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Motivation

Motivation

In modern epidemiology, study designs typically include (large sets of)
measurements of many types of variables:

I socio-demographic and life style
I environmental/occupational exposure
I genetic variants.

The aim is to understand the joint effect of risk factors and host
characteristics on complex phenotypes such as cancer and
cardiovascular diseases.

In precision medicine, multiple layers of genetic and genomics
information are collected to better characterise the disease state of
patients.

The aim is integrate the different layers of genomics information to
discover groups of patients with distinct molecular phenotypes and
clinical outcomes.
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Motivation

Questions

Faced with the tasks
I to explore complex dependence structures among sets of

inter-related variables
I to evaluate the effect of combinations of multiple risk

factors/molecular characteristics for stratification
I to detect interactions

Fitting linear (or log-linear) models with many interaction parameters
becomes quickly unfeasible

Dimensionality reduction using clustering
I Partitions the subjects into groups according to covariate profile
I Flexible Bayesian clustering based on the Dirichlet Process
I Can jointly model covariate patterns and health outcome: profile

regression (Molitor et al, 2010)
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Motivation

The many aspects of clustering

Unsupervised
I Exploratory aim

I how to uncorporate uncertainty with regards to the clustering
I how to provide tractable output from post-processing
I how to discover among many variables those that ‘drive’ the

clustering?
I Modelling dependence

I can clustering provide clues as to the CI structure?
I can clustering help in the search for interactions?

Supervised
I Predictive aim: covariate patterns corresponding to clusters are

linked to outcome, e.g. survival
I Integrative aim: exploit multiple data types to improve ‘useful’

clustering
I how to balance influence of different data types
I how to deal with ‘nuisance’ clustering
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Motivation

Outline
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1 Modelling with the Dirichlet process

2 Log-linear graphical model determination

3 Supervised clustering: Profile Regression

4 Assessing dataset relevance

5 Multiclustering
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Modelling with the Dirichlet process

Notation

Consider categorical covariates x.p, p = 1, ...,P. For example,
x.1: smokes, does not smoke
x.2: drinks, does not drink
x.3: exercises, does not exercise

For individual i , denote covariate profile with xi = (xi1, ..., xiP).
For example, xi=(smokes, drinks, does not exercise).
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Modelling with the Dirichlet process

Notation

For individual i
I zi = c allocates subject, i , to cluster c.
I φc

p(x) the probability that covariate x.p = x , for zi = c.
I Given zi = c, x.p has a multinomial distribution with cluster specific

parameters φc
p = [φc

p(1), ..., φc
p(Mp)]

I A priori, φc
p ∼ Dirichlet(λ1, ..., λMp)

I ψc denotes the probability that a subject is assigned to cluster c.
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Modelling with the Dirichlet process

Statistical Framework

For φ = {φc
p, c ∈ N,p = 1, ...,P},

I ‘stick-breaking’ prior on the allocation weights ψc

I xi |z, φ ∼
∏P

p=1 φ
zi
p (xip) for i = 1,2, ...,n.

I This implies

Pr(xi |φ, ψ) =
∞∑

c=1

Pr(zi = c|ψ)
P∏

p=1

Pr(xip|zi = c) =
∞∑

c=1

ψc

P∏
p=1

φc
p(xip).
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Modelling with the Dirichlet process

Using 0-1 variable selection switches

I Identify covariates that contribute more than others to the formation of clusters.
[Tadesse et al. (2005), Chung and Dunson (2009); Papathomas et al. (2012)]

I Cluster specific binary indicators, γc
p , so that γc

p = 1 when covariate x.p is
important for allocating subjects to cluster c; otherwise γc

p = 0.
I Denote with πp(x) the marginal probability that covariate x.p takes the value x in

the whole sample.

Pr(x.p = x | c) = φ#c
p (x) = [φc

p(x)]
γc

p × [πp(x)](1−γ
c
p ). (1)

I Prior for switches: given ρp, γc
p ∼ Bernoulli(1, ρp).

