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Importance sampling

Aim

Approximate a target distribution Π(dx) = π(x)dx with a weighted Monte
Carlo sample:

Π ≈ 1

N

N∑
i=1

wiδxi

by sampling from an instrumental distribution Q(dx) = q(x) dx:

xi ∼iid Q and wi = w(xi) = π(xi)
/
q(xi)

• Approximating the target means that, for a large class of function ψ,∫
ψ(x)Π(dx) ≈ 1

N

N∑
i=1

wi ψ(xi)

• If Π(dx)� Q(dx), the approximation is unbiased:∫
ψ(x)π(x) dx =

∫
ψ(x)

π(x)

q(x)
q(x) dx
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Importance sampling (2)

Accuracy depends heavily on the spread of the wi’s:

1 if w1 = O(N) and w2 � 1, . . . , wN � 1, then

1

N

N∑
i=1

wi ψ(xi) ≈
w1

N
ψ(x1)

=⇒ same accuracy as a Monte Carlo sample of size 1

2 if Q = Π, then w1 = . . . = wN = 1
=⇒ same accuracy as a Monte Carlo sample of size N

Effective Sample Size

ESS =

(
N∑
i=1

wi

)2/ N∑
i=1

w2
i

1 if w1 = O(N) and w2 � 1, . . . , wN � 1, then ESS ≈ 1

2 if w1 = . . . = wN = 1, then ESS = N
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Multiple Importance Sampling
At our disposal: T instrumental distributions Qt(dx) = qt(x)dx, t = 1, . . . , T

Several instrumental distributions

ΩT = N1 + . . .+NT simulations from T instrumental distributions:

x11, . . . , x
1
N1
∼iid q1(x)dx and w1

i = π(x1i )/q1(x1i )

...
...

...

xT1 , . . . , x
T
NT
∼iid qT (x)dx and wT

i = π(xTi )/qT (xTi )

• Merge weighted samples: Π ≈ 1

ΩT

T∑
t=1

NT∑
i=1

wt
iδxt

i

• Is still unbiased

• But, if one weight is much larger than all the others, merging does not
solve the issue

Basic merging inherits property of the worst instrumental distribution among
Q1, . . . , QT .

6 / 21



Multiple Importance Sampling
At our disposal: T instrumental distributions Qt(dx) = qt(x)dx, t = 1, . . . , T

Several instrumental distributions

ΩT = N1 + . . .+NT simulations from T instrumental distributions:

x11, . . . , x
1
N1
∼iid q1(x)dx and w1

i = π(x1i )/q1(x1i )

...
...

...

xT1 , . . . , x
T
NT
∼iid qT (x)dx and wT

i = π(xTi )/qT (xTi )

• Merge weighted samples: Π ≈ 1

ΩT

T∑
t=1

NT∑
i=1

wt
iδxt

i

• Is still unbiased

• But, if one weight is much larger than all the others, merging does not
solve the issue

Basic merging inherits property of the worst instrumental distribution among
Q1, . . . , QT .

6 / 21



Multiple Importance Sampling
At our disposal: T instrumental distributions Qt(dx) = qt(x)dx, t = 1, . . . , T

Several instrumental distributions

ΩT = N1 + . . .+NT simulations from T instrumental distributions:

x11, . . . , x
1
N1
∼iid q1(x)dx and w1

i = π(x1i )/q1(x1i )

...
...

...

xT1 , . . . , x
T
NT
∼iid qT (x)dx and wT

i = π(xTi )/qT (xTi )

• Merge weighted samples: Π ≈ 1

ΩT

T∑
t=1

NT∑
i=1

wt
iδxt

i

• Is still unbiased

• But, if one weight is much larger than all the others, merging does not
solve the issue

Basic merging inherits property of the worst instrumental distribution among
Q1, . . . , QT .

6 / 21



Multiple Importance Sampling
At our disposal: T instrumental distributions Qt(dx) = qt(x)dx, t = 1, . . . , T

Several instrumental distributions

ΩT = N1 + . . .+NT simulations from T instrumental distributions:

x11, . . . , x
1
N1
∼iid q1(x)dx and w1

i = π(x1i )/q1(x1i )

...
...

...

xT1 , . . . , x
T
NT
∼iid qT (x)dx and wT

i = π(xTi )/qT (xTi )

• Merge weighted samples: Π ≈ 1

ΩT

T∑
t=1

NT∑
i=1

wt
iδxt

i

• Is still unbiased

• But, if one weight is much larger than all the others, merging does not
solve the issue

Basic merging inherits property of the worst instrumental distribution among
Q1, . . . , QT .

6 / 21



Multiple Importance Sampling
At our disposal: T instrumental distributions Qt(dx) = qt(x)dx, t = 1, . . . , T

Several instrumental distributions

ΩT = N1 + . . .+NT simulations from T instrumental distributions:

x11, . . . , x
1
N1
∼iid q1(x)dx and w1

i = π(x1i )/q1(x1i )

...
...

