Rao-Blackwellisation for accelerating Metropolis-Hastings

CHRISTIAN P. ROBERT

Université Paris-Dauphine, Paris & University of Warwick, Coventry

with M. Banterle, G. Casella, R. Douc, C. Grazian, & A. Lee

Outline

1 Rao-Blackwellisation 101

2 Vanilla Rao–Blackwellisation

3 Delayed acceptance

- motivating example
- Proposed solution
- Validation of the method
- Optimizing DA

Delayed Acceptance

1 Rao-Blackwellisation 101

2 Vanilla Rao–Blackwellisation

3 Delayed acceptance

Accept-Reject

Given a density $f(\cdot)$ to simulate take $g(\cdot)$ density such that

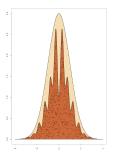
$$f(x) \leq Mg(x)$$

for $M \geq 1$ To simulate $X \sim f$, it is sufficient to generate

$$Y \sim g U | Y = y \sim \mathcal{U}(0, Mg(y))$$

until

0 < u < f(y)



Much ado about...

[Exercice 3.33, MCSM]

Raw outcome: id sequences $Y_1, Y_2, \ldots, Y_t \sim g$ and $U_1, U_2, \ldots, U_t \sim U(0, 1)$ Random number of accepted Y_i 's

$$\mathbb{P}(N=n) = \binom{n-1}{t-1} \left(\frac{1}{M}\right)^t \left(1-\frac{1}{M}\right)^{n-t},$$

Much ado about...

[Exercice 3.33, MCSM]

Raw outcome: id sequences $Y_1, Y_2, \ldots, Y_t \sim g$ and $U_1, U_2, \ldots, U_t \sim \mathcal{U}(0, 1)$ Joint density of $(N, \mathbf{Y}, \mathbf{U})$

$$\begin{split} \mathbb{P}(N = n, Y_1 \leq y_1, \dots, Y_n \leq y_n, U_1 \leq u_1, \dots, U_n \leq u_n) \\ = \int_{-\infty}^{y_n} g(t_n)(u_n \wedge w_n) dt_n \int_{-\infty}^{y_1} \dots \int_{-\infty}^{y_{n-1}} g(t_1) \dots g(t_{n-1}) \\ & \times \sum_{(i_1, \dots, i_{t-1})} \prod_{j=1}^{t-1} (w_{i_j} \wedge u_{i_j}) \prod_{j=t}^{n-1} (u_{i_j} - w_{i_j})^+ dt_1 \dots dt_{n-1}, \end{split}$$

where $w_i = f(y_i)/Mg(y_i)$ and sum over all subsets of $\{1, \ldots, n-1\}$ of size t-1

Much ado about...

[Exercice 3.33, MCSM]

Raw outcome: id sequences $Y_1, Y_2, \ldots, Y_t \sim g$ and $U_1, U_2, \ldots, U_t \sim U(0, 1)$ Marginal joint density of $(Y_i, U_i)|N = n, i < n$

$$\begin{split} \mathbb{P}(N = n, Y_1 \leq y, U_1 \leq u_1) \\ &= \binom{n-1}{t-1} \left(\frac{1}{M}\right)^{t-1} \left(1 - \frac{1}{M}\right)^{n-t-1} \\ &\times \left[\frac{t-1}{n-1}(w_1 \wedge u_1) \left(1 - \frac{1}{M}\right) + \frac{n-t}{n-1}(u_1 - w_1)^+ \left(\frac{1}{M}\right)\right] \int_{-\infty}^{y} g(t_1) dt_1 \end{split}$$

and marginal distribution of Y_i

$$m(y) = t - \frac{1}{n-1}f(y) + \frac{n-t}{n-1}\frac{g(y) - \rho f(y)}{1-\rho}$$
$$\mathbb{P}(U_1 \le w(y)|Y_1 = y, N = n) = \frac{g(y)w(y)Mt - \frac{1}{n-1}}{m(y)}$$

Much ado about noise

Accept-reject sample (X_1, \ldots, X_m) associated with (U_1, \ldots, U_N) and (Y_1, \ldots, Y_N) N is stopping time for acceptance of m variables among Y_j 's Rewrite estimator of $\mathbb{E}[h]$ as

$$\frac{1}{m} \sum_{i=1}^{m} h(X_i) = \frac{1}{m} \sum_{j=1}^{N} h(Y_j) \mathbb{I}_{U_j \leq w_j},$$

with $w_j = f(Y_j)/Mg(Y_j)$

Much ado about noise

Rao-Blackwellisation: smaller variance produced by integrating out the U_i 's,

$$\frac{1}{m} \sum_{j=1}^{N} \mathbb{E}[\mathbb{I}_{U_j \le w_j} | N, Y_1, \dots, Y_N] h(Y_j) = \frac{1}{m} \sum_{i=1}^{N} \rho_i h(Y_i),$$

where (i < n)

$$\begin{split} \rho_i &= \mathbb{P}(U_i \leq w_i | N = n, Y_1, \dots, Y_n) \\ &= w_i \frac{\sum_{(i_1, \dots, i_{m-2})} \prod_{j=1}^{m-2} w_{i_j} \prod_{j=m-1}^{n-2} (1 - w_{i_j})}{\sum_{(i_1, \dots, i_{m-1})} \prod_{j=1}^{m-1} w_{i_j} \prod_{j=m}^{n-1} (1 - w_{i_j})}, \end{split}$$

and $\rho_n = 1$.

