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SDE with random effects

Repeated temporal data
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Dynamics of neuron
voltage

Growth curves
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SDE with random effects

Modeling temporal data/time series

(Ytk ) at discrete times (tk)k=1,...,n

Noisy observations of a (hidden) temporal process

Ytk = Xtk + εk

I Discrete time process (Xtk )

I Regular observation times tk = k∆, Xtk := Xk
I Auto-regressive model

Xk+1|Xk ∼ p(·|Xk , φ)

I Continuous time process (Xt)
I Irregular observation times possible
I Stochastic differential equation with Brownian motion (Bt)

dXt = a(Xt , φ)dt + b(Xt , γ)dBt , X0 = x0
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SDE with random effects

Modeling repeated temporal data/time series

(Yitk ) at discrete times (tk)k=1,...,n for subject i = 1, . . . ,N

Yitk = Xitk + εik

Random effects modeling between-subject variability

I Discrete time process

Xik+1|Xik ∼ p(·|Xk , φi )

φi ∼ p(ϕ, θ)

I Continuous time process

dXit = a(Xit , φi )dt + b(Xit , γ)dBit , Xi0 = x0

φi ∼ p(ϕ, θ)
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SDE with random effects

Gaussian random effects

yik = Xitik + εik , εik ∼iid N (0, σ2)

dXit = a(Xit , φi )dt + b(Xit , γ)dBit , Xi0 = x0

φi ∼iid N (µ,Ω)

Outlines of the talk

Parameters to be estimated: θ = (µ,Ω, γ, σ)

Likelihood not explicit ⇒ Use of MCMC/PMCMC methods

Comparison of Bayesian and frequentist approaches
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SDE with random effects

A degenerate Hidden Markov Model
Notations

Xi = Xi,0:n = (Xti0 , . . . ,Xtin): hidden diffusion of subject i

yi = yi,0:n = (yti0 , . . . , ytin): observations of subject i

Why the model is a degenerate HMM

Hidden coordinates ((Xit)t≥0, i = 1, . . . ,N, φ1:N)

Law of observations

I conditionally on ((Xit)t≥0, i = 1, . . . ,N, φ1:N), the (yik) are independent

Law of the hidden process
I (Xit)t≥0 is a continuous Markov process
I ((Xit)t≥0, φi ) has a degenerate dynamics (hypoelliptic system)

dXit = a(Xit , φi )dt + b(Xit , γ)dBit , Xi0 = x0

dφit = 0, φi0 ∼ N (µ,Ω)

I Discrete version (Xi,0:n, φi,0:n) with φi,k = φi for all k = 1, . . . , n has a
degenerate kernel Q
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SDE with random effects

Alternative

See the model as N independent HMM each with a random parameter φi

For subject i , the HMM is defined as

Hidden coordinates ((Xit)t≥0)

Law of observations

I conditionally on ((Xit)t≥0), the (yik) are independent

Law of the hidden process
I (Xit)t≥0 is a continuous Markov process with transition density

p(Xit |Xis , s ≤ t; θ) =

∫
p(Xit |Xis , s ≤ t;φi )p(φi ; θ)dφi
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SDE with random effects

Law of the hidden path p(Xi ; θ)
Explicit only for linear drift and known volatility (Girsanov formula)

Alternative: discretization of the SDE with step size ∆ (Euler-Maruyama)

Xik+1 = Xik + ∆a(Xik , φi ) +
√

∆b(Xik , γ)ηi , ηi ∼iid N (0, 1)

Approximated transition density

p(Xi ; θ) =

∫ n−1∏
k=0

p(Xik+1|Xik , φi ; θ)p(φi ; θ)dφi

Likelihood: in any case, integrand explicit but no closed-form of the likelihood

p(yi ; θ) =

∫ ∫ n∏
k=0

p(yik |Xtik ; θ)
n−1∏
k=0

p(Xtik |Xtik−1
, φi ; θ)p(φi ; θ)dXidφi
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SDE with random effects

Estimation methods
Exact for Orsntein-Ulhenbeck [Ditlevsen and De Gaetano, 2005]

Linearization and extended Kalman filter [Tornoe et al, 2005; Overgaard et al 2005,

Mortensen et al 2007, Klim et al 2009; Leander et al 2014, 2015]

Gaussian quadrature [Picchini et al 2010]

Laplace approximation [Picchini et al 2011]

SAEM-MCMC algorithm [Donnet and Samson, 2008]

SAEM-Kalman filter [Delattre and Lavielle 2013]

SAEM-PMCMC algorithm [Donnet and Samson, 2014]

Exact for linear drift [Delattre et al 2013, 15, 16]

Bayesian approach with MCMC [Donnet et al, 2010; Hermann et al 2015]