I We consider a sparsity inducing prior for ρ with an atom at zero:

ρp ∼ 1{wp=0}δ0(ρp) + 1{wp=1}Beta(αρ, βρ)

where wj ∼ Bernoulli(0.5).
Similar to Chung and Dunson (JASA, 2009), but in their set up, covariate observations contribute to the likelihood through a
regression model. In our case, covariate observations contribute directly to the likelihood, and we introduce πp(x).
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Modelling with the Dirichlet process

Implementation

Implement DP clustering with variable selection in C++ within the R
package PReMiuM; Liverani et al. (2015, JSS)

I Normal and discrete covariates
Offers a selection of advanced or standard samplers,

I dependent or independent slice sampling (Kalli et al., 2011)
I or truncated Dirichlet process model (Ishwaran and James, 2001)

Also,
I straightforward to handle missing data (Bayesian paradigm)
I extends to joint modelling of covariates and outcome: Profile

regression (see later)
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Example: 10,000 subjects, 10 binary covariates



Log-linear graphical model determination
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Log-linear graphical model determination

Clustering and log-linear interaction models

I It is not clear how clustering output may translate into interactions
in a log-linear regression modelling framework.

I Can we assist the process of comparing a large number of
log-linear models with the clustering variable selection results?

I The important aspect of a model that combines clustering and
variable selection is that covariates are not chosen in
accordance with size of marginal effect. They are selected
because they combine to create distinct groups of subjects.
Consequently, we expect that this type of modelling should be
able to inform on interactions in a log-linear model setting.
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Log-linear graphical model determination

Theoretical results

Theorem 1: Consider random variables x.p and x.q, 1 ≤ p,q ≤ P,
p 6= q. If

∑C
c=1 γ

c
p × γc

q = 0 then x.p and x.q are independent.

Theorem 2: Consider a set of random variables {x.1, . . . , x.P}. If, for
some p ∈ {1, ...,P},

∑C
c=1 γ

c
p × γc

q = 0, for all q 6= p, then x.p is
independent of {x.1, . . . , x.P} \ x.p.

Proofs: See Papathomas and Richardson (2015). Note that the
converse is not true.

The previous Theorems imply the following Corollary,

Corollary: Consider covariate x.p. If
∑C

c=1 γ
c
p = 0 then x.p is

independent from all other covariates.
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Log-linear graphical model determination

Theoretical results

Therefore,
I if the selection probability ρp for x.p is zero or close to zero,

something that implies that
∑C

c=1 γ
c
p is also zero or close to zero,

we can assume that x.p is independent from all other
covariates.

I Assuming that our interest lies in exploring interactions, to reduce
the dimensionality of the problem when fitting linear models to
sparse contingency tables, x.p could be removed from the
analysis.
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Log-linear graphical model determination

Graphical models for contingency tables

I They allow to visualize and build complex dependence structures
for the covariates (classification factors) under consideration

I Models can be interpreted in terms of C.I. using Markov property
(local & global)

I Neighbourhoods of models are easily defined, and it is
straightforward to move in the space of models by adding,
removing or replacing edges.

I Graphical models correspond to a subclass of log-linear models:
graph→ cliques→ interactions of higher order

I The number of possible undirected graphs is 2H , where
H = P!/(2(P − 2)!),assuming the intercept and all factor main
effects are included in the model. For example, the number of
possible graphical models for six covariates is 32768.
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Log-linear graphical model determination

e.g. log-linear model
corresponding to
Simulation 1, Model 1
contains the following
interaction terms:
AB + BC + CD + AD
+ I*J*H
(i.e. IJ + IH + JH + IJH)
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Log-linear graphical model determination

Exploiting the output of the clustering

The clustering output can be used in several ways:
I Dimension reduction: eliminate variables from the search for

interactions
I Improving the proposals when running an MCMC strategy for

graphical model search
We propose

I to summarise the relevant information via a matrix T γ , built from
joint selection probabilities of pairs of variables in clusters

I modify the vanilla MCMC search algorithm by informing addition,
removal or swop moves through T γ
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Log-linear graphical model determination

Construction of matrix T γ

I For iteration it and for each cluster c with more than one subject, form
matrix T c,it , so that element (p1,p2), 1 ≤ p1 < p2 ≤ P is either zero or
one, and equal to γc

p1
(it)× γc

p2
(it). All other matrix cells are empty.