Numerator sum over all subsets of $\{1, \ldots, i - 1, i + 1, \ldots, n - 1\}$ of size m - 2, and denominator sum over all subsets of size m - 1[Casella and Robert (1996)] Sample produced by Metropolis-Hastings algorithm

$$x^{(1)},\ldots,x^{(T)}$$

based on two samples,

 y_1, \ldots, y_T and u_1, \ldots, u_T

extension to Metropolis-Hastings case

Sample produced by Metropolis-Hastings algorithm

 $x^{(1)}, \ldots, x^{(T)}$

based on two samples,

$$y_1, \ldots, y_T$$
 and u_1, \ldots, u_T

Ergodic mean rewritten as

$$\delta^{MH} = \frac{1}{T} \sum_{t=1}^{T} h(x^{(t)}) = \frac{1}{T} \sum_{t=1}^{T} h(y_t) \sum_{i=t}^{T} \mathbb{I}_{x^{(i)}=y_t}$$

extension to Metropolis-Hastings case

Sample produced by Metropolis-Hastings algorithm

 $x^{(1)}, \ldots, x^{(T)}$

based on two samples,

$$y_1, \ldots, y_T$$
 and u_1, \ldots, u_T

Conditional expectation

$$\delta^{RB} = \frac{1}{T} \sum_{t=1}^{T} h(y_t) \mathbb{E} \left[\sum_{i=t}^{T} \mathbb{I} X^{(i)} = y_t \middle| y_1, \dots, y_T \right]$$
$$= \frac{1}{T} \sum_{t=1}^{T} h(y_t) \left(\sum_{i=t}^{T} \mathbb{P} (X^{(i)} = y_t \middle| y_1, \dots, y_T) \right)$$

with smaller variance

weight derivation

Take

$$\begin{split} \rho_{ij} &= \frac{f(y_j)/q(y_j|y_i)}{f(y_i)/q(y_i|y_j)} \wedge 1 \qquad (j > i), \\ \overline{\rho}_{ij} &= \rho_{ij}q(y_{j+1}|y_j), \quad \underline{\rho}_{ij} = (1 - \rho_{ij})q(y_{j+1}|y_i) \qquad (i < j < T), \\ \zeta_{jj} &= 1, \quad \zeta_{jt} = \prod_{l=j+1}^{t} \underline{\rho}_{jl} \qquad (i < j < T), \\ \tau_0 &= 1, \quad \tau_j = \sum_{t=0}^{j-1} \tau_t \zeta_{t(j-1)} \overline{\rho}_{tj}, \quad \tau_T = \sum_{t=0}^{T-1} \tau_t \zeta_{t(T-1)} \rho_{tT} \qquad (i < T), \\ \omega_T^i &= 1, \quad \omega_i^j = \overline{\rho}_{ji} \omega_{i+1}^i + \underline{\rho}_{ji} \omega_{i+1}^j \qquad (0 \le j < i < T). \end{split}$$

weight derivation

Theorem

The estimator δ^{RB} satisfies

$$\delta^{RB} = \frac{\sum_{i=0}^{T} \varphi_i h(y_i)}{\sum_{i=0}^{T-1} \tau_i \zeta_{i(T-1)}},$$

with (i < T)

$$\varphi_i = \tau_i \left[\sum_{j=i}^{T-1} \zeta_{ij} \omega_{j+1}^i + \zeta_{i(T-1)} (1 - \rho_{iT}) \right]$$

and $\varphi_T = \tau_T$.

Delayed Acceptance

Rao-Blackwellisation 101

2 Vanilla Rao–Blackwellisation

3 Delayed acceptance

Some properties of the Metropolis-Hastings algorithm

Alternative representation of Metropolis–Hastings estimator δ as

$$\delta = \frac{1}{n} \sum_{t=1}^{n} h(x^{(t)}) = \frac{1}{n} \sum_{i=1}^{M_n} \mathfrak{n}_i h(\mathfrak{z}_i),$$

where

- \mathfrak{z}_i 's are the accepted y_j 's,
- M_n is the number of accepted y_j 's till time n,
- \mathfrak{n}_i is the number of times \mathfrak{z}_i appears in the sequence $(x^{(t)})_t$.

Define

$$\widetilde{q}(\cdot|\mathfrak{z}_i) = rac{lpha(\mathfrak{z}_i,\cdot) \ q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)} \leq \ rac{q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)}$$

where $p(\mathfrak{z}_i) = \int \alpha(\mathfrak{z}_i, y) q(y|\mathfrak{z}_i) dy$ To simulate from $\tilde{q}(\cdot|\mathfrak{z}_i)$

- 1 Propose a candidate $y \sim q(\cdot|\mathfrak{z}_i)$
- 2 Accept with probability

$$\tilde{q}(y|\mathfrak{z}_i) \left/ \left(\frac{q(y|\mathfrak{z}_i)}{p(\mathfrak{z}_i)} \right) = \alpha(\mathfrak{z}_i, y)$$

Otherwise, reject it and starts again.

▶ this is the transition of the HM algorithm

Define

$$ilde{q}(\cdot|\mathfrak{z}_i) = rac{lpha(\mathfrak{z}_i,\cdot) q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)} \leq rac{q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)}$$

where $p(\mathfrak{z}_i) = \int \alpha(\mathfrak{z}_i, y) q(y|\mathfrak{z}_i) dy$ The transition kernel \tilde{q} admits $\tilde{\pi}$ as a stationary distribution:

$$\tilde{\pi}(x)\tilde{q}(y|x) = \underbrace{\frac{\pi(x)p(x)}{\int \pi(u)p(u)du}}_{\tilde{\pi}(x)} \underbrace{\frac{\alpha(x,y)q(y|x)}{p(x)}}_{\tilde{q}(y|x)}$$

Define $\tilde{q}(\cdot|\mathfrak{z}_i) = \frac{\alpha(\mathfrak{z}_i, \cdot) q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)} \leq \frac{q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)}$ where $p(\mathfrak{z}_i) = \int \alpha(\mathfrak{z}_i, y) q(y|\mathfrak{z}_i) dy$ The transition kernel \tilde{q} admits $\tilde{\pi}$ as a stationary distribution:

$$\tilde{\pi}(x)\tilde{q}(y|x) = \frac{\pi(x)\alpha(x,y)q(y|x)}{\int \pi(u)p(u)du}$$

