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Saccharomyces cerevisiae

Saccharomyces cerevisiae, often known as budding yeast, and
sometimes as brewer’s yeast or baker’s yeast, is a single-celled
eukaryotic organism

Eukaryotic cells contain a nucleus (and typically other
organelles, such as mitochondria)

It is useful as a model for higher eukaryotes, having a great
deal of biological function conserved with humans

It is the most heavily studied and well-characterised model
organism in biology (eg. first fully sequenced eukaryote)
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Synthetic Genetic Array (SGA)

Possible to obtain a library of around 4,500 mutant strains,
each of which has one of the non-essential genes silenced
through insertion of a (kanMX) antibiotic resistance cassette
and tagged with a unique DNA barcode

These strains (stored frozen in 96-well plates) can be
manipulated by robots in 96-well plates (8×12), or on solid
agar in 96, 384 or 1536-spot format

Synthetic Genetic Array (SGA) is a clever genetic procedure
using robots to systematically introduce an additional
mutation into each strain in the library by starting from a
specially constructed query strain containing the new mutation
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Telomeres

The ends of linear chromosomes require special protection in
order not to be targeted by DNA damage repair machinery
(bacteria often avoid this problem by having just one
chromosome arranged in a single loop)

Telomeres are the ends of the chromosomal DNA (which have
a special sequence), bound with special telomere-capping
proteins that protect the telomeres

CDC13 is an essential telomere-capping protein in yeast

cdc13-1 is a point-mutation of cdc13, encoding a
temperature-sensitive protein which functions similarly to
wild-type CDC13 below around 25 ◦C, and leads to
“telomere-uncapping” above this temperature
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Basic structure of an experiment

1 Introduce a mutation (such as cdc13-1) into an SGA query
strain, and then use SGA technology (and a robot) to cross
this strain with the single deletion library in order to obtain a
new library of double mutants

2 Inoculate the strains into liquid media, grow up to saturation
then spot back on to solid agar 4 times

3 Incubate the 4 different copies at different temperatures
(treatments), and image the plates multiple times to see how
quickly the different strains are growing

4 Repeat steps 2 and 3 four times (to get some idea of
experimental variation)

5 Repeat steps 2 to 4 with a “control” library that does not
include the query mutation

Darren Wilkinson — CIRM, 1/3/2016 Genetic interaction in yeast



Yeast
Data analysis

Summary and conclusions

Budding yeast biology and genetics
Synthetic genetic array
Telomeres
HTP yeast SGA robotic screens

Some numbers relating to an experiment

Initial SGA work (introducing mutations into the query and
the library) takes around 1 month of calendar time, and
several days of robot time

The inoculation, spotting and imaging of the 8 repeats takes
1 month of calendar time, and around 2 weeks of robot time

The experiment uses around £3,000 of consumables (plastics
and media)

The library is distributed across 72 96-well plates or 18 solid
agar plates (in 384 format, or 1536 in quadruplicate)

If each plate is imaged 30 times, there will be around 35k
high-resolution photographs of plates in 384 format,
corresponding to around 13 million colony growth
measurements (400k time series)

This is big data!
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Data analysis pipeline

Image processing (from images to colony size measurements)

Fitness modelling (from colony size growth curves to strain
fitness measures)

Modelling genetic interaction (from strain fitness measures to
identification of genetically interacting strains, ranked by
effect size)

Possible to carry out three stages separately, but benefits to joint
modelling through borrowed strength and proper propagation of
uncertainty. Not practical to integrate image processing step into
the joint model, but possible to jointly model second two stages.
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Automated image analysis (Colonyzer)
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Growth curve
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Growth curve modelling

We want something between a simple smoothing of the data
and a detailed model of yeast cell growth and division

Logistic growth models are ideal — simple semi-mechanistic
models with interpretable parameters related to strain fitness

Basic deterministic model:

dx

dt
= rx(1− x/K),

subject to initial condition x = P at t = 0

r is the growth rate and K is the carrying capacity

Analytic solution:

x(t) =
KPert

K + P (ert − 1)
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Statistical model

Model observational measurements {Yt1 , Yt2 , . . .} with

Yti = xti + εti

Can fit to observed data yti using non-linear least squares or
MCMC

Can fit all (400k) time courses simultaneously in a large
hierarchical model which effectively borrows strength,
especially across repeats, but also across genes
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Fitting the logistic curve
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Improved modelling of colony growth curves

Could use a generalised logistic model (Richards’ curve) which
breaks the symmetry in the shape of “take off” and “landing”

dx

dt
= rx(1− (x/K)ν)

