Adaptive Multiple Importance Sampling

Pierre Pudlo (pierre.pudlo@univ-amu.fr)

Aix-Marseille Université Faculté des Sciences Institut de Mathématiques de Marseille (12M)

02 / 29 / 2016

4 ロ ト () + 1 () +

Table of Contents

1 Basics on Importance sampling

- 2 Multiple Importance Sampling
- 3 Adaptive Multiple Importance Sampling
- 4 Modified Adaptive Multiple Importance Sampling
- **5** Consistency Results

イロト イロト イヨト イヨト 三日

3/21

Aim

Approximate a target distribution $\Pi(dx) = \pi(x)dx$ with a weighted Monte Carlo sample:

$$\Pi \approx \frac{1}{N} \sum_{i=1}^{N} w_i \delta_{x_i}$$

by sampling from an **instrumental** distribution Q(dx) = q(x) dx:

$$x_i \sim^{\mathsf{iid}} Q$$
 and $w_i = w(x_i) = \pi(x_i) \Big/ q(x_i)$

イロト イロト イヨト イヨト 三日

3/21

Aim

Approximate a target distribution $\Pi(dx)=\pi(x)dx$ with a weighted Monte Carlo sample:

$$\Pi \approx \frac{1}{N} \sum_{i=1}^{N} w_i \delta_{x_i}$$

by sampling from an **instrumental** distribution Q(dx) = q(x) dx:

$$x_i \sim^{\mathsf{iid}} Q$$
 and $w_i = w(x_i) = \pi(x_i) \Big/ q(x_i)$

• Approximating the target means that, for a large class of function ψ ,

$$\int \psi(x) \Pi(dx) \approx \frac{1}{N} \sum_{i=1}^{N} w_i \ \psi(x_i)$$

Aim

Approximate a target distribution $\Pi(dx)=\pi(x)dx$ with a weighted Monte Carlo sample:

$$\Pi \approx \frac{1}{N} \sum_{i=1}^{N} w_i \delta_{x_i}$$

by sampling from an **instrumental** distribution Q(dx) = q(x) dx:

$$x_i \sim^{\mathsf{iid}} Q$$
 and $w_i = w(x_i) = \pi(x_i) \Big/ q(x_i)$

• Approximating the target means that, for a large class of function ψ ,

$$\int \psi(x) \Pi(dx) \approx \frac{1}{N} \sum_{i=1}^{N} w_i \ \psi(x_i)$$

• If $\Pi(dx) \ll Q(dx)$, the approximation is **unbiased**:

$$\int \psi(x)\pi(x) \, dx = \int \psi(x) \frac{\pi(x)}{q(x)} q(x) \, dx$$

3/21

イロン イヨン イヨン イヨン ニヨー

Accuracy depends heavily on the spread of the w_i 's:

1) if
$$w_1 = \mathcal{O}(N)$$
 and $w_2 \ll 1, \dots, w_N \ll 1$, then
 $\frac{1}{N} \sum_{i=1}^N w_i \ \psi(x_i) \approx \frac{w_1}{N} \psi(x_1)$
 \implies same accuracy as a Monte Carlo sample of size 1

Accuracy depends heavily on the spread of the w_i 's:

1) if
$$w_1 = \mathcal{O}(N)$$
 and $w_2 \ll 1, \dots, w_N \ll 1$, then
 $\frac{1}{N} \sum_{i=1}^N w_i \ \psi(x_i) \approx \frac{w_1}{N} \psi(x_1)$
 \implies same accuracy as a Monte Carlo sample of size 1

2 if
$$Q = \Pi$$
, then $w_1 = \ldots = w_N = 1$
 \implies same accuracy as a Monte Carlo sample of size N

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

4/21

Accuracy depends heavily on the spread of the w_i 's:

1 if
$$w_1 = \mathcal{O}(N)$$
 and $w_2 \ll 1, \dots, w_N \ll 1$, then
 $\frac{1}{N} \sum_{i=1}^N w_i \ \psi(x_i) \approx \frac{w_1}{N} \psi(x_1)$
 \implies same accuracy as a Monte Carlo sample of size 1

2 if
$$Q = \Pi$$
, then $w_1 = \ldots = w_N = 1$
 \implies same accuracy as a Monte Carlo sample of size N

Effective Sample Size

$$\mathsf{ESS} = \left(\sum_{i=1}^N w_i\right)^2 \Big/ \sum_{i=1}^N w_i^2$$

Accuracy depends heavily on the spread of the w_i 's:

1 if
$$w_1 = \mathcal{O}(N)$$
 and $w_2 \ll 1, \dots, w_N \ll 1$, then
 $\frac{1}{N} \sum_{i=1}^N w_i \ \psi(x_i) \approx \frac{w_1}{N} \psi(x_1)$
 \implies same accuracy as a Monte Carlo sample of size 1

2 if
$$Q = \Pi$$
, then $w_1 = \ldots = w_N = 1$
 \implies same accuracy as a Monte Carlo sample of size N

Effective Sample Size

$$\mathsf{ESS} = \left(\sum_{i=1}^N w_i\right)^2 \Big/ \sum_{i=1}^N w_i^2$$

1 if $w_1 = \mathcal{O}(N)$ and $w_2 \ll 1, \dots, w_N \ll 1$, then ESS ≈ 1 2 if $w_1 = \dots = w_N = 1$, then ESS = N

Table of Contents

- 1 Basics on Importance sampling
- 2 Multiple Importance Sampling
- 3 Adaptive Multiple Importance Sampling
- 4 Modified Adaptive Multiple Importance Sampling
- **5** Consistency Results

At our disposal: T instrumental distributions $Q^t(dx) = q^t(x)dx$, $t = 1, \ldots, T$

Several instrumental distributions

 $\Omega_T = N_1 + \ldots + N_T$ simulations from T instrumental distributions:

 $\begin{array}{ccc} x_1^1,\ldots,x_{N_1}^1\sim^{\mathrm{iid}}q^1(x)dx & \quad \mathrm{and} \ w_i^1=\pi(x_i^1)/q^1(x_i^1) \\ & \vdots & \vdots & & \vdots \\ x_1^T,\ldots,x_{N_T}^T\sim^{\mathrm{iid}}q^T(x)dx & \quad \mathrm{and} \ w_i^T=\pi(x_i^T)/q^T(x_i^T) \end{array}$

At our disposal: T instrumental distributions $Q^t(dx) = q^t(x)dx$, $t = 1, \ldots, T$

Several instrumental distributions

 $\Omega_T = N_1 + \ldots + N_T$ simulations from T instrumental distributions:

$$\begin{array}{ccc} x_1^1,\ldots,x_{N_1}^1\sim^{\mathrm{iid}}q^1(x)dx & \quad \text{and} \ w_i^1=\pi(x_i^1)/q^1(x_i^1) \\ & \vdots & \vdots & & \vdots \\ x_1^T,\ldots,x_{N_T}^T\sim^{\mathrm{iid}}q^T(x)dx & \quad \mathrm{and} \ w_i^T=\pi(x_i^T)/q^T(x_i^T) \end{array}$$

• Merge weighted samples:
$$\Pi \approx \frac{1}{\Omega_T} \sum_{t=1}^T \sum_{i=1}^{N_T} w_i^t \delta_{x_i^t}$$

6/21

At our disposal: T instrumental distributions $Q^t(dx) = q^t(x)dx$, $t = 1, \ldots, T$

Several instrumental distributions

 $\Omega_T = N_1 + \ldots + N_T$ simulations from T instrumental distributions:

$$\begin{array}{ccc} x_1^1,\ldots,x_{N_1}^1\sim^{\mathrm{iid}}q^1(x)dx & \quad \mathrm{and} \ w_i^1=\pi(x_i^1)/q^1(x_i^1) \\ & \vdots & \vdots & & \vdots \\ x_1^T,\ldots,x_{N_T}^T\sim^{\mathrm{iid}}q^T(x)dx & \quad \mathrm{and} \ w_i^T=\pi(x_i^T)/q^T(x_i^T) \end{array}$$

• Merge weighted samples:
$$\Pi pprox rac{1}{\Omega_T} \sum_{t=1}^T \sum_{i=1}^{N_T} w_i^t \delta_{x_i^t}$$

• Is still unbiased

At our disposal: T instrumental distributions $Q^t(dx) = q^t(x)dx$, $t = 1, \ldots, T$

Several instrumental distributions

 $\Omega_T = N_1 + \ldots + N_T$ simulations from T instrumental distributions:

$$\begin{array}{ccc} x_1^1,\ldots,x_{N_1}^1\sim^{\mathrm{iid}}q^1(x)dx & \quad \mathrm{and} \ w_i^1=\pi(x_i^1)/q^1(x_i^1) \\ & \vdots & \vdots & \vdots \\ x_1^T,\ldots,x_{N_T}^T\sim^{\mathrm{iid}}q^T(x)dx & \quad \mathrm{and} \ w_i^T=\pi(x_i^T)/q^T(x_i^T) \end{array}$$