I Sum up all matrices T c,it , weighing by cluster size, to create an
information matrix T γ ,

T γ =
∑

it

∑
c

nc,it × T c,it .

where nc,it is the size of cluster c at iteration it .
I For ease of interpretation reweight the elements of T γ so that the

maximum element is one, T γ = (max{T γ})−1 × T γ .

Matrix T γ

T γ is constructed in such a manner so that if element tγ(p1,p2),
1 ≤ p1 < p2 ≤ P, is close to zero, this implies that an edge between x.p1 and
x.p2 is not likely to be present in a highly supported graphical model.
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Log-linear graphical model determination

Example. Simulation 1

Consider Simulation 1, with 10000 subjects clustered in accordance
with 10 binary covariates. Then,

Table 1: Cluster profiles. In parenthesis the number of subjects typically allocated to each group.
Simulation 1

A B C D E F G H I J
Median(ρp) 0.36 0.78 0.32 0.75 0.06 0.05 0.00 0.48 0.57 0.50
Group 1 (5465) >< <> 00 <> 00 00 00 >< >< <>
Group 2 (3159) <> >< 00 >< 00 00 00 >< <> ><
Group 3 (1376) 00 >< 00 00 00 00 00 <> <> <>
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Log-linear graphical model determination

Simulation 1 
Main Graphical Model 

Clustering output 

-- Clear indication that 
E, F, G, have no  
interactions 
-- Noticeable 
`spilling effects’ 

Prior prob =0.8 
Post prob= 0.55  
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Log-linear graphical model determination

Example. Simulation 5

Consider Simulation 5, with 10000 subjects clustered in accordance
with 100 covariates.

I Only 8 out of 100 covariates are involved in the log linear model
which generate the variability associated with the cell counts

I After running the clustering, all other 92 covariates have selection
probabilities less than 0.01⇒ can be eliminated from search for
most supported graphical models.

Table 2: Cluster profiles. In parenthesis the number of subjects typically allocated to each group. Posterior median selection
probabilities for the remaining 92 covariates in Simulation 5 were either equal to zero or smaller than 0.01

Simulation 5
A B C D E F G H

Median(ρp) 0.96 0.95 0.97 0.93 0.97 0.96 0.97 0.96
Group 1 (4036) >< <> <> <> <> >< <> <>
Group 2 (3813) >< <> <> <> >< <> >< ><
Group 3 (399) >< 00 <> >< <> >< >< <>
Group 4 (720) <> >< >< >< <> >< <> <>
Group 5 (902) <> >< >< >< >< <> >< ><
Group 5 (130) <> >< >< >< >< <> >< <>

S Richardson (MRC Biostatistics Unit) Clustering 23 / 50



Log-linear graphical model determination

Example. Simulation 5

T sim5
γ =



A B C D E F G H
A .99 1 1 1 1 1 1
B .97 .99 .99 .99 .99 .99
C .99 .99 .99 .99 .99
D .99 1 1 1
E 1 1 1
F 1 1
G 1


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Log-linear graphical model determination

Mixing performance of samplers

MCMC model search for graphical log-linear models using difference
combinations of vanilla (uniformly random) and informed proposal for
addition, deletion and swop.

Simulation 1
Acceptance rate Iterations (median) to highest Posterior probability
as a percentage posterior probability model for highest probability model

(a) Uniformly random 5.1 590 (452,821) 0.55
(b) Cluster specific 3.8 247 (164,369) 0.55
(c) Combined (30%,10%) 5.3 540 (290,674) 0.53
(d) Combined (20%,20%) 4.9 403 (312,493) 0.55

Simulation 2
Acceptance rate Iterations (median) to highest Posterior probability
as a percentage posterior probability model for highest probability model

(a) Uniformly random (PDV) 4.4 717 (475,990) 0.60
(b) Cluster specific 4.4 189 (147,238) 0.58
(c) Combined (30%,10%) 4.4 417 (346,354) 0.60
(d) Combined (20%,20%) 4.5 257 (181,314) 0.59

Strategy (d) offers a good balance between performance and
safeguard against clustering missing an existing edge.
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Log-linear graphical model determination

Real data example

I 30 single nucleotide polymorphisms (SNPs) in chromosomes 6
and 15.
(Data from 4260 subjects in a genome-wide association study of lung cancer presented in Hung et al. (2008).)

