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The problem at hand

Aim: We want to learn from a given sample without any asumption on
the likelihood This makes sense in particular when the design follows a
complex generative model (i.e. images, text etc.)
To this extend we de�ne the framework as follows:

Statistical Learning model (classi�cation)

A collection of labeled random variables (Y1,X2), (Y2,X2), ...

where (Yi ,Xi ) ∈ {−1, 1} × X in this talk we suppose (Xi ,Yi )
iid∼ P

A collection prediction function {fθ, θ ∈ Θ}

fθ : X 7→ {−1, 1}

In this talk we can assume a linear model fθ(x) = 21xθ>0 − 1
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The problem at hand

Statistical Learning (continued)

A loss function
` : {−1, 1} × {−1, 1} 7→ R+

to wich we associate. Example: `(y , fθ(x)) = 1y 6=fθ(x) the 0-1 loss.

A theoretical risk R(θ) := E`(Y , fθ(X ))

A emprical risk Rn(θ) := 1

n

∑n
i=1

`(Yi , fθ(Xi ))

The �nal goal is to �nd a minimizer to R(θ).
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The PAC solution to the problem

De�ne the 0-1 loss `(y , y ′) := 1y 6=y ′

Theorem (Vapnik [2000])

Suppose the above model with a 0-1 loss, and the linear classi�er,

Θ = Rd and

θ̂n ∈ argmin
θ∈Θ

Rn(θ)

then ∀ε > 0 with probability at least 1− ε,

R(θ̂n) ≤ inf
θ∈Θ

R(θ) + 4

√
(d + 1) log(n + 1) + log 2

n
+

√
log(2/ε)

2n
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A Bayesian solution

PAC-Bayesian bounds

�PAC-Bayesian learning methods combine the informative priors of
Bayesian methods with distribution-free PAC guarantees [...] The
Bayesian approach has the advantage of using arbitrary knowledge in the
form of a prior � McAllester [1998]

De�ne a prior measure π ∈M+
1

(Θ) the set of probability measures on Θ
We are going to use a Gibbs posterior with the risk as negative energy,

πλ(dθ|D) :=
1

Zπ
e−λRn(θ)π(dθ)

and where Zπ :=
∫

Θ
e−λRn(θ)π(dθ), and D := {(Y1,X1), · · · , (Yn,Xn)}
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PAC-Bayesian bounds in practice (1)

Aim: Show oracle inequalities and empirical bounds under the above
framework. Consider the following modi�cation of proposition 5.2 in
Catoni [2004].

PAC-Bayesian oracle inequality

For a 0− 1 loss, for any ε > 0 with probability at least 1− ε,∫
Rdπλ(dθ|X ) ≤Bλ(M+

1
)

:= inf
ρ∈M1

+(Θ)

{∫
Rdρ+

λ

n
+ 2
K(ρ, π) + log

(
2

ε

)
λ

}
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PAC-Bayesian bounds in practice (2)

Gibbs measures in practice

We would like similar results for computable estimators.

Past implementation of the results rely mostly on MCMC

RJMCMC in Alquier and Biau [2013],
Unajusted Langevin in Dalalyan and Tsybakov [2008].

For some non-asymptotic studies of properties of MCMC see
Dalalyan [2014], Durmus and Moulines [2015] and others.

Goal

Ultimately we want to �nd polynomial time algorithm in the dimension
(i.e. an algorithm that stops after a number of given steps that is a
polynomial of the dimension).
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Crash course in variational approximation

Instead let's have a look at Variational Bayes

Minimizing the KL divergence

De�ne
ρvbλ = arg min

ρ∈F
K(ρ, πλ(.|D))

where

K denotes the KL divergence K(µ, ν) =
∫
µ(dx) log dµ(x)

dν(x) if ν >> µ,

∞ otherwise.

F is a family of probability measures.

The choice of the of the family F will strongly in�uence the quality of
the approximation. Two examples,

FΦ =
{

Φm,Σ,m ∈ Rd ,Σ ∈ Sd
}
the set of Gaussian measures.

Fmf =
{
ρ ∈M1

+(Θ) s.t. ρ(dθ) =
∏

i∈J ρi (dθi )
}
the set of

factorizable measures on a set of indices J.
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Main result

Aim: Find a PAC-Bayesian bound for the Gaussian approximation.

Theorem

Using the 0-1 loss, for any ε > 0, with probability at least 1− ε we have∫
Rdρvbλ ≤ Bλ(F) := inf

ρ∈F

{∫
Rdρ+

λ

n
+ 2
K(ρ, π) + log

(
2

ε

)
λ

}
.

