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Overview

Standard ABC works poorly with high dimensional data - a
major drawback

This talk is preliminary work on an approach to deal with this

Joint work with Theodore Kypraios (Nottingham) and Richard
Everitt (Reading)



Motivation



ABC background

Given:

Observed data yobs
Probability model π(y |θ)

Likelihood cannot be evaluated
Simulation from model straightforward

Prior π(θ)

Aim:

Approximate the posterior π(θ|yobs)



ABC rejection sampling

1 Sample θ from prior

2 Sample y from model

3 If d(y , yobs) ≤ ε accept

4 Return to step 1

Output: sample of θs from an approximate posterior

∝
∫
π(θ)π(y |θ)1[d(y , yobs) ≤ ε]dy

= π(θ)L̃ABC(θ)
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Likelihood estimation interpretation

Can be viewed as importance sampling with a random
likelihood:

1[d(y , yobs) ≤ ε]

i.e. estimate is 1 when y sufficiently close to yobs

and zero otherwise

Target is the same as for the expectation of this:∫
π(y |θ)1[d(y , yobs) ≤ ε]dy = L̃ABC(θ)
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Motivation

ABC uses single sample rejection sampling estimate of
L̃ABC(θ)

Rejection sampling is poor when dim y is large: the probability
of acceptance is very small

This project looks for a more efficient estimate.



Sketch of proposed approach

Input: a particular choice of θ:

Draw several simulated datasets
Perturb and refine the datasets in an attempt to improve their
matches to yobs
Keep track of how likely all steps are

Output: an estimate of L̃ABC(θ)

This will be formalised as a SMC (sequential Monte Carlo)
algorithm

Perturbations will be based on data augmentation ideas

(c.f. Andrieu et al 2012)



Sketch of proposed approach

Input: a particular choice of θ:

Draw several simulated datasets
Perturb and refine the datasets in an attempt to improve their
matches to yobs
Keep track of how likely all steps are

Output: an estimate of L̃ABC(θ)

This will be formalised as a SMC (sequential Monte Carlo)
algorithm

Perturbations will be based on data augmentation ideas

(c.f. Andrieu et al 2012)



ABC curse of dimensionality



Intuition

Two sources of error in ABC are:

1 Poor target approximation of posterior: ε too high
2 Low acceptance rate: ε too low

Choice of ε involves a trade-off between these errors

As dim y increases error 2 becomes more problematic

And the optimal trade-off gets worse
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Results

MSE of ABC estimate under optimal tuning (i.e. ε etc) is

Op(n−4/(4+dim y))

See Barber Voss and Webster (2015)

Above is for plain rejection sampling ABC

Similar results/heuristics for other ABC algorithms
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Summary statistics

Main strategy to avoid curse of dimensionality is dimension
reduction

Replace high dimensional data y with lower dimensional
summaries s(y)

i.e. accept if s(y) ≈ s(yobs) instead of y ≈ yobs

Reduces curse of dimensionality

But typically some information lost - another source of error

And we must choose which summaries to use

Ideally we’d like to avoid this difficult step
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Other approaches to high dimensional ABC

ABC-EP (Barthelmé et al)

Sophisticated regression/classification (Pudlo et al)

Using different summaries for each parameter in ABC MCMC
(Wegmann et al)

Combining marginal analyses (Nott et al)

Neural network density estimation (Murray)

All involve some further approximations and/or costs
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ABC likelihood approximation



Weighting kernel

Let kt(y) be weighting kernels

Each is a symmetric pdf with mode yobs

And limt→∞ kt(y) = δyobs(y)

e.g. Gaussian

kt(y) ∝ exp

[
−d(y , yobs)

2

2ε2t

]
where εt → 0

or uniform
kt(y) ∝ 1[d(y , yobs) ≤ εt ]
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Approximate likelihoods

Consider the approximate likelihood

LABC,t(θ) =

∫
π(y |θ)kt(y)dy

Note that limt→∞ LABC,t(θ) = π(yobs|θ), the true likelihood

Also, under a uniform kernel LABC,t(θ) ∝ L̃ABC(θ)



Tempering scheme

Fix some value of θ

Define a sequence of unnormalised target densities

ft(y) = π(y |θ)kt(y)

Let Zt be the associated normalising constant i.e.

