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Outline

I A short review on g-prior

I Problem of ill-conditioned matrix (X ′X)−1 ↪→ A ridge-g-prior
approach

I An illustration



The g-prior in linear model

Consider the model

Y |X,β, σ2 ∼ N (Xβ, σ2I)

where
Y is an n-vector of response
X a n× p design matrix (without constant)
β ∈ Rp, the coe�cient regression
σ2 > 0, I the identity matrix.



Zellner's g-prior (1986) is given by

β|X,σ2, g ∼ N (β0 = 0, gσ2(X ′X)−1)

σ2 ∼ 1/σ2

g > 0 is called the constant of Zellner.

Advantages :
↪→ Simplicity : simple structure β|Y,X, σ2 is Gaussian with

variance
gσ2

g + 1
(X ′X)−1

↪→ Automatic : using the structure of the variables (Fisher's
Information Matrix)
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But some cons : Consider the null model M0 with p0 = 0 and
another model M1 with p1 > 0 covariates. Using g prior for M1 we
have closed forms for marginal likelihood and

I BF [M1 : M0] = (1 + g)(n−1−p1)/2[1 + g(1−R2
1)]−(n−1)/2

I If g →∞ (n and p1 �xed) then
BF [M1 : M0]→ 0 (Bartlett or Lindley's Paradox)

I If R1 → 1 (n and p1 �xed)
BF [M1 : M0]→ constant (Information paradox)



Choice for the parameter g

I g can be �xed arbitrarly (Smith and Kohn, 1997)

I g = n (Kass and Wasserman, 1995) ↪→ the BF is close to the
BIC

I g = p2 (Foster and George, 1994) ↪→ related to the Risk
In�ation Criteria

I g = max(n, p2) (Fernandez et al. 2001)

I Global or local empirical Bayes estimate ↪→ avoid the
Information paradox



Prior on the hyperparameter g : mixture of g-priors

I Zellner and Siow (1980) prior

π(g) =
(n/2)1/2

Γ(1/2)
g−3/2e−n/(2g)

which is an Inv-Gamma(1/2, n/2) prior

I Hyper g prior (Liang et al. 2008)

1

1 + g
∼ Beta(a/2− 1, 1)

with 2 < a < 4 (a = 2 is the Je�rey's prior, it is uniform for
a = 4)
Rmk : π(g) = a−2

2 (1 + g)−a/2

↪→ closed form of posterior distribution of g in terms of
Gaussian hypergeometric function.

I Hyper g/n prior



I Truncated gamma prior (Wang et George, 2007)

Density of u =
1

1 + g
: π(u) =

sa

γ(a, s)
ua−1e−suI(0,1)(u)

I Beta prime prior (Maruyama and George, 2011)

1

1 + g
∼ Beta(1/2, (n− p− 1.5)/2)

I Robust prior (Bayarri et al. 2012) which can be reduced to a
particular truncated gamma prior

Density of u =
1

1 + g
: π(u) = u−1/2I(0,(p+1)/(n+1))(u)

I CH-g prior (Li and Clyde, 2016)



g-prior in mixture of linear models

I Mixture of linear models (Gupta and Ibrahim, 2006)

β(m)|X,σ2 ∼ N (β0(m), gσ2(m)(X ′X)−1)

I Mixture of linear models (Lee et al, 2016)

β(m)|X,σ2 ∼ N (β0(m), g(m)σ2(m)(X ′(m)X(m))−1)



g-prior and variable selection

Stochastic Search Variable Selection

γ vector indicating which variables are active
γj = 1 if βj 6= 0 and γj = 0 otherwise.

I pγ =

n∑
i=1

γi

I Xγ n× pγ design matrix with active variables

I βγ pγ vector with non-null elements.

Choice of γi : Bernoulli
P (γi = 1) = πi

Another choice : γ|ω ∼ Bernoulli(ω) and ω ∼ Beta(a, b)
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g-prior in GLM and variable selection

h(E(Yi|U, β)) = X ′iβ + Z ′iU,

where

I h is the link function

I U = (U1, · · · , Uk) are the random e�ect, with Ui of size qi

I βγ |γ ∼ N (0,Σγ)
with Σγ = τ(X ′γXγ)−1.