Bayesian approach with PMCMC [Hermann and Samson, 2016]

Focus on computational methods based on MCMC

Question
Do the MCMC and PMCMC algorithms behave the same in the frequentist and
Bayesian approaches ?
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MCMC algorithm Bayesian settings

Bayesian settings

Hierarchical model with prior distribution

yij = Xitij + εij , εij ∼iid N (0, σ2)

dXit = a(Xit , φi )dt + b(Xit , γ)dBit , Xi0 = x0

φi ∼iid N (µ,Ω)

θ ∼ p(θ)

Estimation of p(θ|y) and of p(X |y , θ)
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MCMC algorithm Bayesian settings

MCMC: Gibbs algorithm

Initialization: θ(0), φ(0), X (0)

iteration k:

1. X (k) ∼ p(X |φ(k−1), θ(k−1), y)

2. φ(k) ∼ p(φ|θ(k−1),X (k), y)

3. (µ(k),Ω(k)) ∼ p((µ,Ω)|φ(k),X (k), y)

4. σ−2(k) ∼ p(σ−2|φ(k),X (k), y)

5. γ−2(k) ∼ p(γ−2|φ(k),X (k), y)
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MCMC algorithm Bayesian settings

Example with growth curves

Stochastic Gompertz model

dXt = BCe−CtXtdt + γXtdBt ,

X0 = Ae−B

Explicit solution

log Xt+∆|(log Xs )s≤t ∼ N
(

log Xt − Be−Ct(e−C∆ − 1)−
1

2
γ

2∆, γ2∆

)
,

log X0 = log(A)− B
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MCMC algorithm Bayesian settings

Prior and posterior distributions

Z : Gaussian posterior

µ: Gaussian prior and posterior

Ω−1: Wishart prior, inverse Wishart
posterior

σ−2: Gamma prior and posterior

γ2: non explicit posterior →
Metropolis-Hastings

MCMC algorithm: Metropolis-Hastings
Within-Gibbs

8000 iterations of MCMC

5000 iterations of burn-in

0.06 0.08 0.10 0.12 0.14

0
10

20
30

γ2 posterior distibution
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MCMC algorithm Bayesian settings

Example with neuronal data

Ornstein-Ulhenbeck process

dXt = (φ1 − φ2Xt)dt + γdBt ,

X0 = 0

Explicit solution

Standard MCMC algorithm

10000 iterations of MCMC

9000 iterations of burn-in
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MCMC algorithm Frequentist settings

Frequentist settings
No prior, maximization of the likelihood

Incomplete data model

Observed data (y)

Complete data (y ,X , φ)

EM Algorithm [Dempster, Laird, Rubin, 1977; Wu, 1983], at iteration m

Expectation Step: calculation of Qm+1

Qm+1(θ) = E
[

log p(y ,X , φ; θ) | y , θ̂m
]

Maximization Step: update of θ̂m

θ̂m+1 = arg max
θ

Qm+1(θ)

But E step not explicit

A. Samson SDE estimation CIRM, 29/02/16 15 / 34



MCMC algorithm Frequentist settings

Stochastic EM Algorithm

[Celeux Diebolt 1985, Wei Tanner 1990; Delyon, Lavielle and Moulines, 1999]

E step

- S step : simulation of (X `
m, φ

`
m) under distribution p(X , φ|y ; θ̂m) for

` = 1, . . . , L

- E step : stochastic approximation of Qm+1

Qm+1(θ) =
1

L

L∑
`=1

log p(y ,X `
m, φ

`
m; θ)

M step : θ̂m+1 = arg max
θ

Qm+1(θ)

Simulation step with MCMC [Kuhn, Lavielle, 2004]
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MCMC algorithm Frequentist settings

Convergence results

EM assumptions

1. Incomplete data model in exponential family

2. Regularity of complete likelihood

MCMC assumptions

1. Irreductible and aperiodic Metropolis-Hasting

2. q(xj |x0:n−1, yj , φ; θ) > 0 if p(x0:n|yj , φ; θ) > 0

Theorem [Kuhn, Lavielle, 2004]

Sequence (θ̂m) converges towards a (local) maximum of likelihood p(y ; θ).
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MCMC algorithm Frequentist settings

Example with pharmacokinetic data

dXt =

(
Dose · KaKe

Cl
e−Kat − KeXt

)
dt + γdBt ,

X0 = 0

Standard MCMC algorithm with
Euler-Maruyama approximation

700 iterations of EM

5 iterations of MCMC at
each EM iteration
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PMCMC algorithm Bayesian settings

Problem of the standard MCMC algorithm

Simulation of the hidden coordinate (X , φ)

