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Accept-Reject

Given a density f (·) to simulate take
g(·) density such that

f (x) ≤ Mg(x)

for M ≥ 1
To simulate X ∼ f , it is sufficient to
generate

Y ∼ g U|Y = y ∼ U(0,Mg(y))

until
0 < u < f (y)



Much ado about...

[Exercice 3.33, MCSM]
Raw outcome: id sequences Y1,Y2, . . . ,Yt ∼ g and
U1,U2, . . . ,Ut ∼ U(0, 1)
Random number of accepted Yi ’s

P(N = n) =

(
n − 1

t − 1

)
(1/M)t (1− 1/M)n−t ,



Much ado about...

[Exercice 3.33, MCSM]
Raw outcome: id sequences Y1,Y2, . . . ,Yt ∼ g and
U1,U2, . . . ,Ut ∼ U(0, 1)
Joint density of (N,Y,U)

P(N = n,Y1 ≤ y1, . . . ,Yn ≤ yn,U1 ≤ u1, . . . ,Un ≤ un)

=

ˆ yn

−∞
g(tn)(un ∧ wn)dtn

ˆ y1

−∞
. . .

ˆ yn−1

−∞
g(t1) . . . g(tn−1)

×
∑

(i1,··· ,it−1)

t−1∏
j=1

(wij ∧ uij )
n−1∏
j=t

(uij − wij )
+dt1 · · · dtn−1,

where wi = f (yi )/Mg(yi ) and sum over all subsets of
{1, . . . , n − 1} of size t − 1



Much ado about...

[Exercice 3.33, MCSM]
Raw outcome: id sequences Y1,Y2, . . . ,Yt ∼ g and
U1,U2, . . . ,Ut ∼ U(0, 1)
Marginal joint density of (Yi ,Ui )|N = n, i < n

P(N = n,Y1 ≤ y ,U1 ≤ u1)

=

(
n − 1

t − 1

)(
1

M

)t−1(
1− 1

M

)n−t−1

×
[
t − 1

n − 1
(w1 ∧ u1)

(
1− 1

M

)
+

n − t

n − 1
(u1 − w1)+

(
1

M

)] ˆ y

−∞
g(t1)dt1

and marginal distribution of Yi

m(y) = t−1/n−1f (y) + n−t/n−1
g(y)− ρf (y)

1− ρ

P(U1 ≤ w(y)|Y1 = y ,N = n) =
g(y)w(y)Mt−1/n−1

m(y)



Much ado about noise

Accept-reject sample (X1, . . . ,Xm) associated with (U1, . . . ,UN)
and (Y1, . . . ,YN)
N is stopping time for acceptance of m variables among Yj ’s
Rewrite estimator of E[h] as

1

m

m∑
i=1

h(Xi ) =
1

m

N∑
j=1

h(Yj) IUj≤wj
,

with wj = f (Yj )/Mg(Yj )

[Casella and Robert (1996)]



Much ado about noise

Rao-Blackwellisation: smaller variance produced by integrating
out the Ui ’s,

1

m

N∑
j=1

E[IUj≤wj
|N,Y1, . . . ,YN ] h(Yj) =

1

m

N∑
i=1

ρih(Yi ),

where (i < n)

ρi = P(Ui ≤ wi |N = n,Y1, . . . ,Yn)

= wi

∑
(i1,...,im−2)

∏m−2
j=1 wij

∏n−2
j=m−1(1− wij )∑

(i1,...,im−1)

∏m−1
j=1 wij

∏n−1
j=m(1− wij )

,

and ρn = 1.
Numerator sum over all subsets of {1, . . . , i − 1, i + 1, . . . , n − 1}
of size m − 2, and denominator sum over all subsets of size m − 1