I 12 SNPs were indicated as important by variable selection within
clustering.
(Two from chromosome 15 and ten from chromosome 6.)

I SNPs were highly correlated. 3 SNPs included in the competing
log-linear graphical models as representatives.
rs8034191 from chromosome 15 and {rs4324798,rs1950081} from chromosome 6.

I Also include age, gender and smoking status in the competing
log-linear graphical models, to search for gene-environment
interactions.
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Log-linear graphical model determination

Real data example

T Real data (GE)
γ =


A B C D E F

A 0.002 .01 .06 0.06 .06
B .001 .02 0.02 .02
C .09 .07 .08
D 1 .98
E .88


I The highest posterior probability model (P=0.8) from the MCMC

search is

‘SNP1+SNP2+SNP3+AGE*GENDER*SMOKING’

which does not support the presence of gene-gene or
gene-environment interactions.
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Supervised clustering: Profile Regression
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Supervised clustering: Profile Regression

Mixture modelling for stratified medicine

I In stratified medicine applications, we seek subpopulations
(clusters) of patients that have diagnostic, prognostic, or
theranostic meaning.

I A common strategy is to cluster patients on the basis of ’omics
data, and then to see if the clusters correspond to useful strata.

I e.g. are individuals with poor survival outcomes over-represented in
Cluster c?

I Alternatively, we can include the diagnostic/prognostic/theranostic
response in our model, and use this to “guide” the clustering.

I This can help to determine better quality, more meaningful
strata.

Profile regression
We refer to this supervised approach as profile regression.
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Supervised clustering: Profile Regression

Profile regression: notation

For individual i

yi outcome of interest (e.g. case/control, survival,
response to therapy).

wi fixed effects

and, as before,

xi = (xi1, . . . , xiP) covariate profile
zi = c the allocation variable indicates the

cluster to which individual i belongs
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Supervised clustering: Profile Regression

Statistical Framework

I Joint covariate and response model

f (xi , yi |φ, θ, ψ, β) =
∑

c

ψc f (xi |zi = c, φc)f (yi |zi = c, θc , β,wi)

I Mixture model jointly for covariate and response
I For example, for Bernoulli outcome

logit{p(yi = 1|θc , β,wi)} = θc + βT wi

I The association of the profiles with the response are
characterised by the risk effect parameters θc

I Note: the above framework, adopted in Molitor et al. (Biostatistics,
2010), is similar in spirit to Bigelow and Dunson (JASA, 2009).
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Supervised clustering: Profile Regression

Profile regression applications

I Implemented in R package: PReMiuM

I In Molitor et al. (2010): epidemiological application to NCSH data
exploring the link between a child mental health and socio
demographic, family and living conditions

I In Hastie et al. (2013): epidemiological application to estimate risk
functions associated with multidimensional exposure profiles (e.g.
smoking and lung cancer)

I In Papathomas et al. (2012): investigation of how profile
regression combined with variable selection can highlight
combinations of SNPs associated with higher disease risk in a
genetic association study of lung cancer (Hung et al 2008).

But how to cope with multiple datasets, each possessing a
(potentially) different clustering structure?
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Supervised clustering: Profile Regression

Multiple dataset challenges

I It is increasingly common that we have multiple ’omics
measurements for each patient

I mRNA, miRNA, genotype, methylation, protein, . . .
I Several unsupervised methods for their integration, e.g. Bayesian

correlated clustering (Kirk et al., 2012), iCluster (Shen et al., 2009)

I Some datasets will be more/less relevant for stratifying patients.
I We wish to assess dataset relevance.

I There may be multiple strong clustering structures within each
dataset, but not all will be useful for stratification.