• Merge weighted samples:
$$\Pi pprox rac{1}{\Omega_T} \sum_{t=1}^T \sum_{i=1}^{N_T} w_i^t \delta_{x_i^t}$$

- Is still unbiased
- But, if one weight is much larger than all the others, merging does not solve the issue

At our disposal: T instrumental distributions $Q^t(dx) = q^t(x)dx$, $t = 1, \dots, T$

Several instrumental distributions

 $\Omega_T = N_1 + \ldots + N_T$ simulations from T instrumental distributions:

$$\begin{array}{ccc} x_1^1,\ldots,x_{N_1}^1\sim^{\mathrm{iid}}q^1(x)dx & \quad \mathrm{and} \ w_i^1=\pi(x_i^1)/q^1(x_i^1) \\ & \vdots & \vdots & & \vdots \\ x_1^T,\ldots,x_{N_T}^T\sim^{\mathrm{iid}}q^T(x)dx & \quad \mathrm{and} \ w_i^T=\pi(x_i^T)/q^T(x_i^T) \end{array}$$

• Merge weighted samples:
$$\Pi pprox rac{1}{\Omega_T} \sum_{t=1}^T \sum_{i=1}^{N_T} w_i^t \delta_{x_i^t}$$

- Is still unbiased
- But, if one weight is much larger than all the others, merging does not solve the issue

Basic merging inherits property of the worst instrumental distribution among $Q^1,\ldots,Q^T.$

Several instrumental distributions

 $\Omega_T = N_1 + \ldots + N_T$ simulations from T instrumental distributions:

$$\begin{array}{ccc} x_1^1,\ldots,x_{N_1}^1\sim^{\mathrm{iid}}q^1(x)dx & \quad \mathrm{and} \ w_i^1=\pi(x_i^1)/q^1(x_i^1) \\ & \vdots & \vdots & & \vdots \\ x_1^T,\ldots,x_{N_T}^T\sim^{\mathrm{iid}}q^T(x)dx & \quad \mathrm{and} \ w_i^T=\pi(x_i^T)/q^T(x_i^T) \end{array}$$

• Interpret all x_i^t as drawn from the mixture $q_{\text{mixt}}(x) = \sum_{t=1}^T \frac{N_t}{\Omega_T} q^t(x)$ & replace all weights with $\widetilde{w}_i^t = \pi(x_i^t)/q_{\text{mixt}}(x_i^t)$

Several instrumental distributions

 $\Omega_T = N_1 + \ldots + N_T$ simulations from T instrumental distributions:

 $\begin{array}{ccc} x_1^1,\ldots,x_{N_1}^1\sim^{\mathrm{iid}}q^1(x)dx & \quad \mathrm{and} \ w_i^1=\pi(x_i^1)/q^1(x_i^1) \\ & \vdots & \vdots & & \vdots \\ x_1^T,\ldots,x_{N_T}^T\sim^{\mathrm{iid}}q^T(x)dx & \quad \mathrm{and} \ w_i^T=\pi(x_i^T)/q^T(x_i^T) \end{array}$

• Interpret all x_i^t as drawn from the mixture $q_{\text{mixt}}(x) = \sum_{t=1}^T \frac{N_t}{\Omega_T} q^t(x)$ & replace all weights with $\widetilde{w}_i^t = \pi(x_i^t)/q_{\text{mixt}}(x_i^t)$

 Stabilises the approximation by reducing the variance of the weights & remains unbiased

[Veach and Guibas (1995); Owen and Zhou (2000)]

Why does the above trick stabilize the approximation?

• $w_i^t = \pi(x_i^t)/q^t(x_i^t)$ is large when $q^t(x_i^t) \ll \pi(x_i^t)$

(ロ) (四) (E) (E) (E)

8/21

Why does the above trick stabilize the approximation?

- $w_i^t = \pi(x_i^t)/q^t(x_i^t)$ is large when $q^t(x_i^t) \ll \pi(x_i^t)$
- which means that \boldsymbol{x}_i^t is in the tail of \boldsymbol{q}^t and
 - 1 either x_i^t is not in the tail of the target Π
 - 2 or Π has larger tails than the instrumental Q^t

8/21

Why does the above trick stabilize the approximation?