[Casella and Robert (1996)]



extension to Metropolis–Hastings case

Sample produced by Metropolis–Hastings algorithm

x (1), . . . , x (T )

based on two samples,

y1, . . . , yT and u1, . . . , uT

[Casella and Robert (1996)]



extension to Metropolis–Hastings case

Sample produced by Metropolis–Hastings algorithm

x (1), . . . , x (T )

based on two samples,

y1, . . . , yT and u1, . . . , uT

Ergodic mean rewritten as

δMH =
1

T

T∑
t=1

h(x (t)) =
1

T

T∑
t=1

h(yt)
T∑
i=t

Ix(i)=yt

[Casella and Robert (1996)]



extension to Metropolis–Hastings case

Sample produced by Metropolis–Hastings algorithm

x (1), . . . , x (T )

based on two samples,

y1, . . . , yT and u1, . . . , uT

Conditional expectation

δRB =
1

T

T∑
t=1

h(yt) E

[
T∑
i=t

IX (i) = yt

∣∣∣∣y1, . . . , yT

]

=
1

T

T∑
t=1

h(yt)

(
T∑
i=t

P(X (i) = yt |y1, . . . , yT )

)

with smaller variance
[Casella and Robert (1996)]



weight derivation

Take

ρij =
f (yj)/q(yj |yi )
f (yi )/q(yi |yj)

∧ 1 (j > i),

ρij = ρijq(yj+1|yj), ρ
ij

= (1− ρij)q(yj+1|yi ) (i < j < T ),

ζjj = 1, ζjt =
t∏

l=j+1

ρ
jl

(i < j < T ),

τ0 = 1, τj =

j−1∑
t=0

τtζt(j−1) ρtj , τT =
T−1∑
t=0

τtζt(T−1)ρtT (i < T ),

ωi
T = 1, ωj

i = ρjiω
i
i+1 + ρ

ji
ωj
i+1 (0 ≤ j < i < T ).

[Casella and Robert (1996)]



weight derivation

Theorem

The estimator δRB satisfies

δRB =

∑T
i=0 ϕi h(yi )∑T−1

i=0 τi ζi(T−1)

,

with (i < T )

ϕi = τi

T−1∑
j=i

ζijω
i
j+1 + ζi(T−1)(1− ρiT )


and ϕT = τT .

[Casella and Robert (1996)]
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Some properties of the Metropolis–Hastings algorithm

Alternative representation of Metropolis–Hastings estimator δ as

δ =
1

n

n∑
t=1

h(x (t)) =
1

n

Mn∑
i=1

nih(zi ) ,

where

• zi ’s are the accepted yj ’s,

• Mn is the number of accepted yj ’s till time n,

• ni is the number of times zi appears in the sequence (x (t))t .



The ”accepted candidates”

Define

q̃(·|zi ) =
α(zi , ·) q(·|zi )

p(zi )
≤ q(·|zi )

p(zi )

where p(zi ) =
´
α(zi , y) q(y |zi )dy

To simulate from q̃(·|zi )
1 Propose a candidate y ∼ q(·|zi )
2 Accept with probability

q̃(y |zi )
/(

q(y |zi )
p(zi )

)
= α(zi , y)

Otherwise, reject it and starts again.

I this is the transition of the HM algorithm



The ”accepted candidates”

Define

q̃(·|zi ) =
α(zi , ·) q(·|zi )

p(zi )
≤ q(·|zi )

p(zi )

where p(zi ) =
´
α(zi , y) q(y |zi )dy

The transition kernel q̃ admits π̃ as a stationary distribution:

π̃(x)q̃(y |x) =
π(x)p(x)´
π(u)p(u)du︸ ︷︷ ︸

π̃(x)

α(x , y)q(y |x)

p(x)︸ ︷︷ ︸
q̃(y |x)
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Define

q̃(·|zi ) =
α(zi , ·) q(·|zi )

p(zi )
≤ q(·|zi )

p(zi )

where p(zi ) =
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The transition kernel q̃ admits π̃ as a stationary distribution:
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The ”accepted candidates”

Define

q̃(·|zi ) =
α(zi , ·) q(·|zi )

p(zi )
≤ q(·|zi )

p(zi )

where p(zi ) =
´
α(zi , y) q(y |zi )dy

The transition kernel q̃ admits π̃ as a stationary distribution:

π̃(x)q̃(y |x) =
π(y)α(y , x)q(x |y)´

π(u)p(u)du



The ”accepted candidates”

Define

q̃(·|zi ) =
α(zi , ·) q(·|zi )

p(zi )
≤ q(·|zi )

p(zi )

where p(zi ) =
´
α(zi , y) q(y |zi )dy

The transition kernel q̃ admits π̃ as a stationary distribution:

