On the local density problem for graphs of given odd-girth

Wiebke Bedenknecht

Universität Hamburg

Joint work with Guilherme Oliveira Mota, Christian Reiher and Mathias Schacht

September - 2017

• Question: Maximum number of edges in a K₃-free graph?

• Question: Maximum number of edges in a K₃-free graph?

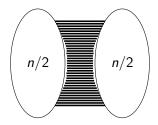
Mantel's Theorem

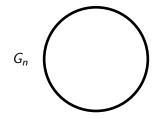
The maximum number of edges in an n-vertex triangle-free graph is $\lfloor n^2/4 \rfloor$.

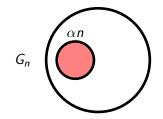
• Question: Maximum number of edges in a K₃-free graph?

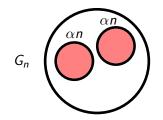
Mantel's Theorem

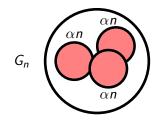
The maximum number of edges in an n-vertex triangle-free graph is $\lfloor n^2/4 \rfloor$.



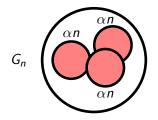




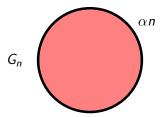




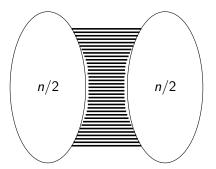
- Definition: A graph G_n is (α, β)-dense if every subset of αn vertices induces more than βn² edges.
- Question [Erdős–Faudree–Rousseau–Schelp '94]
 Given α, what is the minimum β such that every (α, β)-dense graph contains a triangle?



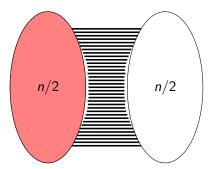
- Definition: A graph G_n is (α, β)-dense if every subset of αn vertices induces more than βn² edges.
- Question [Erdős–Faudree–Rousseau–Schelp '94]
 Given α, what is the minimum β such that every (α, β)-dense graph contains a triangle?
- Example: For $\alpha = 1$, $\beta = 1/4$.



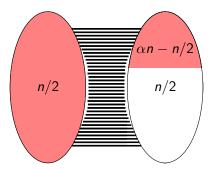
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?



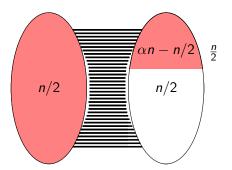
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?



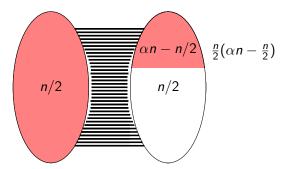
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?



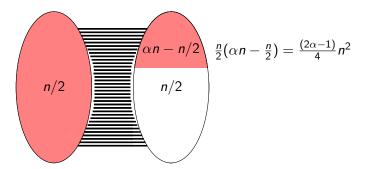
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?



Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

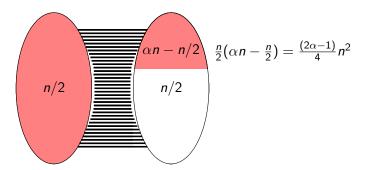


Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?



Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

For $1/2 < \alpha \leq 1$: $\beta \geq (2\alpha - 1)/4$



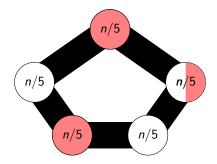
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$ For $2/5 < \alpha \le 3/5$:

> n/5 n/5 n/5

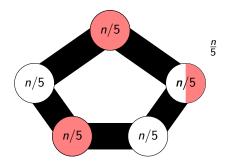
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$ For $2/5 < \alpha \le 3/5$:



Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

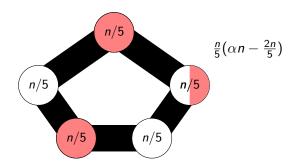
For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$ For $2/5 < \alpha \le 3/5$:



Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

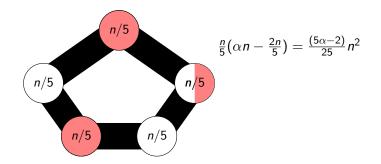
For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$

For $2/5 < \alpha \le 3/5$:



Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

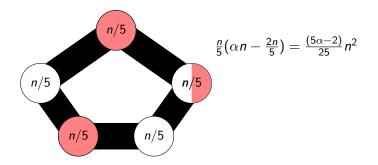
For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$ For $2/5 < \alpha \le 3/5$:



Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

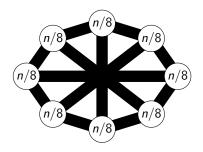
For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$

For $2/5 < \alpha \le 3/5$: $\beta \ge (5\alpha - 2)/25$



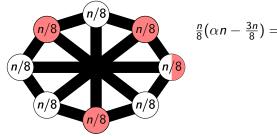
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$ For $2/5 < \alpha \le 3/5$: $\beta \ge (5\alpha - 2)/25$ For $3/8 < \alpha \le 1/2$:



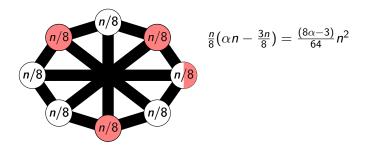
Question: Given α , what is the minimum β such that every (α, β) -dense graph contains a triangle?

For $1/2 < \alpha \le 1$: $\beta \ge (2\alpha - 1)/4$ For $2/5 < \alpha \le 3/5$: $\beta \ge (5\alpha - 2)/25$ For $3/8 < \alpha \le 1/2$:

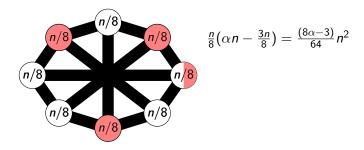


$$\frac{n}{8}(\alpha n - \frac{3n}{8}) = \frac{(8\alpha - 3)}{64}n^2$$

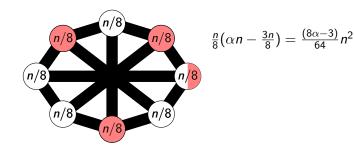
For
$$1/2 < \alpha \le 1$$
: $\beta \ge (2\alpha - 1)/4$
For $2/5 < \alpha \le 3/5$: $\beta \ge (5\alpha - 2)/25$
For $3/8 < \alpha \le 1/2$: $\beta \ge (8\alpha - 3)/64$



For
$$1/2 < \alpha \le 1$$
: $\beta \ge (2\alpha - 1)/4 \stackrel{\alpha \ge 17/30}{\ge} (5\alpha - 2)/25$
For $2/5 < \alpha \le 3/5$: $\beta \ge (5\alpha - 2)/25$
For $3/8 < \alpha \le 1/2$: $\beta \ge (8\alpha - 3)/64$



For
$$1/2 < \alpha \le 1$$
: $\beta \ge (2\alpha - 1)/4 \xrightarrow{\alpha \ge 1//30} (5\alpha - 2)/25$
For $2/5 < \alpha \le 3/5$: $\beta \ge (5\alpha - 2)/25 \xrightarrow{\alpha \ge 53/120} (8\alpha - 3)/64$
For $3/8 < \alpha \le 1/2$: $\beta \ge (8\alpha - 3)/64$



Conjecture (Erdős 1976)

Let $53/120 \le \alpha \le 1$ and let G_n be an n-vertex graph. If n is sufficiently large and G_n is (α, β) -dense with

$$eta \geq egin{cases} (2lpha-1)/4 & ext{if } 17/30 \leq lpha \leq 1 \ (5lpha-2)/25 & ext{if } 53/120 \leq lpha \leq 17/30, \end{cases}$$

then G_n contains a triangle.

Conjecture (Erdős 1976)

Let $53/120 \le \alpha \le 1$ and let G_n be an n-vertex graph. If n is sufficiently large and G_n is (α, β) -dense with

$$eta \geq egin{cases} (2lpha-1)/4 & ext{if } 17/30 \leq lpha \leq 1 \ (5lpha-2)/25 & ext{if } 53/120 \leq lpha \leq 17/30, \end{cases}$$

then G_n contains a triangle.

• Interesting case: $\alpha = 1/2$, $\beta \ge 1/50$.

Conjecture (Erdős 1976 - \$250,00)

If G_n is (1/2, 1/50)-dense, then G_n contains a triangle.

Conjecture (Erdős 1976 - \$250,00)

If G_n is (1/2, 1/50)-dense, then G_n contains a triangle.

Stated in the contrapositive...

