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p-Hub Median Problem (pHM)

Metric pHM

Instance
- a set of clients V={v1,v2, . . . , vn}
- a set os demands D ⊆ V × V
- a cost function ρ : V × V → R+

- an integer p > 0
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p-Hub Median Problem (pHM)

Metric pHM

Instance
- a set of clients V={v1,v2, . . . , vn}
- a set os demands D ⊆ V × V
- a cost function ρ : V × V → R+

- an integer p > 0

Objective
Select T ⊆ V of terminals, where
|T | ≤ p, and assign each demand to a
terminal, in order to minimize the total
cost between demands and terminals.
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p-Hub Median Problem (pHM)

Theorem
K -Median is a particular case of pHM.

Theorem [Jain et. al., 2002]
K -Median has a approximation factor ≥ 1 + 2

e if NP 1
DTIME(nO(log log n)).

Corollary

pHM has a approximation factor ≥ 1 + 2
e if NP 1 DTIME(nO(log log n)).
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p-Hub Median Problem (pHM)

Theorem
A (4α)-approximation algorithm that opens at most

( 2α
2α−1

)
p

terminals, where α > 1 is a trade off parameter.
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Linear Program

First, we preprocess the input, defining a new cost function ρ̂
such that ρ̂(d, i) = ρ(u, i) + ρ(i, v), ∀d = (u, v) ∈ D, i ∈ V .
The integer program (IP) formulation for pHM:

minimize
∑

d ∈D

∑
i∈V

xdi ρ̂(d, i)

subject to
∑

i∈V
yi ≤ p

(IP) ∑
i∈V

xdi = 1, ∀d ∈ D

xdi ≤ yi , ∀d ∈ D, i ∈ V
xdi ∈ {0, 1}, ∀d ∈ D, i ∈ V
yi ∈ {0, 1}, ∀i ∈ V

Our algorithm uses the LP relaxation of IP 1, where xdi ≥ 0 and
yi ≥ 0, ∀d ∈ D, i ∈ V .
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Rounding Algorithm

To each demand d=(u, v) ∈ D:
“Mean Distance”: Cd =

∑
i∈V

xdi ρ̂(d, i)

For each u ∈ V , let:
B(u, αCd )

u
C

u''

u'

d

u'''

v
Cd
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For each d = (u, v) ∈ D, let:
Neighborhood: Id = {u′ ∈ B(u, αCd ) ∩ B(v, αCd )}
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For each d ∈ D, let:
Extended neighborhood:
Vd = {(u′, v ′) ∈ V 2 : (u′, v ′) ∈ D and Id ∩ I(u′,v′) , ∅}
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Rounding Algorithm

Algorithm 1: Rounding Algorithm.

1 Solve the LP and use it to compute the Cd values
2 T := {}

3 D := D
4 while D , ∅ do
5 Choose d = (u, v) ∈ D with the lowest value of Cd

6 T := T ∪ {u}
7 for (u′, v ′) ∈ D do
8 if (u′ ∈ Vd ) and (v ′ ∈ Vd ) then
9 D := D \ (u′, v ′)

10 D := D \ (u, v)
11 return T
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Conclusions and Future Works

We got a (4α)-approximation algorithm, with α > 1, that opens
at most

( 2α
2α−1

)
p terminals.

We used the rounding technique of linear programs.
As future works: opening the right number of terminals and
improve the approximation factor.
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