Define $\tilde{q}(\cdot|\mathfrak{z}_i) = \frac{\alpha(\mathfrak{z}_i, \cdot) q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)} \leq \frac{q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)}$ where $p(\mathfrak{z}_i) = \int \alpha(\mathfrak{z}_i, y) q(y|\mathfrak{z}_i) dy$ The transition kernel \tilde{q} admits $\tilde{\pi}$ as a stationary distribution:

$$\tilde{\pi}(x)\tilde{q}(y|x) = \frac{\pi(y)\alpha(y,x)q(x|y)}{\int \pi(u)p(u)du}$$

Define

$$\tilde{q}(\cdot|\mathfrak{z}_i) = \frac{\alpha(\mathfrak{z}_i, \cdot) q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)} \leq \frac{q(\cdot|\mathfrak{z}_i)}{p(\mathfrak{z}_i)}$$

where $p(\mathfrak{z}_i) = \int \alpha(\mathfrak{z}_i, y) q(y|\mathfrak{z}_i) dy$ The transition kernel \tilde{q} admits $\tilde{\pi}$ as a stationary distribution:

 $\tilde{\pi}(x)\tilde{q}(y|x) = \tilde{\pi}(y)\tilde{q}(x|y),$

Lemma (Douc & X., AoS, 2011)

The sequence $(\mathfrak{z}_i, \mathfrak{n}_i)$ satisfies

- **1** $(\mathfrak{z}_i, \mathfrak{n}_i)_i$ is a Markov chain;
- **2** \mathfrak{z}_{i+1} and \mathfrak{n}_i are independent given \mathfrak{z}_i ;
- *s* a geometric random variable with probability parameter

$$p(\mathfrak{z}_i) := \int lpha(\mathfrak{z}_i, y) \, q(y|\mathfrak{z}_i) \, dy$$
;

(3i)i is a Markov chain with transition kernel
 Q(3, dy) = q(y|3)dy and stationary distribution π such that

 $\widetilde{q}(\cdot|\mathfrak{z}) \propto lpha(\mathfrak{z},\cdot) \, q(\cdot|\mathfrak{z}) \quad and \quad \widetilde{\pi}(\cdot) \propto \pi(\cdot) p(\cdot) \,.$

Lemma (Douc & X., AoS, 2011)

The sequence $(\mathfrak{z}_i, \mathfrak{n}_i)$ satisfies

- **1** $(\mathfrak{z}_i,\mathfrak{n}_i)_i$ is a Markov chain;
- **2** \mathfrak{z}_{i+1} and \mathfrak{n}_i are independent given \mathfrak{z}_i ;
- *s* a geometric random variable with probability parameter

$$p(\mathfrak{z}_i) := \int lpha(\mathfrak{z}_i, y) \, q(y|\mathfrak{z}_i) \, dy;$$

(3i)i is a Markov chain with transition kernel
 Q(3, dy) = q(y|3)dy and stationary distribution π such that

 $\widetilde{q}(\cdot|\mathfrak{z}) \propto lpha(\mathfrak{z},\cdot) \, q(\cdot|\mathfrak{z}) \quad \text{and} \quad \widetilde{\pi}(\cdot) \propto \pi(\cdot) p(\cdot) \,.$

Lemma (Douc & X., AoS, 2011)

The sequence $(\mathfrak{z}_i, \mathfrak{n}_i)$ satisfies

- **1** $(\mathfrak{z}_i,\mathfrak{n}_i)_i$ is a Markov chain;
- **2** \mathfrak{z}_{i+1} and \mathfrak{n}_i are independent given \mathfrak{z}_i ;
- *s* a geometric random variable with probability parameter

$$p(\mathfrak{z}_i) := \int \alpha(\mathfrak{z}_i, y) \, q(y|\mathfrak{z}_i) \, dy \, ; \tag{1}$$

(3i)i is a Markov chain with transition kernel
 Q(3, dy) = q(y|3)dy and stationary distribution π such that

 $\widetilde{q}(\cdot|\mathfrak{z}) \propto lpha(\mathfrak{z},\cdot) \, q(\cdot|\mathfrak{z}) \quad \text{and} \quad \widetilde{\pi}(\cdot) \propto \pi(\cdot) p(\cdot) \, .$

Lemma (Douc & X., AoS, 2011)

The sequence $(\mathfrak{z}_i, \mathfrak{n}_i)$ satisfies

- **1** $(\mathfrak{z}_i,\mathfrak{n}_i)_i$ is a Markov chain;
- **2** \mathfrak{z}_{i+1} and \mathfrak{n}_i are independent given \mathfrak{z}_i ;
- *s* a geometric random variable with probability parameter

$$p(\mathfrak{z}_i) := \int \alpha(\mathfrak{z}_i, y) \, q(y|\mathfrak{z}_i) \, dy \, ; \tag{1}$$

4 $(\mathfrak{z}_i)_i$ is a Markov chain with transition kernel $\tilde{Q}(\mathfrak{z}, dy) = \tilde{q}(y|\mathfrak{z})dy$ and stationary distribution $\tilde{\pi}$ such that $\tilde{q}(\cdot|\mathfrak{z}) \propto \alpha(\mathfrak{z}, \cdot) q(\cdot|\mathfrak{z})$ and $\tilde{\pi}(\cdot) \propto \pi(\cdot)p(\cdot)$.