Conjecture (Erdős 1976)

Every triangle-free graph G_n contains a subset of $\lfloor n/2 \rfloor$ vertices that induces at most $n^2/50$ edges.

Theorem (Krivelevich 1995)

If G is triangle-free, then G is not (1/2, 1/36)-dense.

Theorem (Krivelevich 1995)

If G is triangle-free, then G is not (1/2, 1/36)-dense.

It seems to be a hard problem! What to do?

Theorem (Krivelevich 1995)

If G is triangle-free, then G is not (1/2, 1/36)-dense.

It seems to be a hard problem! What to do? Add conditions!

Theorem (Krivelevich 1995)

If G is triangle-free, then G is not (1/2, 1/36)-dense.

It seems to be a hard problem! What to do? Add conditions!

Theorem (Krivelevich 1995)

If G_n is triangle-free and $\delta(G_n) > 2n/5$, then

 G_n is not (1/2, 1/50)-dense.

Theorem (Krivelevich 1995)

If G is triangle-free, then G is not (1/2, 1/36)-dense.

It seems to be a hard problem! What to do? Add conditions!

Theorem (Krivelevich 1995)

If G_n is triangle-free and $\delta(G_n) > 2n/5$, then

 G_n is not (1/2, 1/50)-dense.

Theorem (Norin–Yepremian 2015)

If G_n is triangle-free and $\delta(G_n) > 5n/14$, then

 G_n is not (1/2, 1/50)-dense.

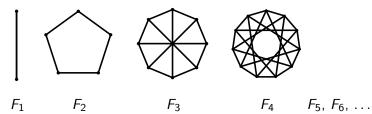
If G_n is triangle-free and $\delta(G_n) > 10n/29$, then G_n is not (1/2, 1/50)-dense.

If G_n is triangle-free and $\delta(G_n) > 10n/29$, then G_n is not (1/2, 1/50)-dense.

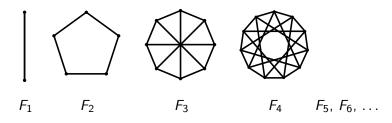
Theorem (B.–Mota–Reiher–Schacht 2017+)

If G_n is triangle-free with $\chi(G_n) \leq 3$ and $\delta(G_n) > n/3$, then G_n is not (1/2, 1/50)-dense.

Important structures: Andrásfai graphs



Important structures: Andrásfai graphs



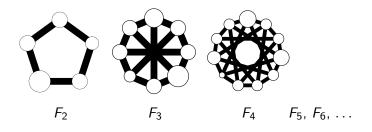
Properties of F_d

- 3d 1 vertices
- Triangle-free
- *d*-regular

•
$$\alpha(F_d) = d$$

Why are Andrásfai graphs important to the problem?

Andrásfai graphs - Blow-ups



Theorem (Andrásfai–Erdős–Sós 1974)

If $\delta(G_n)>2n/5$ and $K_3\nsubseteq G_n,$ then G_n is a subgraph of a blow-up of F_1

Theorem (Andrásfai–Erdős–Sós 1974)

If $\delta(G_n)>2n/5$ and $K_3\nsubseteq G_n,$ then G_n is a subgraph of a blow-up of F_1

Theorem (Häggkvist 1982)

If $\delta(G_n) > 3n/8$ and $K_3 \nsubseteq G_n$, then G_n is a subgraph of a blow-up of F_2 .

Theorem (Andrásfai–Erdős–Sós 1974)

If $\delta(G_n)>2n/5$ and $K_3\nsubseteq G_n,$ then G_n is a subgraph of a blow-up of F_1

Theorem (Häggkvist 1982)

If $\delta(G_n) > 3n/8$ and $K_3 \nsubseteq G_n$, then G_n is a subgraph of a blow-up of F_2 .

Theorem (Jin 1995)

If $\delta(G_n) > 10n/29$ and $K_3 \nsubseteq G_n$, then G_n is a subgraph of a blow-up of F_9 .

Theorem (Andrásfai–Erdős–Sós 1974)

If $\delta(G_n)>2n/5$ and $K_3\nsubseteq G_n,$ then G_n is a subgraph of a blow-up of F_1

Theorem (Häggkvist 1982)

If $\delta(G_n) > 3n/8$ and $K_3 \nsubseteq G_n$, then G_n is a subgraph of a blow-up of F_2 .