- $w_i^t = \pi(x_i^t)/q^t(x_i^t)$ is large when $q^t(x_i^t) \ll \pi(x_i^t)$
- which means that x_i^t is in the tail of q^t and
 - 1 either x_i^t is not in the tail of the target Π
 - 2 or Π has larger tails than the instrumental Q^t

- The mixture distribution Q_{mixt} of density $q_{\text{mixt}}(x) = \sum_{t=1}^{I} \frac{N_t}{\Omega_T} q^t(x)$:
 - has relatively high density as soon as one of the instrumentals has relatively high density
 - 2 has tails which decrease as the instrumental of largest tails.

Why does the above trick stabilize the approximation?

- $w_i^t = \pi(x_i^t)/q^t(x_i^t)$ is large when $q^t(x_i^t) \ll \pi(x_i^t)$
- which means that x_i^t is in the tail of q^t and
 - 1 either x_i^t is not in the tail of the target Π
 - 2 or Π has larger tails than the instrumental Q^t

- The mixture distribution Q_{mixt} of density $q_{\text{mixt}}(x) = \sum_{t=1}^{I} \frac{N_t}{\Omega_T} q^t(x)$:
 - 1 has relatively high density as soon as one of the instrumentals has relatively high density
 - 2 has tails which decrease as the instrumental of largest tails.

The clever merging with "mixture" weights inherits properties of the best instrumental distributions among Q^1, \ldots, Q^T .

Table of Contents

- 1 Basics on Importance sampling
- 2 Multiple Importance Sampling
- 3 Adaptive Multiple Importance Sampling
- 4 Modified Adaptive Multiple Importance Sampling
- **5** Consistency Results

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1, \ldots, x_{N_1}^1$ from $Q(\widehat{\theta}_1)$ where $\widehat{\theta}_1$ is a first guess

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$heta$$
 with $\widehat{ heta}_2 = rac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$\theta$$
 with $\widehat{\theta}_2 = \frac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

• Draw a second sample $x_1^2,\ldots,x_{N_2}^2$ from $Q(\widehat{\theta}_2)$

N.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$\theta$$
 with $\widehat{\theta}_2 = \frac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

• Draw a second sample $x_1^2,\ldots,x_{N_2}^2$ from $Q(\widehat{\theta}_2)$

N.

• Adapt
$$\theta$$
 with $\widehat{\theta}_3 = \frac{1}{N_2} \sum_{i=1}^{N_2} w_i^2 h(x_i^2)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$\theta$$
 with $\widehat{\theta}_2 = \frac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

• Draw a second sample $x_1^2,\ldots,x_{N_2}^2$ from $Q(\widehat{\theta}_2)$

N.

• Adapt
$$\theta$$
 with $\widehat{\theta}_3 = \frac{1}{N_2} \sum_{i=1}^{N_2} w_i^2 h(x_i^2)$

Draw a third sample . . .

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$\theta$$
 with $\widehat{\theta}_2 = \frac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

• Draw a second sample $x_1^2,\ldots,x_{N_2}^2$ from $Q(\widehat{\theta}_2)$

N.

ΔT

• Adapt
$$heta$$
 with $\widehat{ heta}_3 = rac{1}{N_2}\sum_{i=1}^{N_2} w_i^2 h(x_i^2)$

Draw a third sample . . .

$$ightarrow$$
 Return the last sample $\frac{1}{N_T}\sum_{i=1}^{N_T} w_i^T \delta_{x_i^T}$

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$\theta$$
 with $\widehat{\theta}_2 = \frac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

• Draw a second sample $x_1^2,\ldots,x_{N_2}^2$ from $Q(\widehat{ heta}_2)$

• Adapt
$$\theta$$
 with $\widehat{\theta}_3 = \frac{1}{N_2} \sum_{i=1}^{N_2} w_i^2 h(x_i^2)$

Draw a third sample . . .

$$ightarrow$$
 Return the last sample $rac{1}{N_T}\sum_{i=1}^{N_T}w_i^T\delta_{x_i^T}$

Can we do better with merging?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Adaptive Multiple Importance Sampling

Adaptive

A parametrized family of distributions: $\{Q(\theta), \ \theta \in \Theta\}$

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution $\theta^* = \int h(x) \pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$\theta$$
 with $\widehat{\theta}_2 = \frac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

• Draw a second sample $x_1^2,\ldots,x_{N_2}^2$ from $Q(\widehat{ heta}_2)$

N.

