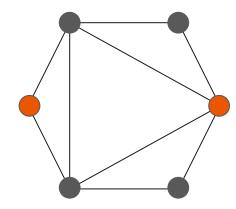
Weighted Upper Domination

Arman Boyacı, Bogazici University, Turkey Jérôme Monnot, Université Paris-Dauphine, LAMSADE, France

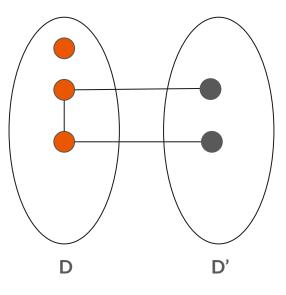
Abstract

- Upper Domination Number: the cardinality of maximum minimal dominating set
- NP-complete even in planar and co-bipartite graphs.
- Polynomial-time solvable in strongly perfect graphs (bipartite, split).
- We show that the weighted version is NP-complete even in very restricted cases of bipartite and split graphs.

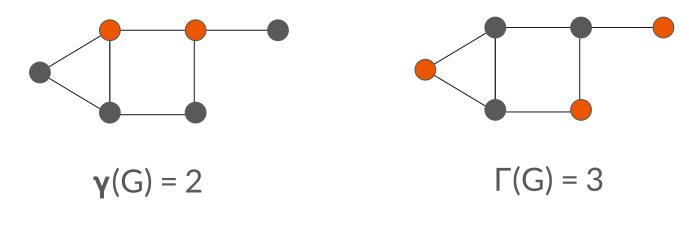
A vertex set D is **dominating** if all vertices outside of D have a neighbour in D. D is **minimal dominating set** if D is dominating and minimal for inclusion.



Domination + Private Neighbor (possibly itself)



A graph may have dominating sets of different cardinalities.



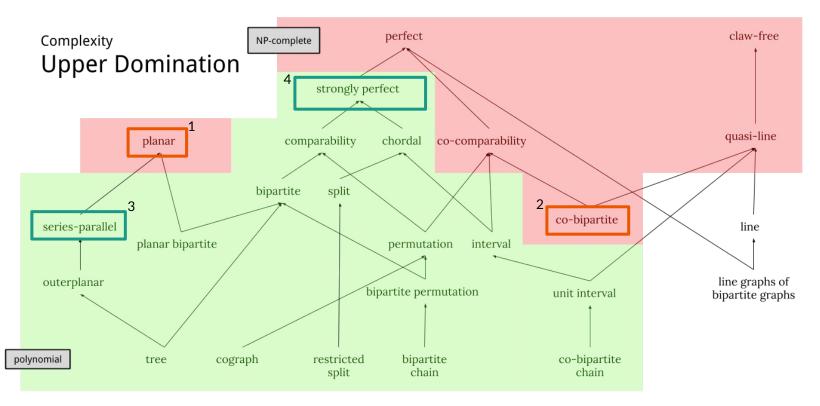
Minimum Domination

Upper Domination

Maximum Minimal Dominating Set (a.k.a. Upper Domination)

Some Other MaxMin / MinMax Problems Considered in the Literature:

- Minimum Maximal Matching
- Minimum Maximal Independent Set
- Maximum Minimal Vertex Cover