Theorem (Jin 1995)

If $\delta(G_n) > 10n/29$ and $K_3 \nsubseteq G_n$, then G_n is a subgraph of a blow-up of F_9 .

Theorem (Chen–Jin–Koh 1997)

If $\delta(G_n) > ((d+1)/(3d+2))n$, $K_3 \nsubseteq G_n$ and $\chi(G_n) \le 3$, then G_n a subgraph of a blow-up of F_d .

If G_n is a subgraph of a blow-up of F_d for some integer $d \ge 1$, then G_n is not (1/2, 1/50)-dense.

If G_n is a subgraph of a blow-up of F_d for some integer $d \ge 1$, then G_n is not (1/2, 1/50)-dense.

Theorem (Jin 1995)

If G_n is triangle-free with $\delta(G_n) > 10n/29$, then G_n is contained in a blow-up of F_9 .

If G_n is a subgraph of a blow-up of F_d for some integer $d \ge 1$, then G_n is not (1/2, 1/50)-dense.

Theorem (Jin 1995)

If G_n is triangle-free with $\delta(G_n) > 10n/29$, then G_n is contained in a blow-up of F_9 .

Corollary (B.-Mota-Reiher-Schacht 2017+)

If G_n is triangle-free and $\delta(G_n) > 10n/29$, then G_n is not (1/2, 1/50)-dense.

If G_n is a subgraph of a blow-up of F_d for some integer $d \ge 1$, then G_n is not (1/2, 1/50)-dense.

If G_n is a subgraph of a blow-up of F_d for some integer $d \ge 1$, then G_n is not (1/2, 1/50)-dense.

Theorem (Chen–Jin–Koh 1997)

If G_n is triangle-free with $\delta(G_n) > \left(\frac{d+1}{3d+2}\right)n$ and $\chi(G_n) \le 3$, then G_n is contained in a blow-up of F_d .

If G_n is a subgraph of a blow-up of F_d for some integer $d \ge 1$, then G_n is not (1/2, 1/50)-dense.

Theorem (Chen–Jin–Koh 1997)

If G_n is triangle-free with $\delta(G_n) > \left(\frac{d+1}{3d+2}\right)n$ and $\chi(G_n) \leq 3$, then G_n is contained in a blow-up of F_d .

Corollary (B.–Mota–Reiher–Schacht 2017+)

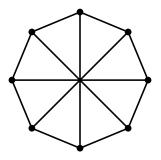
If G_n is triangle-free with $\delta(G_n) > n/3$ and $\chi(G_n) \le 3$, then G_n is not (1/2, 1/50)-dense.

Theorem (B.–Mota–Reiher–Schacht 2017+)

If G_n is a subgraph of a blow-up of F_3 , then G_n is not (1/2, 1/50)-dense.

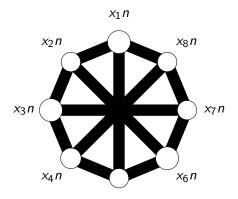
Theorem (B.-Mota-Reiher-Schacht 2017+)

If G_n is a subgraph of a blow-up of F_3 , then G_n is not (1/2, 1/50)-dense.

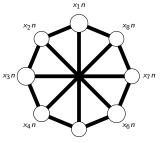


Theorem (B.-Mota-Reiher-Schacht 2017+)

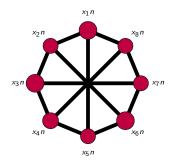
If G_n is a subgraph of a blow-up of F_3 , then G_n is not (1/2, 1/50)-dense.



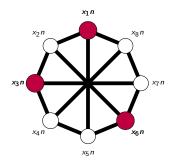
x₅n



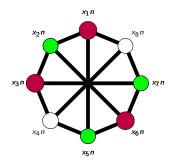
х₅ п



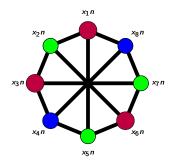
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1.$



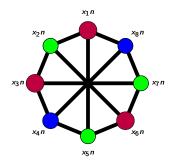
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1$. Let $\alpha = x_1 + x_3 + x_6$ be the size of the largest independent set.



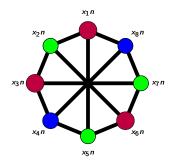
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1.$ Let $\alpha = x_1 + x_3 + x_6$ be the size of the largest independent set. Then, $x_2 + x_5 + x_7 \le \alpha$.