- Adapt θ with $\hat{\theta}_3 = \frac{1}{N_1 + N_2} \sum_{t=1}^2 \sum_{i=1}^{N_t} \widetilde{w}_i^t h(x_i^t)$, with "mixture" weights
- Draw a third sample . . .
- → Return the whole sample $\frac{1}{\Omega_T} \sum_{t=1}^T \sum_{i=1}^{N_t} \widetilde{w}_i^t \delta_{x_i^t}$, with "mixture" weights

[Cornuet, Marin, Mira, Robert (2012)]

Adaptive Multiple Importance Sampling (2)

- AMIS uses a clever recycling strategy ("mixture" weights)
 - 1) at the end of the t-iteration to adapting $\theta\text{:}$

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{w}_i^s h(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta}_r)$$

2 at the end of the algorithm to compute the final weights of the output

$$\frac{1}{\Omega_T}\sum_{s=1}^T\sum_{i=1}^{N_s}\widetilde{w}_i^s\delta_{x_i^s} \quad \text{where } \widetilde{w}_i^s=\pi(x_i^s)\Big/\sum_{r=1}^T\frac{N_r}{\Omega_t}q(x_i^s,\widehat{\theta}_r)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

12/21

Adaptive Multiple Importance Sampling (2)

- AMIS uses a clever recycling strategy ("mixture" weights)
 - 1) at the end of the *t*-iteration to adapting θ :

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{\boldsymbol{w}}_i^s h(x_i^s) \quad \text{where } \widetilde{\boldsymbol{w}}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\boldsymbol{\theta}}_r)$$

2 at the end of the algorithm to compute the final weights of the output

$$\frac{1}{\Omega_T}\sum_{s=1}^T\sum_{i=1}^{N_s}\widetilde{w}_i^s\delta_{x_i^s} \quad \text{where } \widetilde{w}_i^s=\pi(x_i^s)\Big/\sum_{r=1}^T\frac{N_r}{\Omega_t}q(x_i^s,\widehat{\theta}_r)$$

- AMIS has good numerical properties, see, e.g.,
 - Cornuet, Marin, Mira and Robert (2012)
 - Sirén, Marttinen and Corander (2011)
 - Šmídl and Hofman (2013)
 - Bugallo, Martino and Corander (2015)
 - Martino, Elvira, Luengo and Corander (2015)

• . . .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のなび

Adaptive Multiple Importance Sampling (2)

- AMIS uses a clever recycling strategy ("mixture" weights)
 - 1) at the end of the *t*-iteration to adapting θ :

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{w}_i^s h(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta}_r)$$

2 at the end of the algorithm to compute the final weights of the output

$$\frac{1}{\Omega_T}\sum_{s=1}^T\sum_{i=1}^{N_s}\widetilde{w}_i^s\delta_{x_i^s} \quad \text{where } \widetilde{w}_i^s=\pi(x_i^s)\Big/\sum_{r=1}^T\frac{N_r}{\Omega_t}q(x_i^s,\widehat{\theta}_r)$$

- AMIS has good numerical properties, see, e.g.,
 - Cornuet, Marin, Mira and Robert (2012)
 - Sirén, Marttinen and Corander (2011)
 - Šmídl and Hofman (2013)
 - Bugallo, Martino and Corander (2015)
 - Martino, Elvira, Luengo and Corander (2015)
 - . . .

But no proof of AMIS' consistency

Why is it difficult?

• At time t, θ is adapted with

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{w}_i^s h(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta_r})$$

Why is it difficult?

• At time t, θ is adapted with

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{w}_i^s h(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta_r})$$

→ $\hat{\theta}_{t+1}$ depends on the whole set of simulations

Why is it difficult?

• At time t, θ is adapted with

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{w}_i^s h(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta_r})$$

- → $\hat{\theta}_{t+1}$ depends on the whole set of simulations
- → the weight \widetilde{w}_1^1 of the first x_1^1 in $\widehat{\theta}_{t+1}$ depends on the whole set of simulations via $\widehat{\theta}_s$, $s = 1, \dots, t$

Why is it difficult?

• At time t, θ is adapted with

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{w}_i^s h(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta_r})$$

- → $\hat{\theta}_{t+1}$ depends on the whole set of simulations
- → the weight \widetilde{w}_1^1 of the first x_1^1 in $\widehat{\theta}_{t+1}$ depends on the whole set of simulations via $\widehat{\theta}_s$, $s = 1, \ldots, t$
- → cannot even compute $\mathbb{E}(\widehat{\theta}_{t+1})$ and study the bias $\mathbb{E}(\widehat{\theta}_{t+1}) \theta^*$

Why is it difficult?