...

xT1 , . . . , x
T
NT
∼iid qT (x)dx and wT

i = π(xTi )/qT (xTi )

• Merge weighted samples: Π ≈ 1

ΩT

T∑
t=1

NT∑
i=1

wt
iδxt

i

• Is still unbiased

• But, if one weight is much larger than all the others, merging does not
solve the issue

Basic merging inherits property of the worst instrumental distribution among
Q1, . . . , QT .

6 / 21



Multiple Importance Sampling (2)

Several instrumental distributions

ΩT = N1 + . . .+NT simulations from T instrumental distributions:

x11, . . . , x
1
N1
∼iid q1(x)dx and w1

i = π(x1i )/q1(x1i )

...
...

...

xT1 , . . . , x
T
NT
∼iid qT (x)dx and wT

i = π(xTi )/qT (xTi )

• Interpret all xti as drawn from the mixture qmixt(x) =
T∑

t=1

Nt

ΩT
qt(x)

& replace all weights with w̃t
i = π(xti)

/
qmixt(x

t
i)

• Stabilises the approximation by reducing the variance of the weights
& remains unbiased

[Veach and Guibas (1995); Owen and Zhou (2000)]
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Multiple Importance Sampling (3)

Why does the above trick stabilize the approximation?

• wt
i = π(xti)/q

t(xti) is large when qt(xti)� π(xti)

• which means that xti is in the tail of qt and

1 either xti is not in the tail of the target Π

2 or Π has larger tails than the instrumental Qt

• The mixture distribution Qmixt of density qmixt(x) =

T∑
t=1

Nt

ΩT
qt(x):

1 has relatively high density as soon as one of the instrumentals has relatively
high density

2 has tails which decrease as the instrumental of largest tails.

The clever merging with “mixture” weights inherits properties of the best
instrumental distributions among Q1, . . . , QT .
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Adaptive Importance Sampling

Adaptive

A parametrized family of distributions: {Q(θ), θ ∈ Θ}

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution θ∗ =
∫
h(x)π(x)dx, where h is known.

• Draw a first sample from x11, . . . , x
1
N1

from Q(θ̂1) where θ̂1 is a first guess

• Adapt θ with θ̂2 =
1

N1

N1∑
i=1

w1
i h(x1i )

• Draw a second sample x21, . . . , x
2
N2

from Q(θ̂2)

• Adapt θ with θ̂3 =
1

N2

N2∑
i=1

w2
i h(x2i )

• Draw a third sample . . .

: Return the last sample
1

NT

NT∑
i=1

wT
i δxT

i

Can we do better with merging?
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Adaptive Multiple Importance Sampling

Adaptive
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2
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• Adapt θ with θ̂3 =
1

N1 +N2

2∑
t=1

Nt∑
i=1

w̃t
ih(xti), with “mixture” weights

• Draw a third sample . . .

: Return the whole sample
1

ΩT

T∑
t=1

Nt∑
i=1

w̃t
iδxt

i
, with“mixture” weights

[Cornuet, Marin, Mira, Robert (2012)]
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Adaptive Multiple Importance Sampling (2)

• AMIS uses a clever recycling strategy (“mixture” weights)
1 at the end of the t-iteration to adapting θ:

θ̂t+1 =
1

Ωt

t∑
s=1

Ns∑
i=1

w̃s
i h(xsi ) where w̃s

i = π(xsi )
/ t∑

r=1

Nr

Ωt
q(xsi , θ̂r)

2 at the end of the algorithm to compute the final weights of the output

1

ΩT

T∑
s=1

Ns∑
i=1

w̃s
i δxs

i
where w̃s

i = π(xsi )
/ T∑

r=1

Nr

Ωt
q(xsi , θ̂r)

• AMIS has good numerical properties, see, e.g.,
• Cornuet, Marin, Mira and Robert (2012)
• Sirén, Marttinen and Corander (2011)
• Šḿıdl and Hofman (2013)
• Bugallo, Martino and Corander (2015)
• Martino, Elvira, Luengo and Corander (2015)
• . . .

• But no proof of AMIS’ consistency
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• Šḿıdl and Hofman (2013)
• Bugallo, Martino and Corander (2015)
• Martino, Elvira, Luengo and Corander (2015)
• . . .

• But no proof of AMIS’ consistency
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A strange dependency

Why is it difficult?