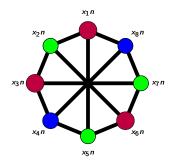
 $\begin{array}{l} x_1+x_2+x_3+x_4+x_5+x_6+x_7+x_8=1.\\ \text{Let } \alpha=x_1+x_3+x_6 \text{ be the size of the largest independent set.}\\ \text{Then, } x_2+x_5+x_7\leq\alpha. \text{ Therefore,}\\ 1=x_1+\ldots+x_8 \end{array}$



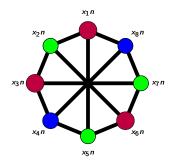
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1.$ Let $\alpha = x_1 + x_3 + x_6$ be the size of the largest independent set. Then, $x_2 + x_5 + x_7 \le \alpha$. Therefore, $1 = x_1 + \ldots + x_8 = (x_1 + x_3 + x_6) + (x_2 + x_5 + x_7) + x_4 + x_8$



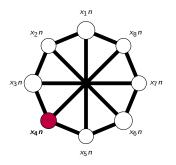
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1.$ Let $\alpha = x_1 + x_3 + x_6$ be the size of the largest independent set. Then, $x_2 + x_5 + x_7 \le \alpha$. Therefore, $1 = x_1 + \ldots + x_8 = (x_1 + x_3 + x_6) + (x_2 + x_5 + x_7) + x_4 + x_8 \le 2\alpha + x_4 + x_8.$



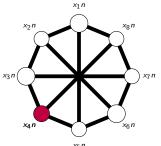
 $\begin{array}{l} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1. \\ \text{Let } \alpha = x_1 + x_3 + x_6 \text{ be the size of the largest independent set.} \\ \text{Then, } x_2 + x_5 + x_7 \leq \alpha. \\ \text{Therefore,} \\ 1 = x_1 + \ldots + x_8 = (x_1 + x_3 + x_6) + (x_2 + x_5 + x_7) + x_4 + x_8 \leq 2\alpha + x_4 + x_8. \\ \text{Suppose } x_4 \geq x_8. \end{array}$



 $\begin{array}{l} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1. \\ \text{Let } \alpha = x_1 + x_3 + x_6 \text{ be the size of the largest independent set.} \\ \text{Then, } x_2 + x_5 + x_7 \leq \alpha. \\ \text{Therefore,} \\ 1 = x_1 + \ldots + x_8 = (x_1 + x_3 + x_6) + (x_2 + x_5 + x_7) + x_4 + x_8 \leq 2\alpha + x_4 + x_8. \\ \text{Suppose } x_4 \geq x_8. \end{array}$

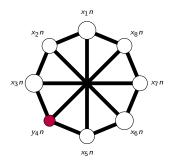


 $\begin{array}{l} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1. \\ \text{Let } \alpha = x_1 + x_3 + x_6 \text{ be the size of the largest independent set.} \\ \text{Then, } x_2 + x_5 + x_7 \leq \alpha. \\ \text{Therefore,} \\ 1 = x_1 + \ldots + x_8 = (x_1 + x_3 + x_6) + (x_2 + x_5 + x_7) + x_4 + x_8 \leq 2\alpha + x_4 + x_8. \\ \text{Suppose } x_4 \geq x_8. \\ \text{We have } x_4 \geq 1/2 - \alpha. \end{array}$

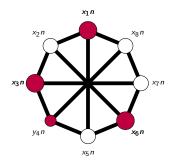


х₅ п

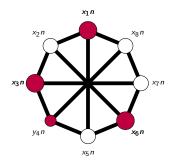
$$x_4 \ge 1/2 - \alpha.$$



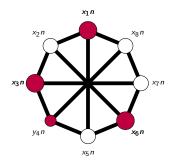
$$x_4 \ge 1/2 - \alpha$$
. Consider $y_4 = 1/2 - \alpha$



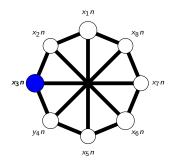
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$.



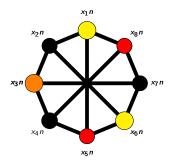
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Total of n/2 vertices.



