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Abstract

- Upper Domination Number: the cardinality of maximum minimal
dominating set

- NP-complete even in planar and co-bipartite graphs.

- Polynomial-time solvable in strongly perfect graphs (bipartite, split).

- We sshow that the weighted version is NP-complete even in very
restricted cases of bipartite and split graphs.



A vertex set D is dominating if all vertices outside of D have a neighbour in D.

D is minimal dominating set if D is dominating and minimal for inclusion.
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A graph may have dominating sets of different cardinalities.
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Maximum Minimal Dominating Set
(a.k.a. Upper Domination)

Some Other MaxMin / MinMax Problems Considered in the Literature:

- Minimum Maximal Matching
- Minimum Maximal Independent Set
- Maximum Minimal Vertex Cover
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Averset set | is independent if none of the verticesin | is adjacent to none of the vertices of I.

A vertex set Sisirredundant if every element of S has a private neighbor.




Every maximal independent set is a Every minimal dominating setis a
minimal dominating set. maximal irredundant set.

Maximal Irredundant Sets

Minimal
Dominating Sets

Maximal
Independent
Sets



ir(G) IR(G)

Maximal Irredundant Sets

Minimal
Dominating Sets

Maximal
Independent
Sets



Well-known domination chain
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A graph where a(G) =T(G) = IR(G)



When a(G) =IN'(G) = IR(G) ?

Most general answer is:
If G is a strongly perfect graph®.

And fortunately,
maximum independent set in strongly perfect graphs
is solvable in polynomial-time.

*Every induced subgraph H has an independent vertex set meeting all maximal cliques of H.



Weighted Upper Domination Set
(WUDS)



We may havea (G) <I'_(G) even for a simple path graph



Main results

Theorem: Computing WUDS is strongly
NP-hard for 3-subregular split graphs, even
for bi-valued weights.

Corollary: For any e>0, WUDS is not O(n*
£)-approximable in split graphs on n
vertices, even for bi-valued weights, unless
NP # ZPP

Theorem: Computing WUDS is strongly
NP-hard for planar bipartite graphs of
maximum degree 4, even for tri-valued
weights.

Corollary: WUDS is APX-complete in
bipartite graphs.



Remark 1

Theorem. Computing WUDS is strongly
NP-hard for 3-subregular split graphs, even
for bi-valued weights.

The strongest hardness result
that we can produce.

A 2-subregular split graph.



Remark 2

WUDS with performance ratio O(n) is always By Corollary: For any £>0, WUDS is hot O(n*
possible. £)-approximable in split graphs on n

vertices, even for bi-valued weights, unless
By taking any maximal independent set containing NP z ZPP

a vertex of maximum weight w

ax’

This is the best we can have for split
graphs.



Theorem. Computing WUDS is strongly NP-hard for 3-subregular split
graphs, even for bi-valued weights.

Reduction is done from THE MAXIMUM INDUCED MATCHING PROBLEM.
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Claim

MIM of G of size at least k 2 1 & UDS of G’ of weight at least nk > n



MIM of G of size at least k 21 = UDS of G’ of weight at least nk 2 n

1-D dominates G'.
2 -Dis minimal.
3-w(D) = nk.




UDS of G’ of weight at least nk 2 n = MIM of G of size at least k 2 1

O 1-[L'ND]is at least k.
=) 2-Mis aninduced
U0 matching.
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Open Problems

Complexity of UDS in special graph classes

- Unweighted: line graphs, d-regular graphs for d>4,

- Weighted: series-parallel, permutation, interval and many more.
Equivalent problems:

- Min Max Matching ~ Min Edge Dominating Set

- Min Max Independent Set ~ Min Independent Dominating Set
Recognition of well-dominated graphs

For every graph G in series - parallel graphs, do we have a(G) = '(G)?
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Thank you.



Dynamic Programming for WUDS in trees



Theorem: UDS is not O(n'-€)-approximable even in co-bipartite graphs.



A split graph is called a p-subregular if for | € L,d (l) - [L[ + 1 < pand forr € R, d_(r) < p.

A 2-subregular split graph.



