V|\}$ to be assigned to the vertices of D.

Let x_{uv} , for all $uv \in A$, be a binary variable, where

$$x_{uv} = \begin{cases} 1 & \text{if } \pi_v > \pi_u, \\ 0, & \text{otherwise,} \end{cases}$$

and w_{uv} , for all $uv \in A$, be continuous variables representing the weight of each arc $uv \in A$.

Mathematical quadratic programming model

$$\begin{array}{ll} (P) & \min_{\pi,x,w} \sum_{uv \in A(E)} w_{uv} x_{uv} & (1) \\ s.t. & x_{uv} + x_{vu} = 1, & \forall uv \in A, & (2) \\ & \pi_v - \pi_u \leq w_{uv} + |V|(1 - x_{uv}), & \forall uv \in A, & (3) \\ & \pi_v - \pi_u \geq w_{uv} - |V|(1 - x_{uv}), & \forall uv \in A, & (4) \\ & 1 \leq \pi_v \leq |V|, & \forall v \in V, & (5) \\ & 1 \leq w_{uv} \leq |V| - 1, & \forall uv \in A. & (6) \\ & x_{uv} \in \{0, 1\}, & \forall uv \in A. & (7) \end{array}$$

Constraints (2) ensure that exactly one of the orientations of each pair of vertices is selected. Constraints (3) and (4) impose that if arc uv is in the solution, i.e. $x_{uv} = 1$, then $w_{uv} = \pi_v - \pi_u$; otherwise both constraints become redundant for this arc. The remaining constraints bound the variables. We can linearize the (P) model by dropping the x variables in (1):

(Q)
$$\min_{\pi,x,w} \sum_{uv \in A(E)} w_{uv}$$
 (8)
s.t. (2) - (7).

Due to the sense of optimization, whenever $x_{uv} = 0$ we have that the corresponding variable w_{uv} is fixed at its lower bound, that is, at 1.

Note that both models (P) and (Q) can be strengthened if we replace constraints (3) by

$$\pi_v - \pi_u \le w_{uv}, \qquad \forall uv \in A, \qquad (9)$$

and constraints (6) by

 $1 \le w_{uv} \le 1 + (|V| - 2)x_{uv}, \qquad \forall uv \in A.$ (10)

Proposition 1. Let p be the largest natural number such that $\sum_{i=1}^{p} i \leq |E|$ and let $\bar{p} = |E| - \sum_{i=1}^{p} (|V| - i)$. A lower bound on the optimal solution value z of (Q) is

$$z \ge |E| + \sum_{i=1}^{p} (|V| - i)i + \bar{p}(p+1).$$
(11)

Proposition 2. For every arc $uv \in A$ and for every node $k \in V \setminus \{u, v\}$, the following triangle inequality is valid for (Q)

$$x_{uv} + x_{vk} + x_{ku} \le 2.$$
 (12)

Proposition 3. In any optimal solution to (Q) we have

$$\sum_{uv \in A} w_{uv} = \frac{|V|(|V|-1)(|V|+4)}{6}.$$
(13)

Proposition 4. A valid constraint for (Q) is

$$\sum_{v \in V} \pi_v = |V|(|V|+1)/2.$$
(14)

Proposition 5. Let π represent a permutation of $\{1, \dots, |V|\}$ assigned to the vertices of the digraph D_{π} , where arc uv is in D_{π} if and only if $x_{uv} = 1$ and $\pi_v > \pi_u$. The following equality is valid for (Q)

$$\pi_u + \sum_{uv \in A} x_{uv} = |V|, \quad \forall u \in V.$$
(15)

Corollary 1. If we replace x_{uv} by $1 - x_{vu}$ in the expression of Proposition 5, we have

$$\pi_u - \sum_{vu \in A} x_{vu} = 1, \quad \forall u \in V.$$
(16)