• At time t, θ is adapted with

イロン イロン イヨン イヨン 三日

$$\widehat{\theta}_{t+1} = \frac{1}{\Omega_t} \sum_{s=1}^t \sum_{i=1}^{N_s} \widetilde{w}_i^s h(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^t \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta_r})$$

- → $\hat{\theta}_{t+1}$ depends on the whole set of simulations
- → the weight \widetilde{w}_1^1 of the first x_1^1 in $\widehat{\theta}_{t+1}$ depends on the whole set of simulations via $\widehat{\theta}_s$, $s = 1, \ldots, t$

→ cannot even compute $\mathbb{E}(\widehat{\theta}_{t+1})$ and study the bias $\mathbb{E}(\widehat{\theta}_{t+1}) - \theta^*$

- Same issues with the output
 - → cannot even study the bias between

$$\frac{1}{\Omega_T}\sum_{s=1}^T\sum_{i=1}^{N_T}\widetilde{w}_i^T\psi(x_i^s) \quad \text{and} \quad \int \psi(x)\pi(x)\,dx$$

on test functions $\boldsymbol{\psi}$

Table of Contents

- 1 Basics on Importance sampling
- 2 Multiple Importance Sampling
- 3 Adaptive Multiple Importance Sampling
- 4 Modified Adaptive Multiple Importance Sampling
- **5** Consistency Results

Joint work with

Jean-Michel Marin (U. Montpellier)

& Mohammed Sedki (U. Paris Sud)

Consistency of Adaptive Importance Sampling and Recycling Schemes, http://arxiv.org/abs/1211.2548

Modified Adaptive Multiple Importance Sampling

Adaptive

A parametrized family of distributions: $\{Q(\theta),\ \theta\in\Theta\}$

& adapt the instrumental distribution sequentially by fitting moments. Targeted instrumental distribution $\theta^* = \int h(x)\pi(x) dx$, where h is known.

• Draw a first sample from $x_1^1,\ldots,x_{N_1}^1$ from $Q(\widehat{ heta}_1)$ where $\widehat{ heta}_1$ is a first guess

• Adapt
$$heta$$
 with $\widehat{ heta}_2 = rac{1}{N_1} \sum_{i=1}^{N_1} w_i^1 h(x_i^1)$

• Draw a second sample
$$x_1^2,\ldots,x_{N_2}^2$$
 from $Q(\widehat{ heta}_2)$

• Adapt
$$heta$$
 with $\widehat{ heta}_3 = rac{1}{N_2}\sum_{i=1}^{N_2} w_i^2 h(x_i^2)$ (no recycling here)

Draw a third sample . . .

→ Return the whole sample
$$\frac{1}{\Omega_T} \sum_{t=1}^T \sum_{i=1}^{N_t} \widetilde{w}_i^t \delta_{x_i^t}$$
, with "mixture" weights

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Modified Adaptive Multiple Importance Sampling (2)

 MAMIS uses a clever recycling strategy ("mixture" weights) only at the end of the algorithm to compute the weights of the output:

$$\frac{1}{\Omega_T}\sum_{s=1}^T\sum_{i=1}^{N_s}\widetilde{w}_i^s\delta_{x_i^s} \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^T \frac{N_r}{\Omega_t}q(x_i^s,\widehat{\theta}_r)$$

• But adapt θ naively:

$$\widehat{\theta}_{t+1} = \frac{1}{N_t} \sum_{i=1}^{N_t} w_i^t h(x_i^t) \quad \text{where } w_i^t = \pi(x_i^t) \big/ q(x_i^t, \widehat{\theta}_t).$$

Modified Adaptive Multiple Importance Sampling (2)

 MAMIS uses a clever recycling strategy ("mixture" weights) only at the end of the algorithm to compute the weights of the output:

$$\frac{1}{\Omega_T}\sum_{s=1}^T\sum_{i=1}^{N_s}\widetilde{w}_i^s\delta_{x_i^s} \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^T \frac{N_r}{\Omega_t}q(x_i^s,\widehat{\theta}_r)$$

• But adapt θ naively:

$$\widehat{\theta}_{t+1} = \frac{1}{N_t} \sum_{i=1}^{N_t} w_i^t h(x_i^t) \quad \text{where } w_i^t = \pi(x_i^t) \big/ q(x_i^t, \widehat{\theta}_t).$$

 MAMIS has almost the same good numerical properties, see references below

Modified Adaptive Multiple Importance Sampling (2)