This helps, but doesn’t address the real problem of strongly
auto-correlated residuals

Better to introduce noise into the dynamics to get a logistic
growth diffusion process
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Stochastic logistic growth diffusion

Well-known stochastic generalisation of the logistic growth
equation, expressed as an Itô stochastic differential equation
(SDE):

dXt = rXt(1−Xt/K)dt+ ξ−1/2Xt dWt

The drift is exactly as for the deterministic model

The diffusion term injects some noise into the dynamics

The multiplicative noise ensures that this defines a
non-negative stochastic process
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Sample trajectories from the logistic diffusion

Stochastic logistic growth
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Statistical model

Model observational measurements {Yt1 , Yt2 , . . .} with

Yti = Xti + εti

where Xti refers to our realisation of the diffusion process

Need somewhat sophisticated algorithms to fit these sorts of
SDE models to discrete time data

Standard algorithms would require knowledge of the transition
kernel of the diffusion process, but this is not available for the
logistic diffusion

Lots of work on Bayesian inference for intractable diffusions
(Golightly & W, ’05, ’06, ’08, ’10, ’11), but this won’t scale
to simultaneous fitting of tens of thousands of realisations
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Approximating the stochastic logistic diffusion

Computational constraints mean that we can only really
consider working with diffusions having tractable transition
kernels (as then we can apply standard MCMC methods for
discrete time problems)

If we apply a log transformation to the logistic diffusion and
then carry out a linear noise approximation, the result will be
a process with log-normal increments

Putting Ut = logXt, Itô’s formula gives

dUt =

(
r − 1

2ξ
− r

K
eUt

)
dt+ ξ−1/2dWt
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Linear noise approximation (LNA)

Decompose Ut into a deterministic component and a
stochastic residual process

Ut = vt + Zt

where vt solves the deterministic part

dvt
dt

= r − 1

2ξ
− r

K
evt

Subtracting out the deterministic solution from Ut leaves a
residual process of the form

dZt =
r

K
evt(1− eZt)dt+ ξ−1/2dWt
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Linear noise approximation (LNA)

Applying the linear approximation 1− eZt ' −Zt to linearise
the drift gives

dZt = − r

K
evtZtdt+ ξ−1/2dWt

Substituting in for vt then gives

dZt = − abPeat

bP (eat − 1) + a
Ztdt+ ξ−1/2dWt,

where a = r − 1/(2ξ) and b = r/K

This is a (zero) mean-reverting time-varying
Ornstein–Uhlenbeck (OU) process, and can be solved exactly,
giving a normal transition kernel
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The logistic diffusion and the LNA

Stochastic logistic growth
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The (log)LNA is a very good approximation to the true process,
with tractable log-normal increments
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Further simplifications and approximations

The LNA is a good model with a tractable transition kernel

We can implement standard discrete time MCMC methods to
estimate model parameters together with the unobserved
latent trajectories

Embedding in a hierarchical model is straightforward

These methods work fine for hundreds of growth curves, but
are still problematic for tens of thousands of growth curves
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Integrating out the latent process

If we are prepared to assume linear Gaussian error on the log
scale, we can use Kalman filtering techniques to integrate out
the latent process (but this isn’t very plausible)

Alternatively, we could apply a LNA directly to the logistic
diffusion (without first transforming), and assume linear
Gaussian error on that scale (Heydari et al, 2013)

This latter approach turns out to be better, despite the fact
that the LNA approximation to the true process isn’t quite as
good

More important to have a plausible error structure than a
super-accurate approximation to the stochastic process
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Growth curve model
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ŷlmn

Klm

ylmn

σν

νpP

στ,r

τ r,p

τKl

σr,o

rol

τKl

Kp

Ko
l

rlm

σK,o στ,K

τK,p

νl

Time Point

Repeat

orf∆

Population

m
n

l

Darren Wilkinson — CIRM, 1/3/2016 Genetic interaction in yeast



Yeast
Data analysis

Summary and conclusions

Data analysis pipeline
Growth curve modelling
Modelling genetic interaction

Colony fitness

The results of model fitting are estimates (or posterior
distributions) of r and K for each yeast colony, and also the
corresponding gene level parameters

Both r and K are indicative of colony fitness — keep separate
where possible

Often useful to have a scalar measure of fitness — many
possibilities, including rK, r logK, or MDR×MDP, where
MDR is the maximal doubling rate and MDP is the maximal
doubling potential

Statistical summaries can be fed in as data to the next level of
analysis (or, ultimately, modelled jointly as a giant hierarchical
model)
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Epistasis

From Wikipedia:

“Epistasis is the interaction between genes. Epistasis takes
place when the action of one gene is modified by one or
several other genes, which are sometimes called modifier
genes. The gene whose phenotype is expressed is said to be
epistatic, while the phenotype altered or suppressed is said to
be hypostatic.”