Proposition 6. For every $uv \in A$ we must have

$$w_{uv} + \sum_{tu \in A} x_{tu} \le |V|. \tag{17}$$

Proposition 7. For every arc $uv \in A$ and for every node $k \in V \setminus \{u, v\}$, the following triangle inequality on the arc weights is valid for (Q)

$$w_{uv} + w_{vu} \le w_{vk} + w_{kv} + w_{ku} + w_{uk} - 1.$$
(18)

Therefore, the following mixed integer linear programming model is a valid formulation to MinLA:

 $(Q): \min\{(8): (2), (4), (5), (7), (9) - (18)\}.$

- We report a summary of numerical results performed on 6 challenging benchmark instances [Amaral, 2009] and 14 new randomly generated instances.
- We compare results for 4 models of MinLA. We implemented all models, including the ones in [Amaral, 2009] and [Moeini et al., 2015] in C++ with IBM CPLEX 12.6.1 Concert Technology in a PC Intel Core i7, 3.40 GHz of 16GB RAM DDR3 - 1333 MHz running Linux 14.04 LTS/64 bits.

Computational results

Instance	V	E	Edge density	Optimal				
Benchmark instances [Amaral, 2009]								
GraphNug-n-12-t5	12	61	0,92	241				
GraphNug-n-15-t5	15	97	0,92	474				
GraphNug-n-16-t6	16	116	0,96	629				
GraphNug-n-17-t6	17	131	0,96	748				
GraphNug-n-20-t5	20	170	0,89	1.076				
GraphNug-n-23-t5	23	221	0,87	1.581				
New	randoml	y genera	ted instances					
minla-n10-t0.200-s1	10	34	0,75	100				
minla-n10-t0.200-s2	10	36	0,80	108				
minla-n10-t0.300-s1	10	33	0,73	100				
minla-n10-t0.300-s2	10	34	0,75	98				
minla-n10-t0.400-s1	10	25	0,55	64				
minla-n10-t0.400-s2	10	31	0,68	84				
minla-n10-t0.500-s1	10	25	0,55	64				
minla-n10-t0.500-s2	10	22	0,48	54				
minla-n10-t0.600-s1	10	15	0,33	30				
minla-n10-t0.600-s2	10	20	0,44	43				
minla-n10-t0.700-s1	10	14	0,31	27				
minla-n10-t0.700-s2	10	14	0,31	29				
minla-n10-t0.800-s1	10	10	0,22	17				
minla-n10-t0.800-s2	10	12	0,26	21				

Table: Instances characteristics and their optimal solution value.

	Quadratic (P) MILP (Q)		[Amaral, 2009]			[Moeini et al., 2015]						
Instance	B&B Nodes	Iterations	CPU (s)	B&B Nodes	Iterations	CPU (s)	B&B Nodes	Iterations	CPU (s)	B&B Nodes	Iterations	ČPU (s)
GraphNug-n-12-t5	781	34.342	2	0	707	0	0	8	4	57	4.240	1
GraphNug-n-15-t5	1.406	106.371	6	582	25.361	3	0	9	15	1.619	197.261	18
GraphNug-n-16-t6	672	243.524	14	1.327	183.700	10	6	366.065	937	150	5.554	2
GraphNug-n-17-t6	74	51.752	9	718	318.165	17	5	321.741	1.300	262	16.881	5
GraphNug-n-20-t5	12.185	2.231.843	273	7.907	770.576	105	8	4.733.536	84.120	107.190	10.825.888	5.826
GraphNug-n-23-t5	6.560	2.684.208	934	6.378	2.965.477	646	3	452.931	8.929	*	*	*

Table: Numerical results for the benchmark instances [Amaral, 2009].