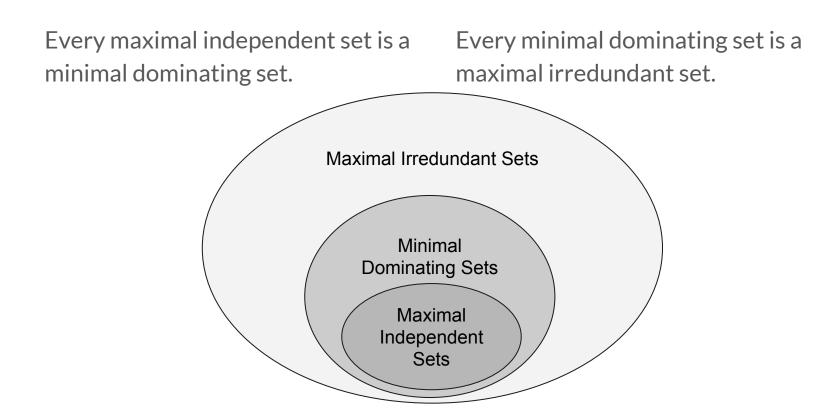


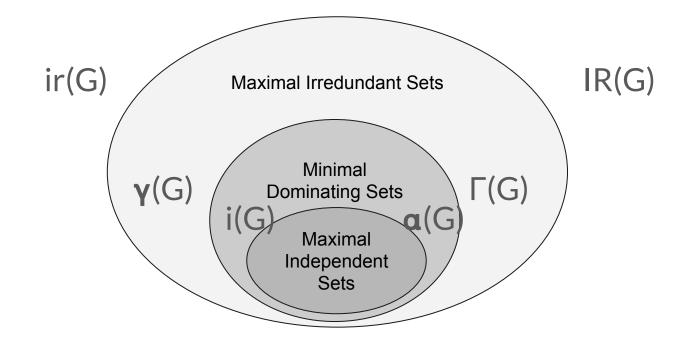
- 1 Bazgan et al., The Many Facets of Upper Domination, Theoretical Computer Science, 2017 (accepted)
- 2 Aboueisha et al., Upper Domination: towards a dichotomy through boundary properties, Algorithmica, **2017** (accepted)
- 3 Hare et al., Linear-time computability of combinatorial problem generalized-series-parallel graphs, Discrete Algorithms, 1987

4 - Cheston et al, Classes of graphs for which upper fractional domination equals independence, upper domination, and upper irredundance, Discrete Applied Mathematics, **1994**

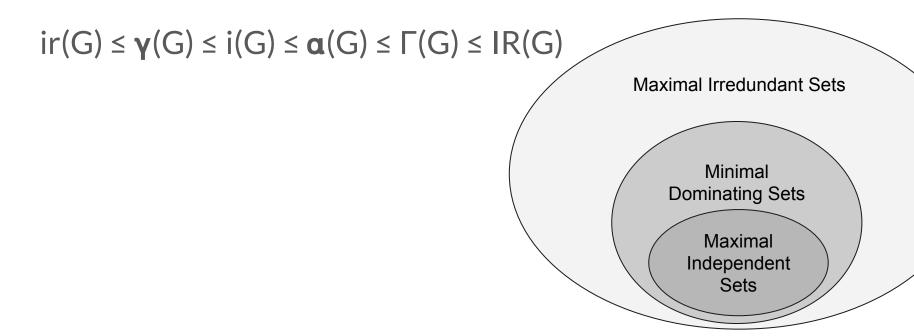
A verset set I is **independent** if none of the vertices in I is adjacent to none of the vertices of I.

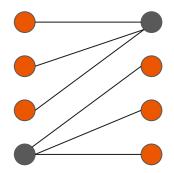
A vertex set S is **irredundant** if every element of S has a private neighbor.





Well-known domination chain





A graph where $\alpha(G) = \Gamma(G) = IR(G)$

When $a(G) = \Gamma(G) = IR(G)$?

Most general answer is: If G is a strongly perfect graph*.

And <u>fortunately</u>, **maximum independent set** in strongly perfect graphs is solvable in **polynomial-time**.

*Every induced subgraph H has an independent vertex set meeting all maximal cliques of H.

Weighted Upper Domination Set (WUDS)

We may have $\mathbf{a}_{w}(G) < \Gamma_{w}(G)$ even for a simple path graph

Main results

Theorem: Computing WUDS is strongly NP-hard for 3-subregular split graphs, even for bi-valued weights.

Corollary: For any ɛ>0, WUDS is not O(n¹-^ε)-approximable in split graphs on n vertices, even for bi-valued weights, unless NP ≠ ZPP **Theorem**: Computing WUDS is strongly NP-hard for planar bipartite graphs of maximum degree 4, even for tri-valued weights.