Zt =

∫
π(y |θ)kt(y)dy

This equals LABC,t

i.e. ABC likelihoods can be viewed as intractable normalising
constants
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Ideal SMC scheme

Perform SMC with unnormalised targets ft(y)

This let us form an unbiased estimate of ZT/Z1

Ensure Z1 = 1

(e.g. Gaussian weight with ε1 =∞ to give ft(x) = π(x |θ))

We now have an unbiased estimate of the ABC likelihood
LABC,T

Problem: the ft(y)s are intractable as they involve π(y |θ)

Proposed solution: data augmentation



Ideal SMC scheme

Perform SMC with unnormalised targets ft(y)

This let us form an unbiased estimate of ZT/Z1

Ensure Z1 = 1

(e.g. Gaussian weight with ε1 =∞ to give ft(x) = π(x |θ))

We now have an unbiased estimate of the ABC likelihood
LABC,T

Problem: the ft(y)s are intractable as they involve π(y |θ)

Proposed solution: data augmentation



Data augmentation approach



Model assumptions I

Suppose there are latent variables x

Such that π(x , y |θ) is tractable

and y = y(x) (a deterministic function)

Can think of x as the full details of a simulation process

And y(x) as partial observations

Then π(x , y |θ) = π(x |θ)
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Model assumptions II

Assume that we have well behaved MCMC kernels targeting
π(x |θ)

(Details of “well behaved” later)



Approximate likelihood

We can write our approximate likelihood in terms of x :

LABC,t(θ)=

∫
π(y |θ)kt(y)dy

=

∫
π(x , y |θ)kt(y)dxdy

=

∫
π(x |θ)kt(y(x))dx



Tempering scheme

Fix some value of θ

Define a sequence of unnormalised target densities

ft(x) = π(x |θ)kt(y(x))

Let Zt be the associated normalising constant, then:

Zt =

∫
π(x |θ)kt(y(x))dx

which equals LABC,t



SMC scheme

Perform SMC with unnormalised targets ft(x)

This let us form an unbiased estimate of ZT i.e. the ABC
likelihood LABC,T

As SMC forward kernel we use the data augmentation MCMC
moves mentioned earlier

The kernel can be tuned at each step to aid mixing



SMC details

1 Set t = 1. Sample x
(1)
1 , x

(2)
1 , . . . , x

(N)
1 from the model.

Loop:

2 Increment t. Select new εt and Markov kernel Kt .

3 Update weights appropriately.

4 Terminate algorithm if εt equals a prespecified target.

5 If the effective sample size is below a prespecified threshold,
resample the particles and update weights and likelihood
estimate.

6 For i = 1, . . . ,N sample x
(i)
t ∼ Kt(x

(i)
t−1).

End loop

(c.f. Del Moral et al 2012)



Illustration: multivariate normal



Model

50 fixed locations v1, v2, . . . , v50 in [0, 1]

Model: y1, . . . , y50 ∼ N(0,Σ)

Covariance function is

ρ(v , v ′) = 4 exp(−[ v−v
′

φ ]2) + 0.11(v = v ′)

i.e. a squared exponential covariance function with variance 4
and scale φ plus a nugget effect

Inference for dim(y) = 50 not feasible by standard ABC



Observed data

Pseudo-observations sampled from model with φ = 0.3

Location

0.0 0.5 1.0

-3

-2

-1
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1

2
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se



Simulation results

200 particles
Each estimate took roughly 1 second (ε = 3.2) to 10 seconds
(ε = 0.1)
Results improve as ε reduced

Scale

0.0 0.5 1.0

eps=0.2

eps=0.1

Exact

eps=3.2

eps=1.6

eps=0.8

eps=0.4

Group

-200

-150

-100

-50

0
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Illustration: SIR model



Model

Standard susceptible infectious removed model

Homogeneous mixing, Markovian events

Removal times observed

2 parameters: infection and removal

Synthetic data

We can take x as some independent random variables

And observations y(x) involve simulation by the Selke
construction



Inference

I used Bayesian optimisation to get a rough posterior
approximation

Then importance sampling to get more accurate results

alpha

0 1 2 3 4
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0.5
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Discussion



Summary

Method proposed for estimation of intractable likelihoods

Based on SMC rather than rejection sampling (as in ABC)

Learns good simulations instead of randomly sampling them

Uses full data instead of summaries

Reasonable preliminary results for two simple examples



Limitations

Need suitable MCMC moves for data augmentation scheme

i.e. must be able to explore π(x |θ, y ≈ yobs) easily

Seems hard to achieve in some applications e.g. coalescent

Also the overall method can be very expensive



Future work

Intractable SIR model: missing/censored data

Best way to use likelihood estimates in an inference method

e.g. SMC2?

Reduce computational cost

e.g. via particle Gibbs, auxiliary variable methods, delayed
acceptance

Theory

How does complexity scale?
Characterise when more efficient than ABC
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