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that is not a path.
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A path decomposition A minimum
of G path decomposition
of G

» pn(G) — the size of a path decomposition of G with a
minimum number of elements;

» pn(G) — path number of G.
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Problem
Given graph G, calculate pn(G).

Example

» pn(G) =1 if and only if G is a path;
» If G is a cycle, then pn(G) = 2;

» If G is a forest with o odd degree vertices, then pn(G) = 0/2.
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Theorem (Péroche, 1984)

Given a graph G with maximum degree 4, deciding whether
pn(G) = 2 is NP-complete.

Corollary
Calculate pn(G) NP-hard.

Conjecture (Gallai, 1966)

If G is a simple connected graph with n vertices, then
pn(G) < [n/2].



Some known results



Some known results

Let G, be the subgraph of G induced by the even degree vertices.



Some known results

Let G, be the subgraph of G induced by the even degree vertices.

» If Ge, contains at most one vertex, then pn(G) < |n/2].
(Lovasz, 1968)



Some known results

Let G, be the subgraph of G induced by the even degree vertices.

» If Ge, contains at most one vertex, then pn(G) < |n/2].
(Lovasz, 1968)

> If Ge, is a forest, then pn(G) < [n/2]. (Pyber, 1996)



Some known results

Let G, be the subgraph of G induced by the even degree vertices.

» If Ge, contains at most one vertex, then pn(G) < |n/2].
(Lovasz, 1968)

> If Ge, is a forest, then pn(G) < [n/2]. (Pyber, 1996)

» If each block of Gg, is triangle-free and has maximum degree
at most 3, then pn(G) < |n/2]. (Fan, 2005)
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pn(G) < |3n/4]. (Donald, 1980)

» pn(G) < [2n/3]. (Dean—Kouider, 2000)

v

If G is Eulerian and has maximum degree at most 4, then
pn(G) < [n/2]. (Favaron—Kouider, 1988)

v

If G has maximum degree at most 5, then pn(G) < [n/2].
(Bonamy—Perrett, 2016)
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Reducing subgraphs

» H C G is an r-reducing subgraph of G if pn(H) <r and
G — E(H) has at least 2r isolated vertices;
» G is a Gallai graph if pn(G) < [n/2].

Lemma
Let H be an r-reducing subgraph of G.
If G — E(H) is a Gallai graph, then G is a Gallai graph.

Proof.

pn(G) < pn(G —E(H))+r < |(n—2r)/2] +1 = |n/2]
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Reducing subgraphs

Lemma
Let H be an r-reducing subgraph of G.
If G — E(H) is a Gallai graph, then G is a Gallai graph.

» How to obtain reducing subgraphs?

» How to obtain reducing subgraphs H such that G — E(H) is a
Gallai graph?

Lemma

Let H be a reducing subgraph of G, and let K be a component of
G — E(H) such that K € {K3, G4, K5 , Ks}.

Then H + K is a reducing subgraph of G.
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If G has treewidth at most 3, then G is a Gallai graph,
or G € {K3,K5_}

> 3-trees;
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» G minimal counterexample

> u,v terminal vertices

v

IN(u) N N(v)| =2;

» Every vertex in N(u) N N(v) has odd degree.
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Concluding remarks

» Every planar graph with girth at least 6 is a Gallai graph;

» If G has maximum degree at most 4, then G is a Gallai graph
or G € {K37 Ks, K5_},

» Develop more techniques to obtain reducing subgraphs.
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