I We wish to determine the relevant clustering structure.
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Supervised clustering: Profile Regression

Illustration
Two categorical datasets:
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Dataset 2 has a “relevant” clustering structure; Dataset 1 does
not.
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Assessing dataset relevance
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Assessing dataset relevance

Assessing dataset relevance: pragmatic approach

I In profile regression, each draw from the posterior defines a
clustering of the data, and an associated predictive model.

I A less effective (!) alternative to profile regression would be a
2-step approach:

1 Obtain a clustering, z, of the data; and then
2 Estimate the remaining parameters of the predictive model.

I In either case, we can score the relative prediction quality of
different partitions, z, e.g.

BIC | z = −2 ln(L) + az ln(n)

I L is the likelihood associated with the observed y | z, e.g. logit;
I a is the number of parameters in the predictive model (which will

grow with the number of clusters);
I n is the number of observations.
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Assessing dataset relevance

Assessing dataset relevance: illustration

I For our 2 categorical datasets with the relevant and irrelevant
clusterings, use PReMiuM to fit profile regression models to each.

I For clusterings sampled from the resulting posteriors, calculate
BIC scores:
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Clearly the partitions derived from
Dataset 2 (red) result in much
better models for the response
than those from Dataset 1 (blue).

Dataset 2 is more relevant for this
stratification task.
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Assessing dataset relevance

Confusing clusterings

I In practice, our datasets are much more complex (!)

I Typically, individual datasets will possess both relevant and
irrelevant clustering structures

I e.g. a concatenation of Datasets 1 and 2.

I This presents a challenge for profile regression:
I Can we ensure that we identify the relevant clustering structure?



Concatenated dataset
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Assessing dataset relevance

Confusing clusterings: effects on profile regression

Simulation study
I We simulate datasets similar to the concatenation of Datasets 1

and 2 (p = 10 covariates + 1 response), but vary the numbers of
covariates contributing to the relevant clustering structure.

I We calculate the adjusted Rand index (ARI) between the true
relevant clustering structure, and:

1 The structure inferred using PReMiuM, if we first remove the
irrelevant covariates (gold standard).

2 The structure inferred using PReMiuM with variable selection.
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Assessing dataset relevance

Confusing clusterings: effects on profile regression

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Adjusted Rand Index

D
en

si
ty

3 relevant
5 relevant
7 relevant
9 relevant

Solid lines: gold standard ARI values.
Dashed lines: ARI values obtained using
PReMiuM with variable selection.

If there are many
more irrelevant than
relevant covariates,
we will home in on
the irrelevant
clustering structure.

Can we resolve
this?

S Richardson (MRC Biostatistics Unit) Clustering 40 / 50



Assessing dataset relevance

Confusing clusterings: effects on profile regression

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Adjusted Rand Index

D
en

si
ty

3 relevant
5 relevant
7 relevant
9 relevant

Solid lines: gold standard ARI values.
Dashed lines: ARI values obtained using
PReMiuM with variable selection.

If there are many
more irrelevant than
relevant covariates,
we will home in on
the irrelevant
clustering structure.

Can we resolve
this?

S Richardson (MRC Biostatistics Unit) Clustering 40 / 50



Assessing dataset relevance

Confusing clusterings: effects on profile regression

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Adjusted Rand Index

D
en

si
ty

3 relevant
5 relevant
7 relevant
9 relevant

Solid lines: gold standard ARI values.
Dashed lines: ARI values obtained using
PReMiuM with variable selection.

If there are many
more irrelevant than
relevant covariates,
we will home in on
the irrelevant
clustering structure.

Can we resolve
this?

S Richardson (MRC Biostatistics Unit) Clustering 40 / 50



Multiclustering
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Multiclustering

Multiclustering: work in progress

I We refer to the problem of picking out multiple clustering
structures from a single dataset as multiclustering.

I A form of biclustering, in which similarity between covariates is
defined in terms of the similarity in their clustering structure.

I In unsupervised clustering, we may wish to identify all clustering
structures in the dataset.

I For profile regression, the main aim is to identify the clustering
structure that is most predictive of the response.