1 A natural idea:

$$\delta^* = \frac{1}{n} \sum_{i=1}^{M_n} \frac{h(\mathfrak{z}_i)}{p(\mathfrak{z}_i)},$$

1 A natural idea:

$$\delta^* \simeq \frac{\sum_{i=1}^{M_n} \frac{h(\mathfrak{z}_i)}{p(\mathfrak{z}_i)}}{\sum_{i=1}^{M_n} \frac{1}{p(\mathfrak{z}_i)}} = \frac{\sum_{i=1}^{M_n} \frac{\pi(\mathfrak{z}_i)}{\tilde{\pi}(\mathfrak{z}_i)} h(\mathfrak{z}_i)}{\sum_{i=1}^{M_n} \frac{\pi(\mathfrak{z}_i)}{\tilde{\pi}(\mathfrak{z}_i)}}.$$

1 A natural idea:

$$\delta^* \simeq \frac{\sum_{i=1}^{M_n} \frac{h(\mathfrak{z}_i)}{p(\mathfrak{z}_i)}}{\sum_{i=1}^{M_n} \frac{1}{p(\mathfrak{z}_i)}} = \frac{\sum_{i=1}^{M_n} \frac{\pi(\mathfrak{z}_i)}{\tilde{\pi}(\mathfrak{z}_i)} h(\mathfrak{z}_i)}{\sum_{i=1}^{M_n} \frac{\pi(\mathfrak{z}_i)}{\tilde{\pi}(\mathfrak{z}_i)}}.$$

2 But p not available in closed form.

A natural idea:

$$\delta^* \simeq \frac{\sum_{i=1}^{M_n} \frac{h(\mathfrak{z}_i)}{p(\mathfrak{z}_i)}}{\sum_{i=1}^{M_n} \frac{1}{p(\mathfrak{z}_i)}} = \frac{\sum_{i=1}^{M_n} \frac{\pi(\mathfrak{z}_i)}{\tilde{\pi}(\mathfrak{z}_i)} h(\mathfrak{z}_i)}{\sum_{i=1}^{M_n} \frac{\pi(\mathfrak{z}_i)}{\tilde{\pi}(\mathfrak{z}_i)}}.$$

- **2** But p not available in closed form.
- S The geometric n_i is the replacement, an obvious solution that is used in the original Metropolis–Hastings estimate since E[n_i] = 1/p(3_i).

The Bernoulli factory

The crude estimate of $1/p(\mathfrak{z}_i)$,

$$\mathfrak{n}_i = 1 + \sum_{j=1}^\infty \prod_{\ell \leq j} \mathbb{I} \left\{ u_\ell \geq lpha(\mathfrak{z}_i, y_\ell)
ight\} \, ,$$

can be improved:

Lemma (Douc & X., AoS, 2011) If $(y_j)_j$ is an iid sequence with distribution $q(y|_{\mathfrak{z}_i})$, the quantity

$$\hat{\xi}_i = 1 + \sum_{j=1}^{\infty} \prod_{\ell \le j} \{1 - \alpha(\mathfrak{z}_i, y_\ell)\}$$

is an unbiased estimator of $1/p(\mathfrak{z}_i)$ which variance, conditional on \mathfrak{z}_i , is lower than the conditional variance of \mathfrak{n}_i , $\{1 - p(\mathfrak{z}_i)\}/p^2(\mathfrak{z}_i)$.

Rao-Blackwellised, for sure?

$$\hat{\xi}_i = 1 + \sum_{j=1}^{\infty} \prod_{\ell \le j} \{1 - \alpha(\mathfrak{z}_i, \mathfrak{y}_\ell)\}$$

1 Infinite sum but finite with at least positive probability:

$$\alpha(x^{(t)}, y_t) = \min\left\{1, \frac{\pi(y_t)}{\pi(x^{(t)})} \frac{q(x^{(t)}|y_t)}{q(y_t|x^{(t)})}\right\}$$

For example: take a symmetric random walk as a proposal.
What if we wish to be sure that the sum is finite?
Finite horizon k version:

$$\hat{\xi}_i^k = 1 + \sum_{j=1}^{\infty} \prod_{1 \le \ell \le k \land j} \{1 - \alpha(\mathfrak{z}_i, y_j)\} \prod_{k+1 \le \ell \le j} \mathbb{I}\{u_\ell \ge \alpha(\mathfrak{z}_i, y_\ell)\}$$

Rao-Blackwellised, for sure?

$$\hat{\xi}_i = 1 + \sum_{j=1}^{\infty} \prod_{\ell \le j} \{1 - \alpha(\mathfrak{z}_i, \mathfrak{y}_\ell)\}$$

1 Infinite sum but finite with at least positive probability:

$$\alpha(x^{(t)}, y_t) = \min\left\{1, \frac{\pi(y_t)}{\pi(x^{(t)})} \frac{q(x^{(t)}|y_t)}{q(y_t|x^{(t)})}\right\}$$

For example: take a symmetric random walk as a proposal.What if we wish to be sure that the sum is finite?Finite horizon k version:

$$\hat{\xi}_i^k = 1 + \sum_{j=1}^{\infty} \prod_{1 \le \ell \le k \land j} \left\{ 1 - \alpha(\mathfrak{z}_i, y_j) \right\} \prod_{k+1 \le \ell \le j} \mathbb{I} \left\{ u_\ell \ge \alpha(\mathfrak{z}_i, y_\ell) \right\}$$

Variance improvement

Proposition (Douc & X., AoS, 2011)

If $(y_j)_j$ is an iid sequence with distribution $q(y|_{\mathfrak{Z}_i})$ and $(u_j)_j$ is an iid uniform sequence, for any $k \ge 0$, the quantity

$$\hat{\xi}_i^k = 1 + \sum_{j=1}^{\infty} \prod_{1 \le \ell \le k \land j} \left\{ 1 - \alpha(\mathfrak{z}_i, y_j) \right\} \prod_{k+1 \le \ell \le j} \mathbb{I} \left\{ u_\ell \ge \alpha(\mathfrak{z}_i, y_\ell) \right\}$$

is an unbiased estimator of $1/p(\mathfrak{z}_i)$ with an almost sure finite number of terms.