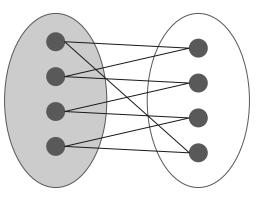
Corollary: WUDS is **APX**-complete in bipartite graphs.

Remark 1

Theorem. Computing WUDS is strongly NP-hard for 3-subregular split graphs, even for bi-valued weights.

The strongest hardness result that we can produce.

A 2-subregular split graph.



Remark 2

WUDS with performance ratio O(n) is always possible.

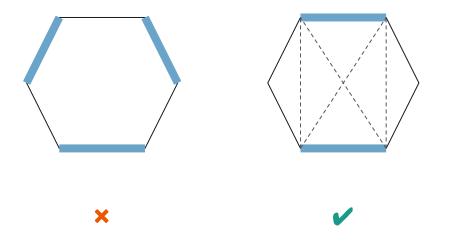
By taking any maximal independent set containing a vertex of maximum weight w_{max} .

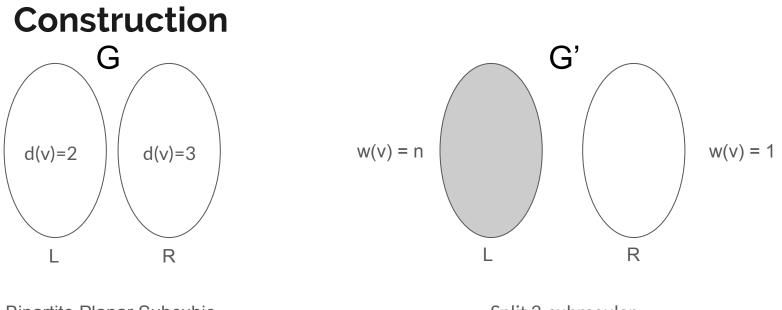
By **Corollary**: For any *ɛ*>0, WUDS is not O(n¹⁻ ^{*ε*})-approximable in split graphs on n vertices, even for bi-valued weights, unless **NP ≠ ZPP**.

This is the best we can have for split graphs.

Theorem. Computing WUDS is strongly NP-hard for 3-subregular split graphs, even for bi-valued weights.

Reduction is done from THE MAXIMUM INDUCED MATCHING PROBLEM.





Bipartite Planar Subcubic

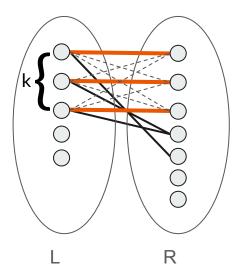
Split 3-subregular

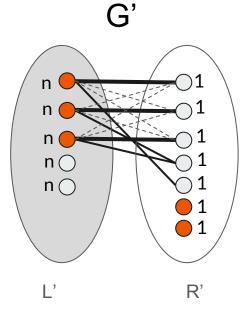
Claim

MIM of G of size at least $k \ge 1 \Leftrightarrow UDS$ of G' of weight at least $nk \ge n$

MIM of G of size at least $k \ge 1 \Rightarrow$ UDS of G' of weight at least $nk \ge n$

