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Motivation - Locally dense graphs

Question: Maximum number of edges in a K3-free graph?

Mantel’s Theorem
The maximum number of edges in an n-vertex triangle-free
graph is bn2/4c.
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Motivation - Locally dense graphs

Definition: A graph Gn is (α, β)-dense if every subset of αn
vertices induces more than βn2 edges.

Question [Erdős–Faudree–Rousseau–Schelp ’94]
Given α, what is the minimum β such that every (α, β)-dense
graph contains a triangle?

Example: For α = 1, β = 1/4.
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Question [Erdős–Faudree–Rousseau–Schelp ’94]
Given α, what is the minimum β such that every (α, β)-dense
graph contains a triangle?

Example: For α = 1, β = 1/4.

Gn Gn

αn
αn

αn

αn



Locally dense graphs

Question: Given α, what is the minimum β such that every
(α, β)-dense graph contains a triangle?

For 1/2 < α ≤ 1: β ≥ (2α− 1)/4
α≥17/30

≥ (5α− 2)/25

For 2/5 < α ≤ 3/5: β ≥ (5α− 2)/25

α≥53/120

≥ (8α− 3)/64

For 3/8 < α ≤ 1: β ≥ (8α− 3)/64

n/2 n/2n/2 n/2

αn − n/2 n
2 (αn − n

2 ) = (2α−1)
4 n2
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Conjectures

Conjecture (Erdős 1976)

Let 53/120 ≤ α ≤ 1 and let Gn be an n-vertex graph. If n is
sufficiently large and Gn is (α, β)-dense with

β ≥

{
(2α− 1)/4 if 17/30 ≤ α ≤ 1

(5α− 2)/25 if 53/120 ≤ α ≤ 17/30,

then Gn contains a triangle.

Interesting case: α = 1/2, β ≥ 1/50.
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Conjectures

Conjecture (Erdős 1976 - $250,00)

If Gn is (1/2, 1/50)-dense, then Gn contains a triangle.

Stated in the contrapositive...

Conjecture (Erdős 1976)

Every triangle-free graph Gn contains a subset of bn/2c vertices
that induces at most n2/50 edges.
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Known results

Theorem (Krivelevich 1995)

If G is triangle-free, then G is not (1/2, 1/36)-dense.

It seems to be a hard problem! What to do? Add conditions!

Theorem (Krivelevich 1995)

If Gn is triangle-free and δ(Gn) > 2n/5, then

Gn is not (1/2, 1/50)-dense.

Theorem (Norin–Yepremian 2015)

If Gn is triangle-free and δ(Gn) > 5n/14, then

Gn is not (1/2, 1/50)-dense.
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Main results

Theorem (B.–Mota–Reiher–Schacht 2017+)

If Gn is triangle-free and δ(Gn) > 10n/29, then Gn is not
(1/2, 1/50)-dense.

Theorem (B.–Mota–Reiher–Schacht 2017+)

If Gn is triangle-free with χ(Gn) ≤ 3 and δ(Gn) > n/3, then Gn is
not (1/2, 1/50)-dense.



Main results

Theorem (B.–Mota–Reiher–Schacht 2017+)

If Gn is triangle-free and δ(Gn) > 10n/29, then Gn is not
(1/2, 1/50)-dense.

Theorem (B.–Mota–Reiher–Schacht 2017+)

If Gn is triangle-free with χ(Gn) ≤ 3 and δ(Gn) > n/3, then Gn is
not (1/2, 1/50)-dense.



Important structures: Andrásfai graphs

F1 F2 F3 F4 F5, F6, . . .

Properties of Fd

3d − 1 vertices

Triangle-free

d-regular

α(Fd) = d

Why are Andrásfai graphs important to the problem?
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Andrásfai graphs - Blow-ups

F2 F3 F4 F5, F6, . . .



Triangle-free graphs with large minimum degree

Theorem (Andrásfai–Erdős–Sós 1974)

If δ(Gn) > 2n/5 and K3 * Gn, then Gn is a subgraph of a blow-up
of F1

Theorem (Häggkvist 1982)

If δ(Gn) > 3n/8 and K3 * Gn, then Gn is a subgraph of a blow-up
of F2.

Theorem (Jin 1995)

If δ(Gn) > 10n/29 and K3 * Gn, then Gn is a subgraph of a
blow-up of F9.

Theorem (Chen–Jin–Koh 1997)

If δ(Gn) >
(
(d + 1)/(3d + 2)

)
n, K3 * Gn and χ(Gn) ≤ 3, then Gn

a subgraph of a blow-up of Fd .
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Obtaining the main results

Theorem (B.–Mota–Reiher–Schacht 2017+)

If Gn is a subgraph of a blow-up of Fd for some integer d ≥ 1,
then Gn is not (1/2, 1/50)-dense.

Theorem (Jin 1995)

If Gn is triangle-free with δ(Gn) > 10n/29, then Gn is contained in
a blow-up of F9.

Corollary (B.–Mota–Reiher–Schacht 2017+)

If Gn is triangle-free and δ(Gn) > 10n/29, then Gn is not
(1/2, 1/50)-dense.
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Open problems / Next steps

Prove that if δ(Gn) > n/3 and K3 * Gn, then Gn is not
(1/2, 1/50)-dense.

Extend the result for (α, β)-dense graphs with general α
and β.
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Thanks!

Thanks for your attention!