I τ is the variable selection coe�cient (Bottolo and Richardson,
2010)



Di�erent applications of variable selection with g-prior in GLM or
GL2M :

I Probit model : Lee et al. (2003), Sha et al. (2004), Zhou et al.
(2004)

I GLM : Chen and Ibrahim (2003), Marin and Robert (2007),
Wang and George (2007), Gupta and Ibrahim (2009), Bové
and Held (2011), Li and Clyde (2016)

I Probit mixed model : Yang and Song (2010), Baragatti and P.
(2010), Baragatti (2011), Baragatti and P. (2012)

I Logistic model : Hanson et al. (2014)



New g-prior in GLM

Li and Clyde (2016) proposed the truncated Compound Con�uent
Geometric Hyperbolic prior (tCCGH)

I Let u = 1/(1 + g)

I u ∼ tCHHH(a/2, b/2, r, s/2, v, θ) ,
which generalizes all previous cited mixtures of g priors.



Another method proposed by Li and Clyde (2016) in GLM

Based on the following idea in linear model (Zellner, 1980,
Maruyama and George, 2011) :

Y = X1β1 +X2β2 + ε

I Less certain about β1

I More certain about β2

Write V = (I − PX1)X2, where PX1 = X1(X ′1X1)−1X ′1 is the
projection matrix on X1. Then

Y = X1ξ + V β2 + ε

with ξ = β1 + (X ′1X1)−1X ′1X2β2.



These decomposition allow the use of two independent g-priors

I ξ ∼ N (ξ0, g1σ
2(X ′1X1)−1)

I β2 ∼ N (β0, g2σ
2(V ′V )−1)

If little information is available on X1 ↪→ large value for g1



A numerical problem with the inversion of (X ′X)

β|X ∼ N (0, τ(X ′X)−1)

(X ′X)−1 appears in g-prior (for linear models, mixture of linear
models, GLM, GL2M). It can be ill-conditioned

I If p > n

I If there are linear dependence between regressors

(X ′γXγ)−1 also appears in g-prior with SSVS. It can also be
ill-conditioned

I If pγ > n

I If there are linear dependence between regressors of Xγ .
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Some solutions

I Using the decomposition of Li and Clyde (2016) :

ξ ∼ N (ξ0, g1σ
2(X ′1X1)−1)

β2 ∼ N (β0, g2σ
2(V ′V )−1)

I Using bounds for pγ (as done in Baragatti, 2011)



Using generalized inverse

I In Probit mixed model Yang and Son (2010) replaced
(X ′γXγ)−1 by (X ′γXγ)+ its Moore Penrose 's inverse.
↪→ drawback in the MCMC algorithm

I Wang et al. (2014) used also the generalized singular g-prior in
linear model with

β ∼ N (β0, gσ
2(X ′γXγ)+)



Changing the prior

I Bayesian Lasso (Park and Casella, 2008, Hans, 2009)

β|Λ, σ2, γ ∼ N (0, σ2Λ)

Λ = diag(λ1, · · · , λp)

λ1, · · · , λp|δ ∼
p∏
i=1

δ

2
exp{−δλi/2}

δ ∼ γ(a, b)

σ2 ∼ 1/σ2

I Bayesian Lasso and SSVS : Lykou and Ntzoufras (2013)
↪→ introducing the vector γ.

I Bayesian ElasticNet (Li and Lin, 2010)



Ridge-g-prior

Gupta and Ibrahim (2009), Baragatti and P. (2012), Lee et al
(2016), Li and CLyde (2016)

βγ |λ, γ ∼ N (0,Σγ(λ))

where
Σγ(λ) = (τ−1X ′γXγ + λI)−1

τ is the variable selection coe�cient, λ is the ridge parameter



Choice of τ and λ

Following the idea of the g-prior, where the variance-covariance
structure is preserved, we replicate the total variance of the data as
follows :

I Write Σγ(0) = τ0(X ′γXγ)−1 the classical g-prior (without
ridge parameter).

I The constraint used is : tr(Σγ(0)−1) = tr(Σγ(λ)−1)

I We choose λ = 1/p

I We get τ = τ0

[
1 +

τ0

tr(X ′X)− τ0

]



Illustration with a probit mixed model

The model is

I P (Yi = 1 | U, β) = Φ(XT
i β + ZTi U),

where Φ stands for the standard Gaussian cumulative
distribution function.
Following Albert and Chib (1993) and Lee et al. (2003), a
vector of latent variables L = (L1, . . . , Ln)T is introduced,
and we assume that that is L | U, β ∼ Nn(Xβ + ZU, In).