Variance improvement

Proposition (Douc & X., AoS, 2011)

If $(y_j)_j$ is an iid sequence with distribution $q(y|_{\mathfrak{Z}_i})$ and $(u_j)_j$ is an iid uniform sequence, for any $k \ge 0$, the quantity

$$\hat{\xi}_i^k = 1 + \sum_{j=1}^{\infty} \prod_{1 \le \ell \le k \land j} \left\{ 1 - \alpha(\mathfrak{z}_i, y_j) \right\} \prod_{k+1 \le \ell \le j} \mathbb{I} \left\{ u_\ell \ge \alpha(\mathfrak{z}_i, y_\ell) \right\}$$

is an unbiased estimator of $1/p(\mathfrak{z}_i)$ with an almost sure finite number of terms. Moreover, for $k \ge 1$,

$$\mathbb{V}\hat{\xi}_{i}^{k}\mathfrak{z}_{i} = \frac{1-p(\mathfrak{z}_{i})}{p^{2}(\mathfrak{z}_{i})} - \frac{1-(1-2p(\mathfrak{z}_{i})+r(\mathfrak{z}_{i}))^{k}}{2p(\mathfrak{z}_{i})-r(\mathfrak{z}_{i})} \left(\frac{2-p(\mathfrak{z}_{i})}{p^{2}(\mathfrak{z}_{i})}\right) \left(p(\mathfrak{z}_{i})-r(\mathfrak{z}_{i})\right),$$

where $p(\mathfrak{z}_i) := \int \alpha(\mathfrak{z}_i, y) q(y|\mathfrak{z}_i) dy$. and $r(\mathfrak{z}_i) := \int \alpha^2(\mathfrak{z}_i, y) q(y|\mathfrak{z}_i) dy$.

Variance improvement

Proposition (Douc & X., AoS, 2011)

If $(y_j)_j$ is an iid sequence with distribution $q(y|_{\mathfrak{Z}_i})$ and $(u_j)_j$ is an iid uniform sequence, for any $k \ge 0$, the quantity

$$\hat{\xi}_i^k = 1 + \sum_{j=1}^{\infty} \prod_{1 \le \ell \le k \land j} \left\{ 1 - \alpha(\mathfrak{z}_i, y_j) \right\} \prod_{k+1 \le \ell \le j} \mathbb{I} \left\{ u_\ell \ge \alpha(\mathfrak{z}_i, y_\ell) \right\}$$

is an unbiased estimator of $1/p(\mathfrak{z}_i)$ with an almost sure finite number of terms. Therefore, we have

$$\mathbb{V}\hat{\xi}_{i}\mathfrak{z}_{i} \leq \mathbb{V}\hat{\xi}_{i}^{k}\mathfrak{z}_{i} \leq \mathbb{V}\hat{\xi}_{i}^{0}\mathfrak{z}_{i} = \mathbb{V}\mathfrak{n}_{i}\mathfrak{z}_{i}.$$

Delayed acceptance

Rao-Blackwellisation 101

- 2 Vanilla Rao–Blackwellisation
- 3 Delayed acceptance

Standard mixture of distributions model

$$\sum_{i=1}^{k} w_i f(x|\theta_i), \quad \text{with} \quad \sum_{i=1}^{k} w_i = 1.$$
 (1)

[Titterington et al., 1985; Frühwirth-Schnatter (2006)]

Jeffreys' prior for mixture not available due to computational reasons : it has not been tested so far

[Jeffreys, 1939]

Warning: Jeffreys' prior improper in some settings [Grazian & Robert, 2015] Grazian & Robert (2015) consider genuine Jeffreys' prior for complete set of parameters in (1), deduced from Fisher's information matrix

Computation of prior density costly, relying on many integrals like

$$\int_{\mathcal{X}} \frac{\partial^2 \log \left[\sum_{i=1}^k w_i f(x|\theta_i) \right]}{\partial \theta_h \partial \theta_j} \left[\sum_{i=1}^k w_i f(x|\theta_i) \right] \mathrm{d}x$$

Integrals with no analytical expression, hence involving numerical or Monte Carlo (costly) integration

When building Metropolis-Hastings proposal over (w_i, θ_i) 's, prior ratio more expensive than likelihood and proposal ratios Suggestion: split the acceptance rule

$$lpha(x,y) := 1 \wedge r(x,y), \qquad r(x,y) := rac{\pi(y|\mathcal{D})q(y,x)}{\pi(x|\mathcal{D})q(x,y)}$$

into

$$ilde{lpha}(x,y) := \left(1 \wedge rac{f(\mathcal{D}|y)q(y,x)}{f(\mathcal{D}|x)q(x,y)}
ight) imes \left(1 \wedge rac{\pi(y)}{\pi(x)}
ight)$$

The "Big Data" plague

Simulation from posterior distribution with large sample size n

- Computing time at least of order O(n)
- solutions using likelihood decomposition

$$\prod_{i=1}^n \ell(\theta|x_i)$$

and handling subsets on different processors (CPU), graphical units (GPU), or computers

[Korattikara et al. (2013), Scott et al. (2013)]

 no consensus on method of choice, with instabilities from removing most prior input and uncalibrated approximations [Neiswanger et al. (2013), Wang and Dunson (2013)]

Proposed solution

"There is no problem an absence of decision cannot solve." Anonymous

Given $\alpha(x, y) := 1 \wedge r(x, y)$, factorise

$$r(x,y) = \prod_{k=1}^{d} \rho_k(x,y)$$

under constraint $\rho_k(x, y) = \rho_k(y, x)^{-1}$ Delayed Acceptance Markov kernel given by

$$ilde{P}(x,A) := \int_{A} q(x,y) \tilde{lpha}(x,y) \mathrm{d}y + \left(1 - \int_{X} q(x,y) \tilde{lpha}(x,y) \mathrm{d}y\right) \mathbf{1}_{A}(x)$$

where

$$\tilde{\alpha}(x,y) := \prod_{k=1}^d \{1 \land \rho_k(x,y)\}.$$

Proposed solution

"There is no problem an absence of decision cannot solve." Anonymous

Algorithm 1 Delayed Acceptance

- To sample from $\tilde{P}(x, \cdot)$:
 - **1** Sample $y \sim Q(x, \cdot)$.
 - **2** For k = 1, ..., d:
 - with probability $1 \wedge \rho_k(x, y)$ continue
 - otherwise stop and output x