	Quadratic (P) MILP (Q)			[Amaral, 2009]			[Moeini et al., 2015]					
Instance	B&B Nodes	Iterations	CPU (s)	B&B Nodes	Iterations	CPU (s)	B&B Nodes	Iterations	CPU (s)	B&B Nodes	Iterations	CPU (s)
minla-n10-t0.200-s1	555	20.360	1	0	420	1	0	13.911	7	6.564	254.884	8
minla-n10-t0.200-s2	0	736	0	0	403	1	0	10.066	3	1.485	48.310	2
minla-n10-t0.300-s1	2.893	94.248	2	694	19.625	1	0	24.632	9	11.428	430.498	11
minla-n10-t0.300-s2	0	995	0	0	411	0	0	1.137	2	3.039	96.913	3
minla-n10-t0.400-s1	617	27.720	0	436	18.033	1	29	107.932	38	12.782	591.228	13
minla-n10-t0.400-s2	236	7.148	0	0	420	1	0	16.792	9	1.621	59.449	3
minla-n10-t0.500-s1	652	24.852	1	383	14.101	1	13	91.482	24	16.543	771.751	16
minla-n10-t0.500-s2	615	26.315	0	646	24.364	0	21	100.728	28	13.420	694.767	14
minla-n10-t0.600-s1	437	16.900	0	404	13.857	0	24	155.420	40	10.507	427.863	10
minla-n10-t0.600-s2	238	8.875	1	301	9.374	0	0	43.585	15	10.986	505.198	12
minla-n10-t0.700-s1	909	31.399	1	1.073	30.064	1	23	83.820	23	7.866	420.430	8
minla-n10-t0.700-s2	2.045	84.692	2	5.067	150.993	1	23	137.612	36	15.841	1.032.202	18
minla-n10-t0.800-s1	574	21.803	1	1.286	39.166	1	0	51.985	20	1.816	92.542	2
minla-n10-t0.800-s2	355	17.488	0	915	28.758	1	9	23.718	8	2.217	124.721	3

Table: Numerical results for the new instances.

Models	Quadratic (P)	MILP(Q)	[Amaral, 2009]	[Moeini et al., 2014]
CPU Time(s)	60,80	27,00	17.275,20	1.170,40
B&B Nodes	3.023,60	2.106,80	3,80	21.855,60
Iterations	533.566,40	259.701,80	1.084.271,80	2.209.964,80

Table: Summary of average results for benchmark instances [Amaral, 2009].

Models	Quadratic (P)	MILP(Q)	[Amaral, 2009]	[Moeini et al., 2014]
CPU Time(s)	0,64	0,71	18,71	8,78
B&B Nodes	723,28	800,35	10,14	8.293,92
Iterations	27.395,07	24.999,21	61.630,00	396.482,57

Table: Summary of average results for new instances.

- Novel compact quadratic and MILP models for the minimum linear arrangement problem.
- The MILP model has a smaller number of variables and constraints than existing models for the problem.
- We propose new valid inequalities that proved to be very useful for solving benchmark MinLA instances.
- Both quadratic and MILP models outperform existing mathematical formulations for this problem.

- Explore the geometric structure of the permutahedron to strengthen the proposed models.
- Study new valid inequalities to improve the linear relaxation bound.
- Develop a specialized branch and bound algorithm for model (Q).

References I

Amaral, A. (2009).

A mixed 0-1 linear programming formulation for the exact solution of the minimum linear arrangement problem. *Optimization Letters*, 3(4):513–520.

Díaz, J., Petit, J., and Serna, M. (2002).

A survey of graph layout problems. ACM Computing Surveys (CSUR), 34(3):313–356.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1976).

Some simplified np-complete graph problems. Theoretical computer science, 1(3):237–267.

A new mathematical model for the minimum linear arrangement problem. In *ICORES - Angers - France*, pages 57–62.

Moeini, M., Gueye, S., and Michel, S. (2015).

Adjacency variables formulation for the minimum linear arrangement problem. In Communications in Computer and Information Science: Operations Research and Enterprise Systems, volume 509, pages 95–107. Springer International Publishing.

Seitz, H. (2010).

Contributions to the Minimum Linear Arrangement Problem. PhD thesis, Heidelberg University, Natural Sciences and Mathematics Faculty, Heidelberg, Germany.