Moreover,

Bλ(F) = Bλ(M1

+(Θ)) +
2

λ
inf
ρ∈F
K(ρ, πλ

2
), where πλ(dθ) ∝ e−λR(θ)π(dθ)
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Application: 0-1 loss

Let's take the special case

`(y , y ′) = 1y 6=y ′ ,

with prior π(dθ) = N (0, ϑI )

Using the linear classi�er fθ(x) = 21θx>0 − 1

Corollary

Assume that the VB approximation is done on FΦ, Take λ =
√
nd and

ϑ = 1√
d
. Under some necessary assumption, for any ε > 0, with

probability at least 1− ε we have simultaneously∫
R(θ)πλ(dθ|X )∫
R(θ)dρvbλ (θ)

}
≤ inf
θ∈Θ

R(θ) +O

(√
d

n
log (n)

)
+

2√
nd

log
2

ε
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Application: 0-1 loss

We end up solving the following optimization problem:

(m̂, Σ̂) ∈ arg min
m,Σ∈Rd×S+

Lλ,ϑ(m,Σ),

where Lλ,ϑ(m,Σ) = −λ
n

n∑
i=1

Φ

(
−Yi

Xim√
XiΣX t

i

)
− mTm

2ϑ
+

1

2

(
log|Σ|− 1

ϑ
trΣ

)
.

Optimizing the bound in practice

The previous results tels us that
∫
R(θ)dΦm̂,Σ̂(θ) will converge to

the oracle risk at a quanti�able rate.

However optimizing Lλ,ϑ is di�cult (impossible ?) in practice.

The target is nonconvex and in general multimodal
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Application: Hinge loss

The usual way to deal with this is to use a convex upper bound on the
loss.

Hinge loss: max(0, 1− yfθ(x))

Prediction function: fθ(x) = x tθ

with prior π(dθ) = N (0, ϑI )

0.0
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−1 0 1 2
X

Hinge loss

We now have a convex loss that will lead
to convex optimization procedures

We can use theoretical results from the
optimization community to bound the
numerical error



Introduction: PAC-Bayesian bounds Variational approximation Applications References

VB in practice

To minimize the KL divergence over F1 =
{

Φm,σI ,m ∈ Rd , σ ∈ R+

}
On needs to minimize the following objective,

L(m, σ) = −λ
n

{
n∑

i=1

(1− Γim) Φ

(
1− Γim

σ‖Γi‖2

)
+

n∑
i=1

σ‖Γi‖ϕ
(
1− Γim

σ‖Γi‖2

)}

− ‖m‖
2

2

2ϑ
+

d

2

(
log σ2 − ϑ

σ2

)
.

The optimal mean and variance are given by

(m?, σ?) = arg min
m∈Rd ,σ>0

L(m, σ).

De�ne ρvbλ,k the approximation formed of the mean and variance (mk , σk)
given by the k-th iterate of a gradient descent.

(mk+1, σk+1) = (mk , σk)− α∇L(mk , σk)
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Oracle bound for the Hinge loss

Using results from convex optimization [Nesterov, 2004] we can bound
the risk integrated with respect to the approximation obtain after a �xed
number of iteration of the solver.

Theorem

Assume that the VB approximation is done on FΦ. Denote by ρvbλ,k(dθ)
the VB approximated measure after the kth iteration of an optimal

convex solver using the hinge loss. Take λ =
√
nd and ϑ = 1√

d
then

under the correct hypotheses with probability 1− ε∫
RH

dρvbλ,k ≤ inf
θ∈Θ

RH +
LM√
1 + k

+O

(√
d

n
log

n

d

)
+ 2

cx√
nd

log
2

ε

where L is the Lipschitz coe�cient on a ball of radius M of the objective

function maximized in VB.
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Numerical Application

Dataset Covariates Full cov. (F3) SMC
VB
Hinge

SVM
linear

Pima 7 21.3 22.3 19.5 21.6
German
Credit

60 33.6 32.0 26.2 33.2

DNA 180 23.6 23.6 4.2 5.1
SPECTF 22 06.9 08.5 10.1 21.4
Glass 10 19.6 23.3 2.8 6.5
Indian 11 25.5 26.2 25.5 25.3
Breast 10 1.1 1.1 0.5 1.7

Table : Comparison of misclassi�cation rates (%).
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Other losses

We can get similar results for:

Ranking using AUC risk (application of stochastic variational Bayes).
Matrix completion (application with family Fmf )
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Figure : Error bound at each iteration, stochastic
descent, Adult datasets.

Stochastic VB with �xed temperature λ = 1000, batch
size of 50. The adult dataset has n = 32556 observation
and n+n− = 193, 829, 520 possible pairs. The conver-
gence is obtained in order of seconds. The bounds are
the empirical bounds obtained for a probability of 95%.
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Closing remarks

Development of R package (PACVB) to perform Hinge loss VB and
a Hinge version of bipartite ranking. Available on the CRAN
repository.

Other question are still open

Can we do better than cross-validation for the choice of λ?
Online learning ?
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Thank you for your attention!
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