 MAMIS uses a clever recycling strategy ("mixture" weights) only at the end of the algorithm to compute the weights of the output:

$$\frac{1}{\Omega_T}\sum_{s=1}^T\sum_{i=1}^{N_s}\widetilde{w}_i^s\delta_{x_i^s} \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^T \frac{N_r}{\Omega_t}q(x_i^s,\widehat{\theta}_r)$$

• But adapt θ naively:

$$\widehat{\theta}_{t+1} = \frac{1}{N_t} \sum_{i=1}^{N_t} w_i^t h(x_i^t) \quad \text{where } w_i^t = \pi(x_i^t) \big/ q(x_i^t, \widehat{\theta}_t).$$

- MAMIS has almost the same good numerical properties, see references below
- MAMIS is much simple to study

Table of Contents

- 1 Basics on Importance sampling
- 2 Multiple Importance Sampling
- 3 Adaptive Multiple Importance Sampling
- 4 Modified Adaptive Multiple Importance Sampling
- **5** Consistency Results

$$N_1 = N_2 = \dots = N_T = N, \qquad T \text{ fixed}, \qquad N \to \infty$$

$$N_1 = N_2 = \cdots = N_T = N, \qquad T \text{ fixed}, \qquad N \to \infty$$

- Has been used by Douc, Guillin, Marin, Robert (2007) to prove consistency
- The proof is sequential: if $\hat{\theta}_t \to \theta^*$ at time t, does $\hat{\theta}_{t+1} \to \theta^*$?
- Does not indicate how Monte Carlo errors accumulate (or not) over time

$$N_1 = N_2 = \dots = N_T = N, \qquad T \text{ fixed}, \qquad N \to \infty$$

- Has been used by Douc, Guillin, Marin, Robert (2007) to prove consistency
- The proof is sequential: if $\hat{\theta}_t \to \theta^*$ at time t, does $\hat{\theta}_{t+1} \to \theta^*$?
- Does not indicate how Monte Carlo errors accumulate (or not) over time
- Instead we assume that

$$N_1, N_2, \ldots$$
 fixed, $T \to \infty$

• A first asymptotic framework we do not use is

$$N_1 = N_2 = \dots = N_T = N, \qquad T \text{ fixed}, \qquad N \to \infty$$

- Has been used by Douc, Guillin, Marin, Robert (2007) to prove consistency
- The proof is sequential: if $\hat{\theta}_t \to \theta^*$ at time t, does $\hat{\theta}_{t+1} \to \theta^*$?
- Does not indicate how Monte Carlo errors accumulate (or not) over time
- Instead we assume that

$$N_1, N_2, \ldots$$
 fixed, $T \to \infty$

 Models the situation where we add iterations over time until being happy with the output

$$N_1 = N_2 = \dots = N_T = N, \qquad T \text{ fixed}, \qquad N \to \infty$$

- Has been used by Douc, Guillin, Marin, Robert (2007) to prove consistency
- The proof is sequential: if $\hat{\theta}_t \to \theta^*$ at time t, does $\hat{\theta}_{t+1} \to \theta^*$?
- Does not indicate how Monte Carlo errors accumulate (or not) over time
- Instead we assume that

$$N_1, N_2, \ldots$$
 fixed, $T \to \infty$

- Models the situation where we add iterations over time until being happy with the output

$$N_1 = N_2 = \dots = N_T = N, \qquad T \text{ fixed}, \qquad N \to \infty$$

- Has been used by Douc, Guillin, Marin, Robert (2007) to prove consistency
- The proof is sequential: if $\hat{\theta}_t \to \theta^*$ at time t, does $\hat{\theta}_{t+1} \to \theta^*$?
- Does not indicate how Monte Carlo errors accumulate (or not) over time
- Instead we assume that

$$N_1, N_2, \ldots$$
 fixed, $T \to \infty$

- Models the situation where we add iterations over time until being happy with the output
- Is more difficult to study because, at time t, we have a value
 *θ*t that comes from a finite sample (of fixed size)
- We also assume that $N_t \to \infty$ when $t \to \infty$.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

20/21

(H1)
$$\sum_{t=1}^{\infty} 1/N_t$$
 is finite
(H2) $\int \|h(x)\|^2 \frac{\pi(x)}{q(x,\theta)} \pi(x) dx$ is finite for all θ and depends continuously on θ

(H1)
$$\sum_{t=1}^{\infty} 1/N_t$$
 is finite
(H2) $\int \|h(x)\|^2 \frac{\pi(x)}{q(x,\theta)} \pi(x) dx$ is finite for all θ and depends continuously on θ