π̃(x)q̃(y |x) = π̃(y)q̃(x |y) ,



The ”accepted chain”

Lemma (Douc & X., AoS, 2011)

The sequence (zi , ni ) satisfies

1 (zi , ni )i is a Markov chain;

2 zi+1 and ni are independent given zi ;

3 ni is distributed as a geometric random variable with
probability parameter

p(zi ) :=

ˆ
α(zi , y) q(y |zi ) dy ; (1)

4 (zi )i is a Markov chain with transition kernel
Q̃(z, dy) = q̃(y |z)dy and stationary distribution π̃ such that

q̃(·|z) ∝ α(z, ·) q(·|z) and π̃(·) ∝ π(·)p(·) .
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Importance sampling perspective

1 A natural idea:

δ∗ =
1

n

Mn∑
i=1

h(zi )

p(zi )
,



Importance sampling perspective

1 A natural idea:

δ∗ '

∑Mn
i=1

h(zi )

p(zi )∑Mn
i=1

1

p(zi )

=

∑Mn
i=1

π(zi )

π̃(zi )
h(zi )∑Mn

i=1

π(zi )

π̃(zi )

.
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2 But p not available in closed form.



Importance sampling perspective

1 A natural idea:

δ∗ '

∑Mn
i=1

h(zi )

p(zi )∑Mn
i=1

1

p(zi )

=

∑Mn
i=1

π(zi )

π̃(zi )
h(zi )∑Mn

i=1

π(zi )

π̃(zi )

.

2 But p not available in closed form.

3 The geometric ni is the replacement, an obvious solution that
is used in the original Metropolis–Hastings estimate since
E[ni ] = 1/p(zi ).



The Bernoulli factory

The crude estimate of 1/p(zi ),

ni = 1 +
∞∑
j=1

∏
`≤j

I {u` ≥ α(zi , y`)} ,

can be improved:

Lemma (Douc & X., AoS, 2011)

If (yj)j is an iid sequence with distribution q(y |zi ), the quantity

ξ̂i = 1 +
∞∑
j=1

∏
`≤j
{1− α(zi , y`)}

is an unbiased estimator of 1/p(zi ) which variance, conditional on
zi , is lower than the conditional variance of ni , {1− p(zi )}/p2(zi ).



Rao-Blackwellised, for sure?

ξ̂i = 1 +
∞∑
j=1

∏
`≤j
{1− α(zi , y`)}

1 Infinite sum but finite with at least positive probability:

α(x (t), yt) = min

{
1,

π(yt)

π(x (t))

q(x (t)|yt)
q(yt |x (t))

}

For example: take a symmetric random walk as a proposal.

2 What if we wish to be sure that the sum is finite?

Finite horizon k version:

ξ̂ki = 1 +
∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi , yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi , y`)}



Rao-Blackwellised, for sure?

ξ̂i = 1 +
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∏
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Variance improvement

Proposition (Douc & X., AoS, 2011)

If (yj)j is an iid sequence with distribution q(y |zi ) and (uj)j is an
iid uniform sequence, for any k ≥ 0, the quantity

ξ̂ki = 1 +
∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi , yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi , y`)}

is an unbiased estimator of 1/p(zi ) with an almost sure finite
number of terms.



Variance improvement

Proposition (Douc & X., AoS, 2011)

If (yj)j is an iid sequence with distribution q(y |zi ) and (uj)j is an
iid uniform sequence, for any k ≥ 0, the quantity

ξ̂ki = 1 +
∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi , yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi , y`)}

is an unbiased estimator of 1/p(zi ) with an almost sure finite
number of terms. Moreover, for k ≥ 1,

Vξ̂ki zi =
1− p(zi )

p2(zi )
−

1− (1− 2p(zi ) + r(zi ))k

2p(zi )− r(zi )

(
2− p(zi )

p2(zi )

)
(p(zi )− r(zi )) ,

where p(zi ) :=
´
α(zi , y) q(y |zi ) dy . and r(zi ) :=

´
α2(zi , y) q(y |zi ) dy .