I High dimension of X

I Bad mixing of the chain between X and φ

Apply for Bayesian and frequentist settings

⇒ Natural tool is Particle MCMC [Andrieu et al 2010]

I Pseudo-marginal MCMC
I Estimate the likelihood
I Replace the acceptance ratio with a ratio of estimators
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PMCMC algorithm Bayesian settings

“Ideal” MCMC algorithm
Target distribution: p(Xi,0:n, φi |yi,0:n; θ)

Simulation of φc ∼ q(·;φ(`))

Simulation of X c ∼ p(X0:n|y0:n, φ
c ; θ)

Theoretical acceptance probability

ρ = min

{
p(X c , φc |y0:n; θ)

p(X (`), φ(`)|y0:n; θ)

q(φ(`);φc )

q(φc ;φ(`))

p(X0:n(`)|y0:n, φ(`); θ)

p(X c
0:n|y0:n, φc ; θ)

; 1

}
= min

{
p(φ(`)|y0:n; θ)

p(φc |y0:n; θ)

q(φ(`);φc )

q(φc ;φ(`))
; 1

}
= min

{
p(y0:n|φ(`); θ)p(φ(`); θ)

p(y0:n|φc ; θ)p(φc ; θ)

q(φ(`);φc )

q(φc ;φ(`))
; 1

}

Update of the Markov chain

(X (`+ 1), φ(`+ 1)) =

{
(X c , φc) with proba ρ

(X (`), φ(`)) with proba 1− ρ
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PMCMC algorithm Bayesian settings

Particle filter/Sequential Monte Carlo (SMC)
[Del Moral et al, 2001; Doucet et al, 2001; Chopin, 2004; ...]

Approximate p(X0:n|y0:n, φ; θ) by K particles X
(k)
0:n with weights w

(
X

(k)
0:n

)
p (X0:n|y0:n, φ; θ) ≈

K∑
k=1

w
(
X

(k)
0:n

)
1
X

(k)
0:n

At time j = 1, . . . , n, ∀ k = 1, . . . ,K :

1. simulation of X
(k)
j ∼ q(·|yj ,X (k)

j−1, φ; θ)
2. calculation of weights

w
(
X

(k)
0:j

)
=

p(y0:j ,X
(k)
0:j |φ; θ)

p(y0:j−1,X
(k)
0:j−1|φ; θ)q(X

(k)
j |yj ,X

(k)
j−1, φ; θ)

Conditional likelihood

p̂(y0:n|φ; θ) = p̂(y0|φ; θ)
n∏

j=1

p̂(yj |y0:n−1, φ; θ).
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PMCMC algorithm Bayesian settings

Particle Marginal Metropolis Hastings (PMMH) algorithm
Approximation of distribution p(X0:n, φi |y0:n; θ)

Iteration ` ≥ 1

1. Simulation of φc
i ∼ q(·|φi (`− 1))

2. Simulation of X c
0:n by SMC targeting p(·|y0:n, φ

c
i ; θ)

3. Estimation of p̂(y0:n|φc ; θ) based on SMC weights with K particles

4. Update

(X0:n(`), φi (`)) =

{
(X c

0:n, φ
c
i ) with proba ρ̂

(X0:n(`− 1), φi (`− 1)) otherwise

where ρ̂ = min
{

p̂(y0:n|φ(`);θ)p(φ(`);θ)
p̂(y0:n|φc ;θ)p(φc ;θ)

q(φ(`);φc )
q(φc ;φ(`))

; 1
}

Theorem [Andrieu et al, 2010]

Markov chain produced by PMMH has p(X , φ|y ; θ) as stationary distribution for
any number of particles K
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Limits of PMMH

In Stochastic Differential Equations with random parameters

Hidden stochastic processes: random parameters φ and SDE X

Hyperparameters θ

PMMH updates simultaneously φ and X

I Low acceptance ratio
I Poor mixing of the chain

Alternative: Particle Gibbs Sampler
I Require conditional SMC [Andrieu et al, 2010]
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Particle Gibbs sampler

Initialization : set randomly φ(0), generate X (0) by a run of SMC algorithm
targeting p(X |, φ(0); γ, σ) and store its ancestral lineage B(0).

Iteration ` ≥ 1

1. Sample φ(`) ∼ p(φ|X (`−1), y)
2. Run a conditional SMC algorithm, consistent with φ(`), and the fixed particle

X (`− 1),B(`− 1), sample X (`) from this conditional SMC and denote B(`)
its ancestral lineage.