• At time t, θ is adapted with

θ̂t+1 =
1

Ωt

t∑
s=1

Ns∑
i=1

w̃s
ih(xsi ) where w̃s

i = π(xsi )
/ t∑

r=1

Nr

Ωt
q(xsi , θ̂r)

: θ̂t+1 depends on the whole set of simulations

: the weight w̃1
1 of the first x11 in θ̂t+1 depends on the whole set of

simulations via θ̂s, s = 1, . . . , t

: cannot even compute E
(
θ̂t+1

)
and study the bias E

(
θ̂t+1

)
− θ∗

• Same issues with the output

: cannot even study the bias between

1

ΩT

T∑
s=1

NT∑
i=1

w̃T
i ψ(xsi ) and

∫
ψ(x)π(x) dx

on test functions ψ
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Joint work with

Jean-Michel Marin (U. Montpellier) & Mohammed Sedki (U. Paris Sud)

Consistency of Adaptive Importance Sampling and Recycling Schemes,
http://arxiv.org/abs/1211.2548
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Modified Adaptive Multiple Importance Sampling

Adaptive

A parametrized family of distributions: {Q(θ), θ ∈ Θ}

& adapt the instrumental distribution sequentially by fitting moments.

Targeted instrumental distribution θ∗ =
∫
h(x)π(x) dx, where h is known.

• Draw a first sample from x11, . . . , x
1
N1

from Q(θ̂1) where θ̂1 is a first guess

• Adapt θ with θ̂2 =
1

N1

N1∑
i=1

w1
i h(x1i )

• Draw a second sample x21, . . . , x
2
N2

from Q(θ̂2)

• Adapt θ with θ̂3 =
1

N2

N2∑
i=1

w2
i h(x2i ) (no recycling here)

• Draw a third sample . . .

: Return the whole sample
1

ΩT

T∑
t=1

Nt∑
i=1

w̃t
iδxt

i
, with“mixture” weights
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Modified Adaptive Multiple Importance Sampling (2)

• MAMIS uses a clever recycling strategy (“mixture” weights)
only at the end of the algorithm to compute the weights of the output:

1

ΩT

T∑
s=1

Ns∑
i=1

w̃s
i δxs

i
where w̃s

i = π(xsi )
/ T∑

r=1

Nr

Ωt
q(xsi , θ̂r)

• But adapt θ naively:

θ̂t+1 =
1

Nt

Nt∑
i=1

wt
ih(xti) where wt

i = π(xti)
/
q(xti, θ̂t).

• MAMIS has almost the same good numerical properties, see references
below

• MAMIS is much simple to study
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The asymptotic framework

• A first asymptotic framework we do not use is

N1 = N2 = · · · = NT = N, T fixed, N →∞

• Has been used by Douc, Guillin, Marin, Robert (2007) to prove consistency

• The proof is sequential: if θ̂t → θ∗ at time t, does θ̂t+1 → θ∗?
• Does not indicate how Monte Carlo errors accumulate (or not) over time

• Instead we assume that

N1, N2, . . . fixed, T →∞

• Models the situation where we add iterations over time until being happy
with the output

• Is more difficult to study because, at time t, we have a value θ̂t that comes
from a finite sample (of fixed size)

• We also assume that Nt →∞ when t→∞.
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Consistency of the learning scheme

(H1)
∞∑
t=1

1
/
Nt is finite

(H2)

∫
‖h(x)‖2 π(x)

q(x, θ)
π(x)dx is finite for all θ and

depends continuously on θ

Theorem 1

Under (H1) and (H2), when T →∞, lim θ̂T = θ∗ almost surely
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q(x, θ)
π(x)dx is finite for all θ and

depends continuously on θ

Theorem 1

Under (H1) and (H2), when T →∞, lim θ̂T = θ∗ almost surely

Remark 1. Almost sure convergence is needed to deal with

qTmixt(x) =
T∑

t=1

Nt

ΩT
q
(
x, θ̂t

)
because it depends on the path θ̂1, . . . , θ̂T
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∞∑
t=1

1
/
Nt is finite

(H2)

∫
‖h(x)‖2 π(x)

q(x, θ)
π(x)dx is finite for all θ and

depends continuously on θ

Theorem 1

Under (H1) and (H2), when T →∞, lim θ̂T = θ∗ almost surely

Remark 2. θ̂t+1 is an average over a new sample when compared to θ̂t

=⇒ A price to pay to get almost sure convergence.
=⇒ Here L2 instead of L1, see (H2)
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Consistency of MAMIS output

Theorem 2

Assume that
∑

1/Nt is finite, and that θ̂T → θ∗ almost surely.
Let

Π̂MAMIS
T (ψ) =

1

ΩT

T∑
s=1

Ns∑
i=1

w̃s
iψ(xsi ) where w̃s

i = π(xsi )
/ T∑

r=1

Nr

Ωt
q(xsi , θ̂r).

Then, when T →∞, over a large class

?

of functions ψ,

lim Π̂MAMIS
T (ψ) =

∫
ψ(x)π(x)dx almost surely.

?The class depends on the tails of the instrumentals and the target

E.g., if Π(dx) has Gaussian tails or exponentially decreasing tails,
and Q(dx, θ) has polynomials tails in a neighborhood of θ∗,
then every polynomials ψ(x) are in this class.
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