Variance improvement

Proposition (Douc & X., AoS, 2011)

If (yj)j is an iid sequence with distribution q(y |zi ) and (uj)j is an
iid uniform sequence, for any k ≥ 0, the quantity

ξ̂ki = 1 +
∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi , yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi , y`)}

is an unbiased estimator of 1/p(zi ) with an almost sure finite
number of terms. Therefore, we have

Vξ̂i zi ≤ Vξ̂ki zi ≤ Vξ̂0
i zi = Vni zi .
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Non-informative inference for mixture models

Standard mixture of distributions model

k∑
i=1

wi f (x |θi ) , with
k∑

i=1

wi = 1 . (1)

[Titterington et al., 1985; Frühwirth-Schnatter (2006)]

Jeffreys’ prior for mixture not available due to computational
reasons : it has not been tested so far

[Jeffreys, 1939]

Warning: Jeffreys’ prior improper in some settings
[Grazian & Robert, 2015]



Non-informative inference for mixture models

Grazian & Robert (2015) consider genuine Jeffreys’ prior for
complete set of parameters in (1), deduced from Fisher’s
information matrix
Computation of prior density costly, relying on many integrals like

ˆ
X

∂2 log
[∑k

i=1 wi f (x |θi )
]

∂θh∂θj

[
k∑

i=1

wi f (x |θi )

]
dx

Integrals with no analytical expression, hence involving numerical
or Monte Carlo (costly) integration



Non-informative inference for mixture models

When building Metropolis-Hastings proposal over (wi , θi )’s, prior
ratio more expensive than likelihood and proposal ratios
Suggestion: split the acceptance rule

α(x , y) := 1 ∧ r(x , y), r(x , y) :=
π(y |D)q(y , x)

π(x |D)q(x , y)

into

α̃(x , y) :=

(
1 ∧ f (D|y)q(y , x)

f (D|x)q(x , y)

)
×
(

1 ∧ π(y)

π(x)

)



The “Big Data” plague

Simulation from posterior distribution with large sample size n

• Computing time at least of order O(n)

• solutions using likelihood decomposition

n∏
i=1

`(θ|xi )

and handling subsets on different processors (CPU), graphical
units (GPU), or computers

[Korattikara et al. (2013), Scott et al. (2013)]

• no consensus on method of choice, with instabilities from
removing most prior input and uncalibrated approximations

[Neiswanger et al. (2013), Wang and Dunson (2013)]



Proposed solution

“There is no problem an absence of decision cannot
solve.” Anonymous

Given α(x , y) := 1 ∧ r(x , y), factorise

r(x , y) =
d∏

k=1

ρk(x , y)

under constraint ρk(x , y) = ρk(y , x)−1

Delayed Acceptance Markov kernel given by

P̃(x ,A) :=

ˆ
A

q(x , y)α̃(x , y)dy +

(
1−
ˆ

X

q(x , y)α̃(x , y)dy

)
1A(x)

where

α̃(x , y) :=
d∏

k=1

{1 ∧ ρk(x , y)}.



Proposed solution

“There is no problem an absence of decision cannot
solve.” Anonymous

Algorithm 1 Delayed Acceptance

To sample from P̃(x , ·):

1 Sample y ∼ Q(x , ·).

2 For k = 1, . . . , d :

• with probability 1 ∧ ρk(x , y) continue
• otherwise stop and output x

3 Output y

Arrange terms in product so that most computationally intensive
ones calculated ‘at the end’ hence least often



Proposed solution

“There is no problem an absence of decision cannot
solve.” Anonymous

Algorithm 1 Delayed Acceptance

To sample from P̃(x , ·):

1 Sample y ∼ Q(x , ·).

2 For k = 1, . . . , d :

• with probability 1 ∧ ρk(x , y) continue
• otherwise stop and output x

3 Output y

Generalization of Fox and Nicholls (1997) and Christen and Fox
(2005), where testing for acceptance with approximation before
computing exact likelihood first suggested
More recent occurences in literature

[Golightly et al. (2014), Shestopaloff and Neal (2013)]



Potential drawbacks

• Delayed Acceptance efficiently reduces computing cost only
when approximation π̃ is “good enough” or “flat enough”

• Probability of acceptance always smaller than in the original
Metropolis–Hastings scheme

• Decomposition of original data in likelihood bits may however
lead to deterioration of algorithmic properties without
impacting computational efficiency...