3 Output y

Arrange terms in product so that most computationally intensive ones calculated 'at the end' hence least often

Proposed solution

"There is no problem an absence of decision cannot solve." Anonymous

Algorithm 1 Delayed Acceptance

To sample from $\tilde{P}(x, \cdot)$:

1 Sample
$$y \sim Q(x, \cdot)$$
.

2 For
$$k = 1, ..., d$$
:

- with probability $1 \wedge \rho_k(x, y)$ continue
- otherwise stop and output x

Output y

Generalization of Fox and Nicholls (1997) and Christen and Fox (2005), where testing for acceptance with approximation before computing exact likelihood first suggested More recent occurences in literature [Golightly et al. (2014), Shestopaloff and Neal (2013)]

- Delayed Acceptance *efficiently* reduces computing cost only when approximation $\tilde{\pi}$ is "good enough" or "flat enough"
- Probability of acceptance always smaller than in the original Metropolis-Hastings scheme
- Decomposition of original data in likelihood bits may however lead to deterioration of algorithmic properties without impacting computational efficiency...
- ...e.g., case of a term explosive in x = 0 and computed by itself: leaving x = 0 near impossible

Potential drawbacks

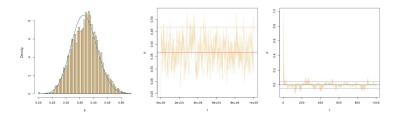


Figure : (left) Fit of delayed Metropolis–Hastings algorithm on a Beta-binomial posterior $p|x \sim Be(x + a, n + b - x)$ when N = 100, x = 32, a = 7.5 and b = .5. Binomial $\mathcal{B}(N, p)$ likelihood replaced with product of 100 Bernoulli terms. Histogram based on 10^5 iterations, with overall acceptance rate of 9%; (centre) raw sequence of p's in Markov chain; (right) autocorrelogram of the above sequence.

The "Big Data" plague

Delayed Acceptance intended for likelihoods or priors, but not a clear solution for "Big Data" problems

- 1 all product terms must be computed
- all terms previously computed either stored for future comparison or recomputed
- **3** sequential approach limits parallel gains...
- ...unless prefetching scheme added to delays
 [Angelino et al. (2014), Strid (2010)]

Validation of the method

Lemma (1)

For any Markov chain with transition kernel Π of the form

$$\Pi(x,A) = \int_{A} q(x,y) \mathbf{a}(x,y) \mathrm{d}y + \left(1 - \int_{X} q(x,y) \mathbf{a}(x,y) \mathrm{d}y\right) \mathbf{1}_{A}(x),$$

and satisfying detailed balance, the function $a(\cdot)$ satisfies (for π -a.e. x, y)

$$\frac{a(x,y)}{a(y,x)} = r(x,y).$$

Validation of the method

Lemma (2)

 $(\tilde{X}_n)_{n\geq 1}$, the Markov chain associated with \tilde{P} , is a π -reversible Markov chain.

Proof.

From Lemma 1 we just need to check that

$$\begin{split} \frac{\widetilde{\alpha}(x,y)}{\widetilde{\alpha}(y,x)} &= \prod_{k=1}^d \frac{1 \wedge \rho_k(x,y)}{1 \wedge \rho_k(y,x)} \\ &= \prod_{k=1}^d \rho_k(x,y) = r(x,y), \end{split}$$

since $ho_k(y,x) =
ho_k(x,y)^{-1}$ and $(1 \wedge a)/(1 \wedge a^{-1}) = a$

The acceptance probability ordering

$$\tilde{\alpha}(x,y) = \prod_{k=1}^{d} \{1 \land \rho_k(x,y)\} \le 1 \land \prod_{k=1}^{d} \rho_k(x,y) = 1 \land r(x,y) = \alpha(x,y),$$

follows from $(1 \wedge a)(1 \wedge b) \leq (1 \wedge ab)$ for $a, b \in \mathbb{R}_+$.

Remark

By construction of \tilde{P} ,

$$\operatorname{var}(f, P) \leq \operatorname{var}(f, \tilde{P})$$

for any $f \in L^2(X, \pi)$, using Peskun ordering (Peskun, 1973, Tierney, 1998), since $\tilde{\alpha}(x, y) \leq \alpha(x, y)$ for any $(x, y) \in X^2$.

Condition (1)

Defining
$$A := \{(x, y) \in X^2 : r(x, y) \ge 1\}$$
, there exists c such that $\inf_{(x,y)\in A} \min_{k\in\{1,\dots,d\}} \rho_k(x, y) \ge c$.

Ensures that when

$$\alpha(x,y)=1$$

then acceptance probability $\tilde{\alpha}(x, y)$ uniformly lower-bounded by positive constant.

Reversibility implies $\tilde{\alpha}(x, y)$ uniformly lower-bounded by a constant multiple of $\alpha(x, y)$ for all $x, y \in X$.

Condition (1)

Defining $A := \{(x, y) \in X^2 : r(x, y) \ge 1\}$, there exists c such that $\inf_{(x,y)\in A} \min_{k \in \{1,\dots,d\}} \rho_k(x, y) \ge c$.

Proposition (1)

Under Condition (1), Lemma 34 in Andrieu et al. (2013) implies

$$\operatorname{Gap}(\tilde{P}) \ge \varrho \operatorname{Gap}(P)$$
 and
 $\operatorname{var}(f, \tilde{P}) \le (\varrho^{-1} - 1)\operatorname{var}_{\pi}(f) + \varrho^{-1}\operatorname{var}(f, P)$
with $f \in L^2_0(\mathsf{E}, \pi), \ \varrho = c^{d-1}$.