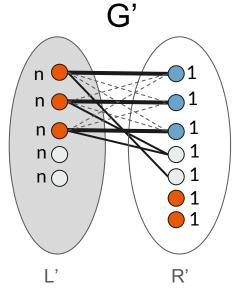
G

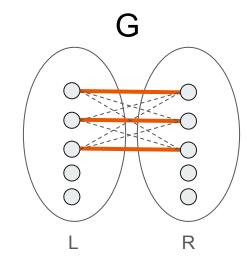




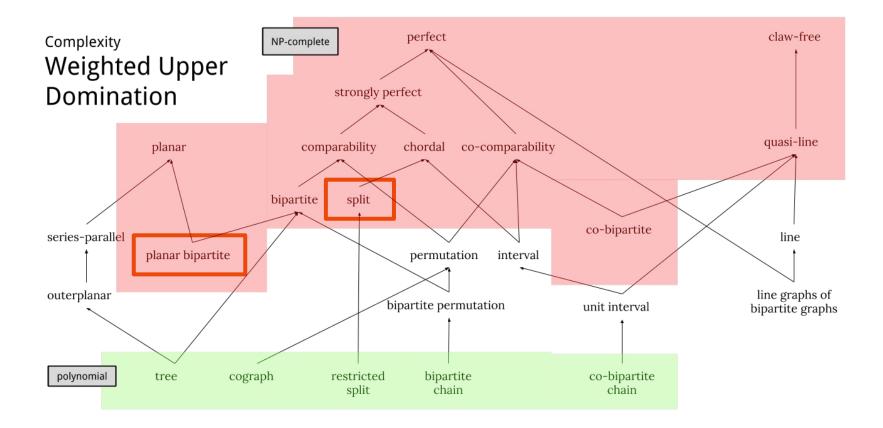
1 - D dominates G'. 2 - D is minimal. 3 - w(D) ≥ nk.

UDS of G' of weight at least $nk \ge n \Rightarrow MIM$ of G of size at least $k \ge 1$



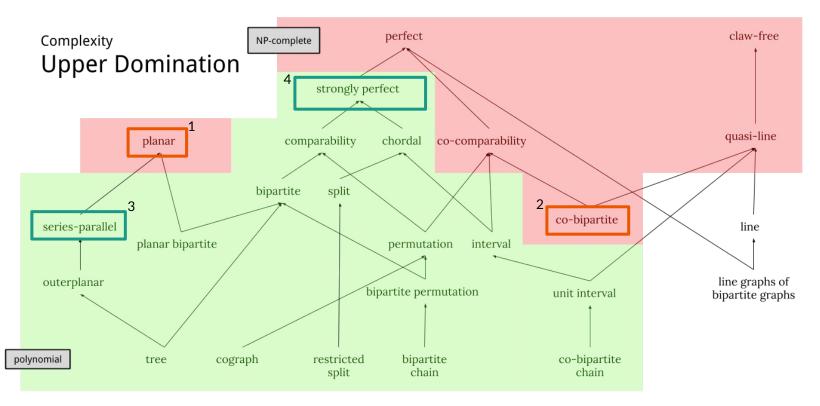


1 - $|L' \cap D|$ is at least k. 2 - M is an induced matching.



Open Problems

- Complexity of UDS in special graph classes
 - Unweighted: line graphs, d-regular graphs for d>4,
 - Weighted: series-parallel, permutation, interval and many more.
- Equivalent problems:
 - Min Max Matching ~ Min Edge Dominating Set
 - Min Max Independent Set ~ Min Independent Dominating Set
- Recognition of well-dominated graphs
- For every graph G in series parallel graphs, do we have $\mathbf{a}(G) = \Gamma(G)$?



- 1 Bazgan et al., The Many Facets of Upper Domination, Theoretical Computer Science, 2017 (accepted)
- 2 Aboueisha et al., Upper Domination: towards a dichotomy through boundary properties, Algorithmica, **2017** (accepted)
- 3 Hare et al., Linear-time computability of combinatorial problem generalized-series-parallel graphs, Discrete Algorithms, 1987

4 - Cheston et al, Classes of graphs for which upper fractional domination equals independence, upper domination, and upper irredundance, Discrete Applied Mathematics, **1994**

Dynamic Programming for WUDS in trees

Theorem: UDS is not $O(n^{1-\epsilon})$ -approximable even in co-bipartite graphs.

A split graph is called a p-subregular if for $I \in L$, $d_G(I) - |L| + 1 \le p$ and for $r \in R$, $d_G(r) \le p$.

A 2-subregular split graph.