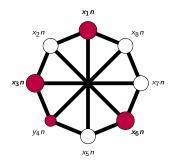
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Total of n/2 vertices. Case 1: $\alpha \le 2/5$



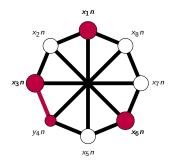
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Total of n/2 vertices. **Case 1:** $\alpha \le 2/5$ $x_3 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1 + x_3$.

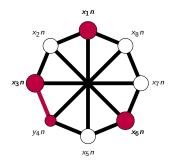


 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Total of n/2 vertices. **Case 1:** $\alpha \le 2/5$ $x_3 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1 + x_3$.

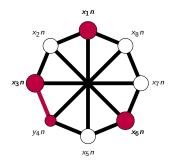


 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Total of n/2 vertices. **Case 1:** $\alpha \le 2/5$ $x_3 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1 + x_3$. Therefore, $3\alpha \ge 1 + x_3$.

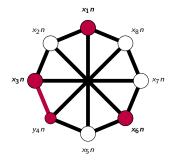




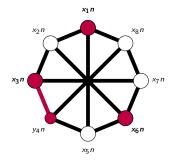
 $\begin{array}{l} x_4 \geq 1/2 - \alpha \ \, \mbox{Consider } y_4 = 1/2 - \alpha \ \mbox{and } x_1 + x_3 + x_6. \\ \mbox{Total of } n/2 \ \mbox{vertices.} \\ \mbox{Case 1: } \alpha \leq 2/5 \\ x_3 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1 + x_3. \\ \mbox{Therefore, } 3\alpha \geq 1 + x_3. \\ \mbox{\#edges} = x_3 y_4 n^2 \leq (3\alpha - 1)(1/2 - \alpha)n^2 \end{array}$



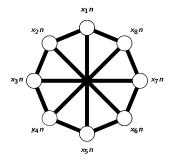
 $\begin{array}{l} x_4 \geq 1/2 - \alpha \ \, \mbox{Consider } y_4 = 1/2 - \alpha \ \mbox{and } x_1 + x_3 + x_6. \\ \mbox{Total of } n/2 \ \mbox{vertices.} \\ \mbox{Case 1: } \alpha \leq 2/5 \\ x_3 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1 + x_3. \\ \mbox{Therefore, } 3\alpha \geq 1 + x_3. \\ \mbox{\#edges} = x_3 y_4 n^2 \leq (3\alpha - 1)(1/2 - \alpha)n^2 \leq n^2/50. \end{array}$



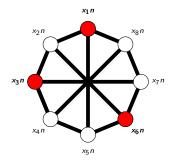
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Case 2: $\alpha > 2/5$



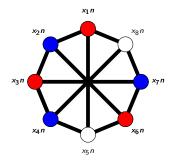
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Case 2: $\alpha > 2/5$ If $x_3 \le \alpha/2$, then $x_3y_4 \le (\alpha/2)(1/2 - \alpha) \le 1/50$.



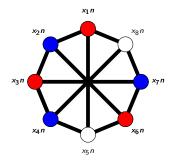
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. Case 2: $\alpha > 2/5$ If $x_3 \le \alpha/2$, then $x_3y_4 \le (\alpha/2)(1/2 - \alpha) \le 1/50$. Thus, $x_3 > \alpha/2$.



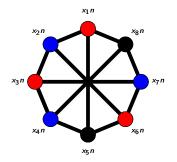
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. **Case 2:** $\alpha > 2/5$ If $x_3 \le \alpha/2$, then $x_3y_4 \le (\alpha/2)(1/2 - \alpha) \le 1/50$. Thus, $x_3 > \alpha/2$. Since $x_1 + x_3 + x_6 = \alpha$, we have $x_1 + x_6 < \alpha/2$.



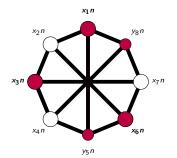
 $x_4 \ge 1/2 - \alpha$. Consider $y_4 = 1/2 - \alpha$ and $x_1 + x_3 + x_6$. **Case 2:** $\alpha > 2/5$ If $x_3 \le \alpha/2$, then $x_3y_4 \le (\alpha/2)(1/2 - \alpha) \le 1/50$. Thus, $x_3 > \alpha/2$. Since $x_1 + x_3 + x_6 = \alpha$, we have $x_1 + x_6 < \alpha/2$. Note that $x_2 + x_4 + x_7 < 1/2$.