• ...e.g., case of a term explosive in x = 0 and computed by
itself: leaving x = 0 near impossible



Potential drawbacks

Figure : (left) Fit of delayed Metropolis–Hastings algorithm on a
Beta-binomial posterior p|x ∼ Be(x + a, n + b − x) when N = 100,
x = 32, a = 7.5 and b = .5. Binomial B(N, p) likelihood replaced with
product of 100 Bernoulli terms. Histogram based on 105 iterations, with
overall acceptance rate of 9%; (centre) raw sequence of p’s in Markov
chain; (right) autocorrelogram of the above sequence.



The “Big Data” plague

Delayed Acceptance intended for likelihoods or priors, but
not a clear solution for “Big Data” problems

1 all product terms must be computed

2 all terms previously computed either stored for future
comparison or recomputed

3 sequential approach limits parallel gains...

4 ...unless prefetching scheme added to delays
[Angelino et al. (2014), Strid (2010)]



Validation of the method

Lemma (1)

For any Markov chain with transition kernel Π of the form

Π(x ,A) =

ˆ
A

q(x , y)a(x , y)dy +

(
1−
ˆ

X
q(x , y)a(x , y)dy

)
1A(x),

and satisfying detailed balance, the function a(·) satisfies (for
π-a.e. x , y)

a(x , y)

a(y , x)
= r(x , y).



Validation of the method

Lemma (2)

(X̃n)n≥1, the Markov chain associated with P̃, is a π-reversible
Markov chain.

Proof.

From Lemma 1 we just need to check that

α̃(x , y)

α̃(y , x)
=

d∏
k=1

1 ∧ ρk(x , y)

1 ∧ ρk(y , x)

=
d∏

k=1

ρk(x , y) = r(x , y),

since ρk(y , x) = ρk(x , y)−1 and (1 ∧ a)/(1 ∧ a−1) = a



Comparisons of P and P̃

The acceptance probability ordering

α̃(x , y) =
d∏

k=1

{1∧ρk(x , y)} ≤ 1∧
d∏

k=1

ρk(x , y) = 1∧r(x , y) = α(x , y),

follows from (1 ∧ a)(1 ∧ b) ≤ (1 ∧ ab) for a, b ∈ R+.

Remark

By construction of P̃,

var(f ,P) ≤ var(f , P̃)

for any f ∈ L2(X, π), using Peskun ordering (Peskun, 1973,
Tierney, 1998), since α̃(x , y) ≤ α(x , y) for any (x , y) ∈ X2.



Comparisons of P and P̃

Condition (1)

Defining A := {(x , y) ∈ X2 : r(x , y) ≥ 1}, there exists c such that
inf(x ,y)∈A mink∈{1,...,d} ρk(x , y) ≥ c .

Ensures that when
α(x , y) = 1

then acceptance probability α̃(x , y) uniformly lower-bounded by
positive constant.
Reversibility implies α̃(x , y) uniformly lower-bounded by a constant
multiple of α(x , y) for all x , y ∈ X.



Comparisons of P and P̃

Condition (1)

Defining A := {(x , y) ∈ X2 : r(x , y) ≥ 1}, there exists c such that
inf(x ,y)∈A mink∈{1,...,d} ρk(x , y) ≥ c .

Proposition (1)

Under Condition (1), Lemma 34 in Andrieu et al. (2013) implies

Gap
(
P̃
)
≥ %Gap

(
P
)

and

var
(
f , P̃

)
≤ (%−1 − 1)varπ(f ) + %−1var (f ,P)

with f ∈ L2
0(E, π), % = cd−1.



Comparisons of P and P̃

Proposition (1)

Under Condition (1), Lemma 34 in Andrieu et al. (2013) implies

Gap
(
P̃
)
≥ %Gap

(
P
)

and

var
(
f , P̃

)
≤ (%−1 − 1)varπ(f ) + %−1var (f ,P)

with f ∈ L2
0(E, π), % = cd−1.

