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Markov chain Monte Carlo

Approximate

π(f ) =
∫

G
f (x)π(x)dx .

(G = Rd and dx is the Lebesgue measure.)

Markov chain Monte Carlo:

Construct a Markov chain (Xn)n∈N with limit distribution π and

1
n

n∑
j=1

f (Xj) −→n→∞
π(f ).

Typically Metropolis-Hastings algorithm is used.
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Metropolis-Hastings (MH) algorithm

πu(x) is the unnormalized density, i.e. π(x) = cπu(x).

MH algorithm M with transition from xn to xn+1:

1 Draw x ′ from proposal density q(xn, ·);
2 Set

xn+1 =

{
x ′ with probab. a(xn, x ′)
xn otherwise

with

a(xn, x ′) = min
{

1,
πu(x ′)q(x ′, xn)

πu(xn)q(xn, x ′)

}
.
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Latent variables

Assume πu(x) cannot be computed but

πu(x) =
∫

T
π̂u(x , t) θx(dt).

(see Andrieu, Roberts 2009, Andrieu, Vihola 2015)

Substitute πu(x) in the MH algorithm by an unbiased approximation,

πu,N(x) =
1
N

N∑
i=1

π̂u(x ,T x
i ),

with i.i.d. sample T x
1 , . . . ,T

x
N and T x

i ∼ θx .
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Monte Carlo within Metropolis (MCWM)

MCWM algorithm MN with transition from x̃n to x̃n+1:

1 Draw x ′ from proposal density q(x̃n, ·);

2 Compute independently πu,N(x ′) and πu,N(x̃n).

3 Set

x̃n+1 =

{
x ′ with probab. aN(x̃n, x ′)
x̃n otherwise

with

aN(x̃n, x ′) = min
{

1,
πu,N(x ′)q(x ′, x̃n)

πu,N(x̃n)q(x̃n, x ′)

}
.

(Beaumont 2003, Andrieu, Roberts 2009 and Medina-Aguayo et al. 2015)

(Korattikara et al. 2014, Alquier et al. 2014, Bardenet et al. 2015, Pillai, Smith 2015)
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Abstract problem

Setting:

• (Xi)i∈N0 , (X̃i)i∈N0 Markov chains with transition kernels P, P̃

• distribution of Xn and X̃n denoted by pn and p̃n, assume p0 = p̃0

• P̃ is an approximation or perturbation of P

Problem:

“What is the difference of pn and p̃n?”

Quantitative bounds?
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Total variation and V -norm

Assume π and π̃ are distributions on G.

Total variation

‖π − π̃‖tv := 2 sup
A⊆G
|π(A)− π̃(A)| = sup

|f |≤1

∣∣∣∣∫
G

f (y)(π(dy)− π̃(dy))
∣∣∣∣ .

V -norm

‖π − π̃‖V = sup
|f |≤V

∣∣∣∣∫
G

f (y)(π(dy)− π̃(dy))
∣∣∣∣

for a measurable function V : G→ [1,∞).

Daniel Rudolf Approximations of Markov chains March 2016 7 / 19



Ergodicity assumption

Unperturbed Markov chain (Xi)i∈N is geometrically ergodic:

P is geometrically ergodic

⇐⇒ P is V -uniformly ergodic

⇐⇒ ∃C ∈ (0,∞) ∃% ∈ [0,1) s.t.

‖Pn(x , ·)− π‖V ≤ CV (x)%n
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Lyapunov assumption

V is a Lyapunov function of perturbed Markov chain (X̃i)i∈N:

∃L ∈ (0,∞) ∃δ ∈ [0,1) s.t.

P̃V (x) :=
∫

G
V (y)P̃(x , dy) ≤ δV (x) + L.
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Abstract result

Theorem (quantitative upper bound)

Define

γtv = sup
x∈G

∥∥∥P(x , ·)− P̃(x , ·)
∥∥∥

tv
V (x)

, γV = sup
x∈G

∥∥∥P(x , ·)− P̃(x , ·)
∥∥∥

V
V (x)

,

and

κ = max
{∫

G
V (x) p̃0(dx),

L
1− δ

}
.