I We will call the associated covariates ‘relevant’.
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Multiclustering

Multiclustering

I Suppose we know that the covariates can be partitioned into
3 disjoint sets: V (1),V (2) and V (0).

I Those in V (1) define the relevant clustering structure;

I Those in V (2) define an irrelevant clustering structure; and

I Those in V (0) do not contribute to any clustering structure.

I We wish to allocate each covariate to precisely one of these sets.

I Consider categorical indicators, γ j ∈ {0,1,2}, so that

γ j = k ⇐⇒ xj ∈ V (k), k = 0,1,2
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Multiclustering

Multiclustering

I We model two separate clustering structures associated with V (1)

and V (2) using Dirichlet process mixture models (as previously).
I Define z(`)

i to be the latent allocation variable describing the
allocation of the i-th individual in the `-th mixture model, ` = 1,2.

I Similarly:
I φ

(`)
c are the parameters associated with the c-th component in the

`-th mixture model; and
I ψ(`) are the mixture weights for the `-th mixture model.

The discrete covariate model is then

f (xi |γ, {z(`)}, {φ(`)}, φ(0)) =
J∏

j=1

(
φ
(1)

z(1)
i , j

(xij)

)1γj=1
(
φ
(2)

z(2)
i , j

(xij)

)1γj=2 (
φ0, j(xij)

)1γj=3
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Multiclustering

Multiclustering
The joint model for x and y given the parameters and fixed effects is:

f (x, y | γ,{z(`)}, {φ(`)}, φ(0), θ, β,w) =
n∏

i=1

p(yi |θ, β,wi , z
(1)
i )f (xi | γ, {z(`)}, {φ(`)}, φ(0)),

where f (xi | γ, {z(`)}, {φ(`)}, φ(0)) is as just given, and

f (yi |θ, β,wi , z
(1)
i ) = qyi (1− q)yi , with q = logit−1(θ

z(1)
i

+ βT wi).

Crucially, note that we model yi as being conditionally dependent on
z(1)

i , but not on z(2)
i .

Thus, the model for yi depends on the cluster allocation of the i-th
individual only in the relevant clustering structure, and not in the
irrelevant clustering structure.
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Multiclustering

Application: tumour subtype characterisation

I A motivating application for multiclustering is tumour subtyping.

I Tumours are often subtyped on the basis of morphological
features, with different subtypes having different prognoses.

I There is considerable interest in:
1 Characterising the molecular profiles of existing subtypes; and
2 Determining novel subtypes from molecular data.

I We would like to be able to exploit all available molecular datasets,
and avoid the confusing clusterings problem.

I TCGA (The Cancer Genome Atlas) is a repository of molecular
datasets for different cancers.

I We wish to use these datasets to identify molecular profiles for
4 known breast cancer subtypes (Luminal A/B, Her2, basal-like).
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Multiclustering

Application: tumour subtype characterisation

Multiclustering is a work in progress, but we can still use the method
described before to assess the relevance of different molecular
datasets for the breast cancer subtype prediction problem.

Individual datasets n = 348 + 2 concatenated pairs + 1
concatenated triple
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Crudely concatenating all datasets is not always the best option!
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Multiclustering

Concluding comments

I DP Clustering is a natural and flexible approach to investigate
dependence and complex multifactorial effects

I There is no direct correspondence between variables that
co-cluster and existence of interactions BUT

I useful summaries can be extracted from clustering output

I for categorical variables, can eliminate covariates irrelevant for
clustering in the search for interactions:

→ huge reduction of model space

I other useful summaries?
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Multiclustering

Concluding comments

I In biomedicine, supervised clustering is particularly appealing

I There are clear benefits to use joint modelling of cluster structure
and outcome as implemented in profile regression

I Increasing number of complementary data sets are becoming
available for better characterisation of patients profiles, and for
treatment stratification

I Current integrative clustering models (e.g. iCluster, MDI, BCC, ...)
are unsupervised and treat all data sources on an equal footing

I We show that this can lead to a ‘confused’ (unhelpful for prediction)
clustering structure

I We propose a new supervised clustering model which distinguishes
2 types of clustering structures (or more?)
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Multiclustering
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