Hence if P has right spectral gap, then so does P̃.
Plus, quantitative bounds on asymptotic variance of MCMC
estimates using (X̃n)n≥1 in relation to those using (Xn)n≥1

available



Comparisons of P and P̃

Easiest use of above: modify any candidate factorisation
Given factorisation of r

r(x , y) =
d∏

k=1

ρ̃k(x , y) ,

satisfying the balance condition, define a sequence of functions ρk
such that both r(x , y) =

∏d
k=1 ρk(x , y) and Condition 1 holds.



Comparisons of P and P̃

Take c ∈ (0, 1], define b = c
1

d−1 and set

ρ̃k(x , y) := min

{
1

b
,max {b, ρk(x , y)}

}
, k ∈ {1, . . . , d − 1},

and

ρ̃d(x , y) :=
r(x , y)∏d−1

k=1 ρ̃k(x , y)
.

Then:

Proposition (2)

Under this scheme, previous proposition holds with

% = c2 = b2(d−1)

.



Proof of Proposition 1

optimising decomposition For any f ∈ L2(E, µ) define Dirichlet form
associated with a µ-reversible Markov kernel Π : E× B(E) as

EΠ(f ) :=
1

2

ˆ
µ(dx)Π(x , dy) [f (x)− f (y)]2 .

The (right) spectral gap of a generic µ-reversible Markov kernel
has the following variational representation

Gap (Π) := inf
f ∈L2

0(E,µ)

EΠ(f )

〈f , f 〉µ
.



Proof of Proposition 1

optimising decomposition

Lemma (Andrieu et al., 2013, Lemma 34)

Let Π1 and Π2 be µ-reversible Markov transition kernels of
µ-irreducible and aperiodic Markov chains, and assume that there
exists % > 0 such that for any f ∈ L2

0

(
E, µ

)
EΠ2

(
f
)
≥ %EΠ1

(
f
)

,

then
Gap

(
Π2

)
≥ %Gap

(
Π1

)
and

var
(
f ,Π2

)
≤ (%−1 − 1)varµ(f ) + %−1var (f ,Π1) f ∈ L2

0(E, µ).



Proposal Optimisation

Explorative performances of random–walk MCMC strongly
dependent on proposal distribution
Finding optimal scale parameter leads to efficient ‘jumps’ in state
space and smaller...

1 expected square jump distance (ESJD)

2 overall acceptance rate (α)

3 asymptotic variance of ergodic average var
(
f ,K

)
[Roberts et al. (1997), Sherlock and Roberts (2009)]

Provides practitioners with ‘auto-tune’ version of resulting
random–walk MCMC algorithm



Proposal Optimisation

Quest for optimisation focussing on two main cases:

1 d →∞: Roberts et al. (1997) give conditions under which
each marginal chain converges toward a Langevin diffusion
Maximising speed of that diffusion implies minimisation of the
ACT and also τ free from the functional

Remember var
(
f ,K

)
= τf × varπ(f ) where

τf = 1 + 2
∞∑
i=1

Cor(f (X0), f (Xi ))



Proposal Optimisation

Quest for optimisation focussing on two main cases:

2 finite d : Sherlock and Roberts (2009) consider unimodal
elliptically symmetric targets and show proxy for ACT is
Expected Square Jumping Distance (ESJD), defined as

E
[
‖X ′ − X‖2

β

]
= E

[
d∑

i=1

β−2
i (X ′i − X )2

]

As d →∞, ESJD converges to the speed of the diffusion
process described in Roberts et al. (1997) [close asymptotia:
d & 5]



Proposal Optimisation

“For a moment, nothing happened. Then, after a
second or so, nothing continued to happen.” —
D. Adams, THGG

When considering efficiency for Delayed Acceptance, focus on
execution time as well

Eff := ESJD
/

cost per iteration

similar to Sherlock et al. (2013) for pseudo-Marginal MCMC



Delayed Acceptance optimisation

Set of assumptions:

(H1) Assume [for simplicity’s sake] that Delayed Acceptance
operates on two factors only, i.e.,

r(x , y) = ρ1(x , y)× ρ2(x , y),

α̃(x , y) =
2∏

i=1

(1 ∧ ρi (x , y))

Restriction also considers ideal setting where a computationally
cheap approximation f̃ (·) is available and precise enough so that

ρ2(x , y) = r(x , y)/ρ1(x , y) = π(y)
/
π(x)× f̃ (x)

/
f̃ (y) = 1

.