Theorem [Andrieu et al, 2010]

Markov chain produced by PGibbs has p(X , φ|y ; θ) as stationary distribution for
any number of particles K
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Example with simulated data

Wiener process with drift

dXt = φ2dt + γdBt ,

X0 = φ1

PMCMC

5000 iterations

1000 iterations of Burn-in

100 particles

Comparison of PMMH and PGibbs
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PMMH

PGibbs
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Coverage rates

µ1 µ2 γ2 σ2

Particle Gibbs 0.94 0.95 0.92 0.94
PMMH 0.55 1.00 0.07 0.74
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Frequentist settings
Stochastic EM Algorithm coupled with PMCMC
[Donnet, Samson, 2014]

E step

- S step : simulation of (X `
m, φ

`
m) under distribution p(X , φ|y ; θ̂m) with PMCMC

using K particles

- E step : stochastic approximation of Qm+1

Qm+1(θ) =
1

L

L∑
`=1

log p(y ,X `
m, φ

`
m; θ)

M step : θ̂m+1 = arg max
θ

Qm+1(θ)

Theorem [Donnet Samson 2014]

Sequence (θ̂m) converges towards a (local) maximum of likelihood p(y ; θ), for any
number of particles with L = 1 and stochastic approximation (SAEM)
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Stochastic EM and Particle filter
Theoretical results on the minimal number of particles at each iteration

E Step
- S Step:simulation of (Xm, φm) under distribution p(X , φ|y ; θ̂m) with particle

filter using K(m) particles

- E step : stochastic approximation of Qm+1

Qm+1(θ) =
1

L

L∑
`=1

log p(y ,X `
m, φ

`
m; θ)

M Step: θ̂m+1 = arg max
θ

Qm+1(θ)

Theorem [Ditlevsen, Samson, 2014]

Assumptions: Number of particles K (m) = log(m1+δ), L = 1

θ̂m
a.s.−−−−→

m→∞
(local) max of likelihood

Tool: convergence of Robbins-Monroe scheme and inequality deviation for the particle filter
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Example with simulated data

Ornstein-Ulhenbeck process

dXt = −
(
Xt

τ
− κ
)
dt + γdBt ,

X0 = 0

SAEM-PMMH

100 SAEM iterations

50 particles

10 PMCMC iterations
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PMMH tuning

Parameters log(τ) µ ωτ ωµ γ σ

True value 0.600 1.000 0.100 0.100 0.050 0.050

50 particles, 150 PMCMC iterations
Mean 0.600 1.000 0.096 0.094 0.050 0.050

SD 0.027 0.025 0.026 0.020 0.004 0.002

100 particles, 10 PMCMC iterations
Mean 0.600 1.000 0.098 0.091 0.051 0.050

SD 0.029 0.028 0.023 0.021 0.004 0.002

50 particles, 10 PMCMC iterations
Mean 0.600 1.001 0.098 0.094 0.051 0.050

SD 0.027 0.027 0.023 0.019 0.005 0.003

25 particles, 10 PMCMC iterations
Mean 0.600 1.000 0.097 0.094 0.051 0.050

SD 0.029 0.028 0.023 0.020 0.005 0.003

Low influence of particle numbers K
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Example with simulated data

Stochastic Gompertz
process

dXt = BCe−CtXtdt + γXtdBt

X0 = Ae−B

SAEM-MCMC

100 SAEM iterations

100 MCMC iterations

SAEM-PGibbs

100 SAEM iterations

50 particles

100 PGibbs iterations

0.0 0.2 0.4 0.6 0.8 1.0

0
20
00

40
00

60
00

80
00

10
00
0

time

A. Samson SDE estimation CIRM, 29/02/16 32 / 34



PMCMC algorithm Frequentist settings

Results

Parameters log A log B log C ωA ωB ωC γ σ

True value 8.006 1.609 2.639 0.100 0.100 0.100 0.500 0.100

SAEM-PGibbs Mean 8.092 1.623 2.624 0.136 0.097 0.119 0.522 0.100
SD 0.105 0.024 0.031 0.142 0.013 0.073 0.149 0.004

SAEM-MCMC Mean 8.522 1.704 2.525 0.073 0.090 0.077 0.746 0.098
SD 0.252 0.045 0.059 0.028 0.012 0.025 0.118 0.004

Improvement with SAEM-PGibbs

Especially γ
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Conclusion

Time series
I Prefer PMCMC for temporal series
I Particle Gibbs is really better

Stochastic Differential Equation with random effects
I When transition density unknown: Euler approximation and control of the

posterior distribution
I When irregular observations times: Sampling latent paths [Jenssen et al. 2014]

I When partially observed SDE

A. Samson SDE estimation CIRM, 29/02/16 34 / 34


	SDE with random effects
	MCMC algorithm
	Bayesian settings
	Frequentist settings

	PMCMC algorithm
	Bayesian settings
	Frequentist settings