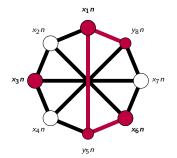
 $\begin{array}{l} x_4 \geq 1/2 - \alpha \text{. Consider } y_4 = 1/2 - \alpha \text{ and } x_1 + x_3 + x_6. \\ \textbf{Case 2: } \alpha > 2/5 \\ \text{If } x_3 \leq \alpha/2, \text{ then } x_3y_4 \leq (\alpha/2)(1/2 - \alpha) \leq 1/50. \text{ Thus, } x_3 > \alpha/2. \\ \text{Since } x_1 + x_3 + x_6 = \alpha, \text{ we have } x_1 + x_6 < \alpha/2. \text{ Note that } x_2 + x_4 + x_7 < 1/2. \\ x_5 + x_8 + 1/2 + \alpha \geq x_5 + x_8 + (x_1 + x_3 + x_6) + (x_2 + x_4 + x_7) = 1 \end{array}$



 $\begin{array}{l} x_4 \geq 1/2 - \alpha. \mbox{ Consider } y_4 = 1/2 - \alpha \mbox{ and } x_1 + x_3 + x_6. \\ \mbox{ Case 2: } \alpha > 2/5 \\ \mbox{ If } x_3 \leq \alpha/2, \mbox{ then } x_3y_4 \leq (\alpha/2)(1/2 - \alpha) \leq 1/50. \mbox{ Thus, } x_3 > \alpha/2. \\ \mbox{ Since } x_1 + x_3 + x_6 = \alpha, \mbox{ we have } x_1 + x_6 < \alpha/2. \mbox{ Note that } x_2 + x_4 + x_7 < 1/2. \\ \mbox{ } x_5 + x_8 + \frac{1}{2} + \alpha \geq x_5 + x_8 + (x_1 + x_3 + x_6) + (x_2 + x_4 + x_7) = 1 \\ \mbox{ Therefore, } x_5 + x_8 \geq 1/2 - \alpha. \end{array}$



 $\begin{array}{l} x_5 + x_8 \geq 1/2 - \alpha. \text{ Consider } y_5 + y_8 = 1/2 - \alpha \text{ and } x_1 + x_3 + x_6. \\ \textbf{Case 2: } \alpha > 2/5 \\ \text{If } x_3 \leq \alpha/2, \text{ then } x_3y_4 \leq (\alpha/2)(1/2 - \alpha) \leq 1/50. \text{ Thus, } x_3 > \alpha/2. \\ \text{Since } x_1 + x_3 + x_6 = \alpha, \text{ we have } x_1 + x_6 < \alpha/2. \text{ Note that } x_2 + x_4 + x_7 < 1/2. \\ x_5 + x_8 + 1/2 + \alpha \geq x_5 + x_8 + (x_1 + x_3 + x_6) + (x_2 + x_4 + x_7) = 1 \\ \text{Therefore, } x_5 + x_8 \geq 1/2 - \alpha. \end{array}$



 $\begin{array}{l} x_5 + x_8 \geq 1/2 - \alpha. \text{ Consider } y_5 + y_8 = 1/2 - \alpha \text{ and } x_1 + x_3 + x_6. \\ \textbf{Case 2: } \alpha > 2/5 \\ \text{If } x_3 \leq \alpha/2, \text{ then } x_3y_4 \leq (\alpha/2)(1/2 - \alpha) \leq 1/50. \text{ Thus, } x_3 > \alpha/2. \\ \text{Since } x_1 + x_3 + x_6 = \alpha, \text{ we have } x_1 + x_6 < \alpha/2. \text{ Note that } x_2 + x_4 + x_7 < 1/2. \\ x_5 + x_8 + 1/2 + \alpha \geq x_5 + x_8 + (x_1 + x_3 + x_6) + (x_2 + x_4 + x_7) = 1 \\ \text{Therefore, } x_5 + x_8 \geq 1/2 - \alpha. \end{array}$

Open problems / Next steps

• Prove that if $\delta(G_n) > n/3$ and $K_3 \nsubseteq G_n$, then G_n is not (1/2, 1/50)-dense.

Open problems / Next steps

- Prove that if $\delta(G_n) > n/3$ and $K_3 \nsubseteq G_n$, then G_n is not (1/2, 1/50)-dense.
- Extend the result for (α, β)-dense graphs with general α and β.

Thanks for your attention!