Proposition (1)

Under Condition (1), Lemma 34 in Andrieu et al. (2013) implies

 $\operatorname{Gap}(\tilde{P}) \ge \varrho \operatorname{Gap}(P)$ and

$$\operatorname{var}(f, \tilde{P}) \leq (\varrho^{-1} - 1)\operatorname{var}_{\pi}(f) + \varrho^{-1}\operatorname{var}(f, P)$$

with $f \in L^{2}_{0}(\mathsf{E}, \pi), \ \varrho = c^{d-1}$.

Hence if P has right spectral gap, then so does \tilde{P} . Plus, quantitative bounds on asymptotic variance of MCMC estimates using $(\tilde{X}_n)_{n\geq 1}$ in relation to those using $(X_n)_{n\geq 1}$ available Easiest use of above: modify any candidate factorisation Given factorisation of r

$$r(x,y) = \prod_{k=1}^{d} \tilde{\rho}_k(x,y),$$

satisfying the balance condition, define a sequence of functions ρ_k such that both $r(x, y) = \prod_{k=1}^{d} \rho_k(x, y)$ and Condition 1 holds.

Take
$$c \in (0, 1]$$
, define $b = c^{\frac{1}{d-1}}$ and set
 $\tilde{\rho}_k(x, y) := \min\left\{\frac{1}{b}, \max\left\{b, \rho_k(x, y)\right\}\right\}, \quad k \in \{1, \dots, d-1\},$

and

$$\tilde{\rho}_d(x,y) := \frac{r(x,y)}{\prod_{k=1}^{d-1} \tilde{\rho}_k(x,y)}.$$

Then:

Proposition (2)

Under this scheme, previous proposition holds with

$$\varrho = c^2 = b^{2(d-1)}$$

Proof of Proposition 1

• optimising decomposition For any $f \in L^2(\mathsf{E},\mu)$ define Dirichlet form associated with a μ -reversible Markov kernel $\Pi : \mathsf{E} \times \mathcal{B}(\mathsf{E})$ as

$$\mathcal{E}_{\Pi}(f) := rac{1}{2} \int \mu(\mathrm{d}x) \Pi(x,\mathrm{d}y) \left[f(x) - f(y)\right]^2.$$

The (right) spectral gap of a generic μ -reversible Markov kernel has the following variational representation

$$\operatorname{Gap}(\Pi) := \inf_{f \in L^2_0(\mathsf{E},\mu)} \frac{\mathcal{E}_{\Pi}(f)}{\langle f, f \rangle_{\mu}}$$

Proof of Proposition 1

• optimising decomposition

Lemma (Andrieu et al., 2013, Lemma 34)

Let Π_1 and Π_2 be μ -reversible Markov transition kernels of μ -irreducible and aperiodic Markov chains, and assume that there exists $\varrho > 0$ such that for any $f \in L^2_0(\mathsf{E}, \mu)$

$$\mathcal{E}_{\Pi_2}(f) \ge \varrho \mathcal{E}_{\Pi_1}(f) \quad ,$$

then

$$\operatorname{Gap}(\Pi_2) \ge \varrho \operatorname{Gap}(\Pi_1)$$

and

$$\operatorname{var}(f, \Pi_2) \leq (\varrho^{-1} - 1) \operatorname{var}_{\mu}(f) + \varrho^{-1} \operatorname{var}(f, \Pi_1) \quad f \in L^2_0(\mathsf{E}, \mu).$$

Proposal Optimisation

Explorative performances of random-walk MCMC strongly dependent on proposal distribution Finding optimal scale parameter leads to efficient 'jumps' in state space and smaller...

- 1 expected square jump distance (ESJD)
- **2** overall acceptance rate (α)
- **3** asymptotic variance of ergodic average var(f, K)

[Roberts et al. (1997), Sherlock and Roberts (2009)]

Provides practitioners with 'auto-tune' version of resulting random–walk MCMC algorithm

Quest for optimisation focussing on two main cases:

1 $d \rightarrow \infty$: Roberts et al. (1997) give conditions under which each marginal chain converges toward a Langevin diffusion Maximising speed of that diffusion implies minimisation of the ACT and also τ free from the functional

Remember $\operatorname{var}(f, \mathcal{K}) = au_f imes \operatorname{var}_{\pi}(f)$ where

$$\tau_f = 1 + 2\sum_{i=1}^{\infty} \mathbb{C}or(f(X_0), f(X_i))$$

Proposal Optimisation

Quest for optimisation focussing on two main cases:

2 finite *d*: Sherlock and Roberts (2009) consider unimodal elliptically symmetric targets and show proxy for ACT is Expected Square Jumping Distance (ESJD), defined as

$$\mathbb{E}\left[\|X'-X\|_{\beta}^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{d}\beta_{i}^{-2}(X'_{i}-X)^{2}\right]$$

As $d \to \infty$, ESJD converges to the speed of the diffusion process described in Roberts et al. (1997) [close asymptotia: $d \gtrsim 5$]

Proposal Optimisation

"For a moment, nothing happened. Then, after a second or so, nothing continued to happen." — D. Adams, THGG

When considering efficiency for Delayed Acceptance, focus on execution time as well

Eff := ESJD/cost per iteration

similar to Sherlock et al. (2013) for pseudo-Marginal MCMC

Set of assumptions:

(H1) Assume [for simplicity's sake] that Delayed Acceptance operates on two factors only, i.e.,

$$r(x,y) =
ho_1(x,y) imes
ho_2(x,y),$$

 $ilde{lpha}(x,y) = \prod_{i=1}^2 (1 \wedge
ho_i(x,y))$

Restriction also considers *ideal* setting where a computationally cheap approximation $\tilde{f}(\cdot)$ is available and precise enough so that

$$ho_2(x,y) = r(x,y)/
ho_1(x,y) = \pi(y)/\pi(x) imes ilde{f}(x)/ ilde{f}(y) = 1$$

(H2) Assume that target distribution satisfies (A1) and (A2) in Roberts et al. (1997), which are regularity conditions on π and its first and second derivatives, and that

$$\pi(x) = \prod_{i=1}^n f(x_i)$$

(H3) Consider only a random walk proposal

$$y = x + \sqrt{\ell^2/d} Z$$

where

٠

 $Z \sim \mathcal{N}(0, I_d)$

(H4) Assume that cost of computing $\tilde{f}(\cdot)$, c say, proportional to cost of computing $\pi(\cdot)$, C say, with $c = \delta C$.