“Epistasis and genetic interaction refer to the same
phenomenon; however, epistasis is widely used in population
genetics and refers especially to the statistical properties of
the phenomenon.”
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Multiplicative model

Consider two genes with alleles a/A and b/B with a and b
representing “wild type” (note that A and B could potentially
represent knock-outs of a and b)

Four genotypes: aa, Ab, aB, AB. Use [·] to denote some
quantitative phenotypic measure (eg. “fitness”) for each
genotype

Multiplicative model of genetic independence:

[AB]× [ab] = [Ab]× [aB] no epistasis
[AB]× [ab] > [Ab]× [aB] synergistic epistasis
[AB]× [ab] < [Ab]× [aB] antagonistic epistasis

Perhaps simpler if re-written in terms of relative fitness:

[AB]

[ab]
=

[Ab]

[ab]
× [aB]

[ab]

Darren Wilkinson — CIRM, 1/3/2016 Genetic interaction in yeast
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Genetic independence and HTP data

Suppose that we have scaled our data so that it is consistent
with a multiplicative model — what do we expect to see?

The independence model [AB]× [ab] = [Ab]× [aB] translates
to

[query : abc∆]× [wt] = [query]× [abc∆]

In other words

[query : abc∆] =
[query]

[wt]
× [abc∆]

That is, the double-mutant differs from the single-deletion by
a constant multiplicative factor that is independent of the
particular single-deletion

ie. a scatter-plot of double against single will show them all
lying along a straight line

Darren Wilkinson — CIRM, 1/3/2016 Genetic interaction in yeast
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Statistical modelling

Assume that Fclm is the fitness measurement for repeat m of
gene deletion l in condition c (c = 1 for the single deletion
and c = 2 for the corresponding double-mutant)

Model:

Fclm ∼ N(F̂cl, 1/νcl)

log F̂cl = αc + Zl + δlγcl

δl ∼ Bern(p)

δl is a variable selection indicator of genetic interaction

Then usual Bayesian hierarchical stuff...

Darren Wilkinson — CIRM, 1/3/2016 Genetic interaction in yeast
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Genetic interaction model
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Genetic interaction results
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Joint modelling of growth curves and genetic interaction

We can integrate together the hierarchical growth curve model
and the genetic interaction model into a combined joint model

This has usual advantages of properly borrowing strength,
proper propagation of uncertainty, etc.

Also very convenient to avoid requiring a scalar measure of
“fitness”

If yclmn is the colony size at time point n in repeat m of gene
l in condition c, then

yclmn ∼ N(ŷclmn, 1/νcl)

ŷclmn = X(tclmn;Kclm, rclm, P )

logKclm ∼ N(αc +Ko
l + δlγcl, 1/τ

K
cl )

log rclm ∼ N(βc + rol + δlωcl, 1/τ
r
cl)
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Joint model
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Joint model results
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“Big data” issues

Understanding conflict between model and data in big data
contexts — does more data demand more complex models?

Model simplifications and improvements to MCMC (linear
Gaussian block updates and proposals, “INLA proposals”,
2-block proposals, reparameterisations, GVS, etc.)

Basic parallelisation strategies (parallel chains, parallellelised
single chain)

Investigation of data parallel strategies (consensus Monte
Carlo, etc.)

Novel representations, interpretations and implementations of
Bayesian hierarchical models using strongly typed functional
programming languages (Scala, Haskell, Frege, OCaml, ...)

Darren Wilkinson — CIRM, 1/3/2016 Genetic interaction in yeast
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Summary

Modern bioscience is generating large, complex data sets
which require sophisticated modelling in order to answer
questions of scientific interest

Big data forces trade-offs between statistical accuracy and
computational tractability

Stochastic dynamic models are much more flexible than
deterministic models, but come at a computational cost —
the LNA can sometimes represent an excellent compromise

Notions of genetic interaction translate directly to statistical
models of interaction

Big hierarchical variable selection models are useful in
genomics, but can be computationally challenging

Darren Wilkinson — CIRM, 1/3/2016 Genetic interaction in yeast
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