Then, for any r ∈ (0,1],

∥∥pn − p̃n
∥∥

tv ≤ γ
1−r
tv γr

V
Crκ

(1− %)r
.
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Notes and remarks

• We have

γtv ≤ min{2, γV},

PV (x) ≤ V (x) + L =⇒ γV ≤ L + 2.

• If π and π̃ are stationary distributions of P and P̃, then

‖π − π̃‖tv ≤ γ
1−r
tv γr

V
Cr L

(1− δ)(1− %)r
.

(Essentially follows by letting n→∞)
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Application to MCWM

MCWM algorithm MN for large N should be close to MH algorithm M.

Question: ∥∥mn −mn,N
∥∥

tv ≤ ?

(mn,N and mn distributions of MN and M after n steps)

For the Theorem we need

• M is V -uniformly ergodic.

• V Lyapunov function of MN , i.e. for some δ ∈ [0,1) and L ∈ (0,∞)

MNV (x) ≤ δV (x) + L.

• Estimate of γtv and/or γV .
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Standing assumption

M is V -uniformly ergodic and for some α ∈ [0,1), R ∈ (0,∞) holds

MV (x) ≤ αV (x) + R.

Define

K1 = sup
x∈G

E
∣∣∣∣ πu(x)
π̂u(x ,T x

1 )

∣∣∣∣2 ,
K2 = sup

x∈G
E
∣∣∣∣ π̂u(x ,T x

1 )

πu(x)
− 1
∣∣∣∣2 .

Recall πu,N(x) unbiased estimate of πu(x) given by

πu,N(x) =
1
N

N∑
j=1

π̂u(x ,T x
i ) with i.i.d. sample T x

1 , . . . ,T
x
N ∼ θx
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Consequence I (K1 involved)

With arguments from Medina-Aguayo et al. 2015 follows

N >
K2(K1α+ 3)3

(1− α)3 =⇒

{
∃δ ∈ [0,1), L ∈ [R,∞) s.t.

MNV (x) ≤ δV (x) + L

and

N > 4400K2 =⇒ γtv ≤ sup
x∈G
‖MN(x , ·)−M(x , ·)‖tv ≤

6K 1/3
2

N1/3 .

Corollary I (MCWM quantitative upper bound)

∥∥mn −mn,N
∥∥

tv ≤
2K 1/3

2 log
(

N
216K2

)
N1/3 · C(L + 2)κ

(1− %)
.
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Consequence II (K1 not involved)

Additionally assume for proposal q that∫
G

V (y)q(x , y)dy ≤ K3V (x).

With arguments from Medina-Aguayo et al. 2015 follows

N > 64K2 =⇒ γV ≤
6(1 + K3)K

1/3
2

N1/3

and

N >
216K2(K3 + 1)3

(1− α)3 =⇒

{
∃δ ∈ [0,1), s.t.

MNV (x) ≤ δV (x) + R.
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Consequence II (K1 not involved)

Corollary II (MCWM quantitative upper bound)

Additionally assume for proposal q that∫
G

V (y)q(x , y)dy ≤ K3V (x).

Then ∥∥mn −mn,N
∥∥

tv ≤
6(1 + K3)K

1/3
2

N1/3 · Cκ
(1− %)

.
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Work in progress: Integration error

Approximate

π(f ) =
∫

G
f (x)π(x)dx .

• (Xi)i∈N0 , (X̃i)i∈N0 Markov chains with transition kernels P, P̃

• π stationary distribution of P

• P̃ is an approximation or perturbation of P

Question:

E

∣∣∣∣∣∣1n
n∑

j=1

f (X̃j)− π(f )

∣∣∣∣∣∣ ≤ ?
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Theorem (Integration error)

• ∃% ∈ [0,1) s.t. ‖Pn(x , ·)− π‖V ≤ V (x)%n.

• ∃δ ∈ [0,1) ∃L ∈ (0,∞) s.t. P̃V (x) ≤ δV (x) + L.

• Define
|f |V = sup

x∈G

|f (x)|
V (x)

,

Then

E

∣∣∣∣∣∣1n
n∑

j=1

f (X̃j)− π(f )

∣∣∣∣∣∣ ≤ κγV

1− %
|f |V + E

∣∣∣∣∣∣1n
n∑

j=1

f (Xj)− π(f )

∣∣∣∣∣∣ .
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