Theorem 1

Under (H1) and (H2), when $T \to \infty$, $\lim \widehat{\theta}_T = \theta^*$ almost surely

(H1)
$$\sum_{t=1}^{\infty} 1/N_t$$
 is finite
(H2) $\int \|h(x)\|^2 \frac{\pi(x)}{q(x,\theta)} \pi(x) dx$ is finite for all θ and depends continuously on θ

Theorem 1

Under (H1) and (H2), when $T \to \infty$, $\lim \widehat{\theta}_T = \theta^*$ almost surely

Remark 1. Almost sure convergence is needed to deal with

$$q_{\text{mixt}}^{T}(x) = \sum_{t=1}^{T} \frac{N_{t}}{\Omega_{T}} q\left(x, \widehat{\theta}_{t}\right)$$

because it depends on the path $\widehat{ heta_1},\ldots,\widehat{ heta_T}$

(H1)
$$\sum_{t=1}^{\infty} 1/N_t$$
 is finite
(H2) $\int \|h(x)\|^2 \frac{\pi(x)}{q(x,\theta)} \pi(x) dx$ is finite for all θ and depends continuously on θ

Theorem 1

Under (H1) and (H2), when $T \to \infty$, $\lim \hat{\theta}_T = \theta^*$ almost surely

Remark 2. $\hat{\theta}_{t+1}$ is an average over a new sample when compared to $\hat{\theta}_t$

 \implies A price to pay to get almost sure convergence. Here L^2 instead of L^1 , see (H2)

Consistency of MAMIS output

Theorem 2

Assume that $\sum 1/N_t$ is finite, and that $\widehat{\theta}_T \to \theta^*$ almost surely. Let

$$\widehat{\Pi}_{T}^{\text{MAMIS}}(\psi) = \frac{1}{\Omega_{T}} \sum_{s=1}^{T} \sum_{i=1}^{N_{s}} \widetilde{w}_{i}^{s} \psi(x_{i}^{s}) \quad \text{where } \ \widetilde{w}_{i}^{s} = \pi(x_{i}^{s}) \Big/ \sum_{r=1}^{T} \frac{N_{r}}{\Omega_{t}} q(x_{i}^{s}, \widehat{\theta}_{r}).$$

Then, when $T \to \infty$, over a large class of functions ψ ,

$$\lim \widehat{\Pi}_T^{\mathrm{MAMIS}}(\psi) = \int \psi(x) \pi(x) dx \quad \text{almost surely}.$$

Consistency of MAMIS output

Theorem 2

Assume that $\sum 1/N_t$ is finite, and that $\widehat{\theta}_T \to \theta^*$ almost surely. Let

$$\widehat{\Pi}_{T}^{\text{MAMIS}}(\psi) = \frac{1}{\Omega_{T}} \sum_{s=1}^{T} \sum_{i=1}^{N_{s}} \widetilde{w}_{i}^{s} \psi(x_{i}^{s}) \quad \text{where } \widetilde{w}_{i}^{s} = \pi(x_{i}^{s}) \Big/ \sum_{r=1}^{T} \frac{N_{r}}{\Omega_{t}} q(x_{i}^{s}, \widehat{\theta_{r}}).$$

Then, when $T \to \infty$, over a large class of functions ψ ,

$$\lim \widehat{\Pi}_T^{\text{MAMIS}}(\psi) = \int \psi(x) \pi(x) dx \quad \text{almost surely}.$$

Consistency of MAMIS output

Theorem 2

Assume that $\sum 1/N_t$ is finite, and that $\widehat{\theta}_T \to \theta^*$ almost surely. Let

$$\widehat{\Pi}_T^{\text{MAMIS}}(\psi) = \frac{1}{\Omega_T} \sum_{s=1}^T \sum_{i=1}^{N_s} \widetilde{w}_i^s \psi(x_i^s) \quad \text{where } \widetilde{w}_i^s = \pi(x_i^s) \Big/ \sum_{r=1}^T \frac{N_r}{\Omega_t} q(x_i^s, \widehat{\theta}_r).$$

Then, when $T \to \infty$, over a large class^{*} of functions ψ ,

$$\lim \widehat{\Pi}_T^{\text{MAMIS}}(\psi) = \int \psi(x) \pi(x) dx \quad \text{almost surely}.$$

*The class depends on the tails of the instrumentals and the target

E.g., if $\Pi(dx)$ has Gaussian tails or exponentially decreasing tails, and $Q(dx, \theta)$ has polynomials tails in a neighborhood of θ^* , then every polynomials $\psi(x)$ are in this class.