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Markov chain Monte Carlo

w(f):/Gf(x)w(x)dx

(G = RY and dx is the Lebesgue measure.)

Approximate

Markov chain Monte Carlo:

Construct a Markov chain (Xp)nen With limit distribution 7 and

foX)—HT f).

n—oo

Typically Metropolis-Hastings algorithm is used.

Daniel Rudolf Approximations of Markov chains March 2016

2/19



Metropolis-Hastings (MH) algorithm

mu(X) is the unnormalized density, i.e. m(x) = cmy(x).
MH algorithm M with transition from x,, to x1:

1 Draw x’ from proposal density g(xp, -);
2 Set
x’ with probab. a(xp, x)
Xn+1 = .
Xn otherwise
with
1 m(x’)q(x',xn)}

a(i, ) = min {1, 40T )

Daniel Rudolf Approximations of Markov chains March 2016 3/19



Latent variables

Assume 7,(x) cannot be computed but

ro(X) = /T #0(x, 1) Ox(d).

(see Andrieu, Roberts 2009, Andrieu, Vihola 2015)
Substitute 7,(x) in the MH algorithm by an unbiased approximation,

N
IR
7TU7N(X) = N ZWU(Xﬂ Tix)7
i=1

with i.i.d. sample T}, ..., T and T ~ 6.
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Monte Carlo within Metropolis (MCWM)

MCWM algorithm My with transition from x, to X, 1:

1

2

Draw x’ from proposal density q(xp, -);
Compute independently 7, ny(x’) and 7y n(Xn)-

Set
- X' with probab. an(Xn, x)
Xn+1 = § ~ .
Xn otherwise

with

mu (X)X, %) 3

an(Xp, x') = min< 1, ——
WX, X) { T (%) Qs X)

(Beaumont 2003, Andrieu, Roberts 2009 and Medina-Aguayo et al. 2015)
(Korattikara et al. 2014, Alquier et al. 2014, Bardenet et al. 2015, Pillai, Smith 2015)
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Abstract problem

Setting:

o (X))ieny» (Xi)ien, Markov chains with transition kernels P, P

« distribution of X, and X, denoted by p, and p,, assume py = Do

e Pisan approximation or perturbation of P

Problem:
“What is the difference of p, and p,?”

Quantitative bounds?

Daniel Rudolf Approximations of Markov chains March 2016 6/19



Total variation and V-norm

Assume 7 and 7 are distributions on G.

Total variation

|7 — 7|y, := 2sup |7(A) — 7(A)| = sup
ACG |f|<1

/f (dy) —w(dy))‘.

V-norm

|m =7y = sup

w(ay) - (0y)
for a measurable function V: G — [1, ).
Daniel Rudolf
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Ergodicity assumption

Unperturbed Markov chain (X));cy is geometrically ergodic:

P is geometrically ergodic
<= P is V-uniformly ergodic
< 3JCe€(0,00) Jp€][0,1) s.t.
IP"(x,-) = =lly < CV(x)e"
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Lyapunov assumption

V is a Lyapunov function of perturbed Markov chain ()~(,),€N:

L e (0,00) F5€[0,1) st

PV(x) = /G V(y)P(x,dy) < 5V(x) + L.
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Abstract result

Theorem (quantitative upper bound)

Define
Jrec) P, Jrec1 P,
mMENe v VTR v
and

K — max {/ V(x) Bo(dx), L} .
G 1-9
Then, for any r € (0, 1],

C'k
(1-or

1on = Palyy < 90 Y
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Notes and remarks

¢ We have

Mv < min{277V}7
PV(x)<V(X)+L = v <L+2.

¢ If ¥ and 7 are stationary distributions of P and P, then

r
I =l S8 g
(T 0)(1 o

(Essentially follows by letting n — o)
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Perturbation of Markov chains literature

o Ferré, Hervé, Ledoux, Regular Perturbation of V-geometrically ergodic
Markov chains, 2013.

e Kartashov, Strong Stable Markov Chains, 1996.

o Mitrophanov, Sensitivity and convergence of uniformly ergodic Markov
chains, 2005.

o Pillai, Smith, Ergodicity of Approximate MCMC Chains with Applications
to Large Data Sets, 2015.

¢ Rudolf, Schweizer, Perturbation theory for Markov chains via
Wasserstein distance, 2015.

o Stuart, Shardlow, A Perturbation theory for ergodic Markov chains and
application to numerical approximations, 2000.
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Application to MCWM

MCWM algorithm My, for large N should be close to MH algorithm M.

Question:
Hmn - mnvNHtV S ?

(mp N and my, distributions of My and M after n steps)

For the Theorem we need

e M is V-uniformly ergodic.
e V Lyapunov function of My, i.e. for some § € [0,1) and L € (0, o)

My V(x) < 6V(x) + L.

o Estimate of vy and/or vy.
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Standing assumption

M is V-uniformly ergodic and for some « € [0,1), R € (0, 0) holds

MV(x) < aV(x) + R.

Define 5
mu(X)
Ky =supE ,
e S EN P £
mu(X, TY) 2
Ko =supE | ———— — 1
2 xeG 7TU(X)

Recall 7, y(x) unbiased estimate of 7,(x) given by

N
TunN(X Z (x,TX) withiid. sample T¥ ..., TX~ 6y
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Consequence | (K; involved)
With arguments from Medina-Aguayo et al. 2015 follows

3 3 1), Le[R
N KelKia+3) { 5 €[0,1), L€ [R, ) st

(1-a) My V(x) < 5V(x)+ L
and

6K1/3
N > 4400K, = v < sup|/Mn(x

xeG
Corollary | (MCWM quantitative upper bound)

1/3
2K, %109 (218h) C(L+ 2)n
N1/3 (1-0)

Hmn B mn»NHtV <
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Consequence Il (K; not involved)

Additionally assume for proposal g that

/V q(x, y)dy < K3V(x).

With arguments from Medina-Aguayo et al. 2015 follows

6(1 + K3)K,y®
N>64K2 — ,}/VgL

N1/3
and
N o 216Ka(Ks +1)° 35 € [0,1), sit.
(1—a)? My V(x) < §V(x) + R.
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Consequence Il (K7 not involved)

Corollary Il (MCWM quantitative upper bound)

Additionally assume for proposal g that

l/‘V q(x,y)dy < K3V(x).

Then
6(1 + Ke)Ky°  Cn
NTE S (1-0)

‘},77n - ,77n7pJHtV f;
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Work in progress: Integration error

Approximate

ﬂﬂ:éﬂmﬂnw.

o (Xi)ieny ()~(,-),-€NO Markov chains with transition kernels P, P
o 7 stationary distribution of P

e Pisan approximation or perturbation of P

Question:
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Theorem (Integration error)

e Joe[0,1) st [IPx,:)—xll, < V(x)o".

e 36€[0,1) 3L € (0,00) sit. PV(x)<oV(x)+ L

e Define

()]
fly, = su ,
1Y)
Then
| [EELI Ky 1
B> f(X) —(f) < 5 —, fly+E — > f(X) == (f)|.
j=1 j=1
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