Delayed Acceptance optimisation

(H2) Assume that target distribution satisfies (A1) and (A2) in
Roberts et al. (1997), which are regularity conditions on π and its
first and second derivatives, and that

π(x) =
n∏

i=1

f (xi )

.

(H3) Consider only a random walk proposal

y = x +
√
`2/d Z

where
Z ∼ N (0, Id)



Delayed Acceptance optimisation

(H4) Assume that cost of computing f̃ (·), c say, proportional to
cost of computing π(·), C say, with c = δC .

Normalising by C = 1, average total cost per iteration of DA chain
is

δ + E [α̃]

and efficiency of proposed method under above conditions is

Eff(δ, `) =
ESJD

δ + E [α̃]



Delayed Acceptance optimisation

Lemma

Under conditions (H1)–(H4) on π(·), q(·, ·) and on
α̃(·, ·) = (1 ∧ ρ1(x , y))
As d →∞

Eff(δ, `) ≈ h(`)

δ + E [α̃]
=

2`2Φ(−`
√

I/2)

δ + 2Φ(−`
√

I/2)

a(`) ≈ E [α̃] = 2Φ(−`
√

I/2)

where I := E
[(

(π(x) )′

π(x)

)2
]

as in Roberts et al. (1997).



Delayed Acceptance optimisation

Proposition (3)

Under conditions of Lemma 3, optimal average acceptance rate
α∗(δ) is independent of I .

Proof.

Consider Eff(δ, `) in terms of (δ, a(`)):

a = g(`) = 2Φ
(
−`
√

I/2
)

` = g−1(a) = −Φ−1 (a/2)
2√
I

Eff(δ, a) =

4
I

[
Φ−1

(
a
2

)2
a
]

δ + a
=

4

I

{
1

δ + a

[
Φ−1

(a

2

)2
a

]}



Delayed Acceptance optimisation

Figure : top panels: `∗(δ) and α∗(δ) as relative cost varies. For δ >> 1
the optimal values converges to values computed for the standard M-H
(red, dashed). bottom panels: close-up of interesting region for
0 < δ < 1.



Robustness wrt (H1)–(H4)

Figure : Efficiency of various DA wrt acceptance rate of the chain;
colours represent scaling factor in variance of ρ1 wrt π; δ = 0.3.



Practical optimisation

If computing cost comparable for all terms in

(x , y) =
K∏
i=1

ξi (x , y)

• rank entries according to the success rates observed on
preliminary run

• start with ratios with highest variances

• rank factors by correlation with full Metropolis–Hastings ratio



Illustrations

Logistic regression:

• 106 simulated observations with a 100-dimensional parameter
space

• optimised Metropolis–Hastings with α = 0.234

• DA optimised via empirical correlation
• split the data into subsamples of 10 elements
• include smallest number of subsamples to achieve 0.85

correlation
• optimise Σ against acceptance rate

algo ESS (av.) ESJD (av.)

DA-MH over MH 5.47 56.18



Illustrations

geometric MALA:

• proposal

θ′ = θ(i−1) + ε2ATA∇θ log(π(θ(i−1)|y))/2 + εAυ

with position specific A
[Girolami and Calderhead (2011), Roberts and Stramer (2002)]

• computational bottleneck in computating 3rd derivative of π
in proposal

• G-MALA variance set to σ2
d = `2

d1/3

• 102 simulated observations with a 10-dimensional parameter
space

• DA optimised via acceptance rate

Eff(δ, a) = − (2/K)2/3 aΦ−1 (a/2)2/3

δ + a(1− δ)
.

algo accept ESS/time (av.) ESJD/time (av.)
MALA 0.661 0.04 0.03

DA-MALA 0.09 0.35 0.31



Illustrations

Jeffreys for mixtures:

• numerical integration for each term in Fisher information
matrix

• split between likelihood (cheap) and prior (expensive) unstable

• saving 5% of the sample for second step

• MH and DA optimised via acceptance rate

• actual averaged gain ( ESSDA/ESSMH

timeDA/timeMH
) of 9.58

Algorithm ESS (aver.) ESJD (aver.) time (aver.)

MH 1575.963 0.226 513.95

MH + DA 628.767 0.215 42.22
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