Normalising by C = 1, average total cost per iteration of DA chain is

 $\delta + \mathbb{E}\left[\tilde{\alpha}\right]$

and efficiency of proposed method under above conditions is

$$\mathsf{Eff}(\delta,\ell) = \frac{\mathsf{ESJD}}{\delta + \mathbb{E}\left[\tilde{\alpha}\right]}$$

Lemma

Under conditions (H1)–(H4) on $\pi(\cdot)$, $q(\cdot, \cdot)$ and on $\tilde{\alpha}(\cdot, \cdot) = (1 \land \rho_1(x, y))$ As $d \to \infty$

$$\mathsf{Eff}(\delta,\ell) \approx \frac{h(\ell)}{\delta + \mathbb{E}\left[\tilde{\alpha}\right]} = \frac{2\ell^2 \Phi(-\ell\sqrt{I}/2)}{\delta + 2\Phi(-\ell\sqrt{I}/2)}$$
$$a(\ell) \approx \mathbb{E}\left[\tilde{\alpha}\right] = 2\Phi(-\ell\sqrt{I}/2)$$
where $I := \mathbb{E}\left[\left(\frac{(\pi(x))'}{\pi(x)}\right)^2\right]$ as in Roberts et al. (1997).

Proposition (3)

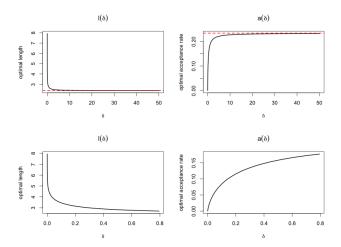
Under conditions of Lemma 3, optimal average acceptance rate $\alpha^*(\delta)$ is independent of I.

Proof.

Consider **Eff**(δ , ℓ) in terms of (δ , $a(\ell)$):

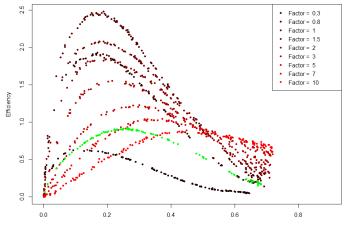
$$a = g(\ell) = 2\Phi\left(-\ell\sqrt{I}/2\right) \qquad \ell = g^{-1}(a) = -\Phi^{-1}\left(\frac{a}{2}\right)^2 \frac{2}{\sqrt{I}}$$
$$\mathbf{Eff}(\delta, a) = \frac{\frac{4}{I}\left[\Phi^{-1}\left(\frac{a}{2}\right)^2 a\right]}{\delta + a} = \frac{4}{I}\left\{\frac{1}{\delta + a}\left[\Phi^{-1}\left(\frac{a}{2}\right)^2 a\right]\right\}$$

Figure : top panels: $\ell^*(\delta)$ and $\alpha^*(\delta)$ as relative cost varies. For $\delta >> 1$ the optimal values converges to values computed for the standard M-H (red, dashed). bottom panels: close-up of interesting region for $0 < \delta < 1$.



Robustness wrt (H1)–(H4)

Figure : Efficiency of various DA wrt acceptance rate of the chain; colours represent scaling factor in variance of ρ_1 wrt π ; $\delta = 0.3$.



ESJD vs Alpha - 2 split

Acceptance rate

Practical optimisation

If computing cost comparable for all terms in

$$(x,y) = \prod_{i=1}^{K} \xi_i(x,y)$$

- rank entries according to the success rates observed on preliminary run
- start with ratios with highest variances
- rank factors by correlation with full Metropolis-Hastings ratio

Logistic regression:

- 10⁶ simulated observations with a 100-dimensional parameter space
- optimised Metropolis–Hastings with $\alpha = 0.234$
- DA optimised via empirical correlation
 - split the data into subsamples of 10 elements
 - include smallest number of subsamples to achieve 0.85 correlation
 - optimise Σ against acceptance rate

algo	ESS (av.)	ESJD (av.)
DA-MH over MH	5.47	56.18

Illustrations

geometric MALA:

proposal

$$\theta' = \theta^{(i-1)} + \varepsilon^2 A^T A \nabla_{\theta} \log(\pi(\theta^{(i-1)}|y))/2 + \varepsilon A \upsilon$$

with position specific A

[Girolami and Calderhead (2011), Roberts and Stramer (2002)]

- computational bottleneck in computating $3^{\rm rd}$ derivative of π in proposal
- G-MALA variance set to $\sigma_d^2 = \frac{\ell^2}{d^{1/3}}$
- 10² simulated observations with a 10-dimensional parameter space
- DA optimised via acceptance rate

$$\mathsf{Eff}(\delta, a) = - \left(2/K\right)^{2/3} \, \frac{a \Phi^{-1} \left(a/2\right)^{2/3}}{\delta + a(1-\delta)} \, .$$

algo	accept	ESS/time (av.)	ESJD/time (av.)
MALA	0.661	0.04	0.03
DA-MALA	0.09	0.35	0.31

Jeffreys for mixtures:

- numerical integration for each term in Fisher information matrix
- split between likelihood (cheap) and prior (expensive) unstable
- saving 5% of the sample for second step
- MH and DA optimised via acceptance rate
- actual averaged gain $\left(\frac{ESS_{DA}/ESS_{MH}}{time_{DA}/time_{MH}}\right)$ of 9.58

Algorithm	ESS (aver.)	ESJD (aver.)	time (aver.)
MH	1575.963	0.226	513.95
MH + DA	628.767	0.215	42.22