Yi =

{
1 if Li > 0
0 if Li < 0.



I The γj are assumed to be independent Bernoulli(πj)

I U |D ∼ N (0, D)
with (for simplicity) D = diag(A1, . . . , AK), where Al = σ2

l I,
l = 1, . . . ,K

I σ2
l are Inverse Gamma IGamma(a, b)



I The full conditional distribution of L is given by :

Li|β, U, Yi = 1 ∼ N (XT
i β + ZTi U, 1) left truncated at 0

Li|β, U, Yi = 0 ∼ N (XT
i β + ZTi U, 1) right truncated at 0.

I De�ning W = (ZTZ +D−1)−1, the full conditional
distribution of U is :

U |L, β,D ∼ Nq(WZT (L−Xβ),W ).

I The full conditional distribution of the σ2
l , l = 1, . . . ,K are

Inverse-Gamma :

σ2
l | Ul ∼ IGamma

(ql
2

+ a,
(1

2
UTl Ul + b

))
.



Only the full conditional distributions of βγ and γ depend on λ, as
follows :

I For βγ :

βγ |L,U, γ ∼ N (VγX
T
γ (L− ZU), Vγ),

with Vγ =
[

(1+τ)
τ XT

γXγ + λI
]−1

.

I And for γ :

f(γ|L,U, βγ) ∝ (2π)−
dγ
2

|Σγ(λ)|1/2
∏p
j=1 π

γj
j (1− πj)1−γj

× exp
[
− 1

2

(
βTγ V

−1
γ βγ− (L−ZU)TXγβγ−βTγ XT

γ (L−ZU)
)]

with Σγ(λ) = (τ−1X ′γXγ + λI)−1



MCMC

Simulations from all the full conditional distributions can be easily
obtained, except for γ which does not correspond to a standard
multivariate one.
We use a Metropolis-within-Gibbs algorithm.
Following Lee et al. (2003) combined with the grouping technique
of Liu (1994), we consider γ and βγ jointly. We have

f(γ|L,U) ∝ |Vγ |1/2

|Σγ(λ)|1/2

p∏
j=1

π
γj
j (1− πj)1−γj

× exp
[
− 1

2(L− ZU)T (I −XγVγX
T
γ )(L− ZU)

]



Metropolis-Hasting step :

ρ(γ(i), γ∗) = min

{
1,
f(γ∗|L,U)

f(γ(i)|L,U)

}
,

with
f(γ∗|L,U)

f(γ(i)|L,U)

=

(
|Vγ∗Σγ(i)(λ)|
|Σγ∗(λ)Vγ(i) |

)1/2

× exp
{
− 1

2(L− ZU)T (XγiVγ(i)X
T
γ(i)
−Xγ∗Vγ∗X

T
γ∗)(L− ZU)

}
×

p∏
j=1

(
πj

1− πj

)γ∗j−γ(i)j
,

where γ∗ corresponds to γ(i) in which r components have been
randomly changed (see Chipman et al. 2001, George and
McCulloch, 1997).



Post-processing :
The number of iterations of the algorithm is b+m, where b
corresponds to the burn-in period and m to the observations from
the posterior distributions. For selection of variables, the sequence

{γ(t) = (γ
(t)
1 , . . . , γ

(t)
p ), t = b+ 1, . . . , b+m} is used. The most

relevant variables for the regression model are those corresponding
to the γ components with higher posterior probabilities, and can be
identi�ed as the γ components that are most often equal to 1.



The Bayesian Lasso :
For each βj , j = 1, . . . , p we consider

I βj | λj ∼ N (0, λj)

I λj ∼ Expo(δ/2).

Writing Λ = diag(λ1, . . . , λp), we have
β | Λ ∼ Np(0,Λ).
δ : δ ∼ Gamma(e, f),



β|L,U,Λ ∼ Np(VΛX
T (L− ZU), VΛ)

with
VΛ =

[
XTX + Λ−1]−1

λj | β ∼ IGauss
(√

δ
βj
, δ
)
.

The posterior for the Lasso parameter δ is a gamma distribution :

δ | Λ ∼ Gamma
(
p+ e,

(∑λj
2 + 1

f

)−1
)



Post-processing for Lasso approach : From the results of the
Bayesian Lasso we obtain posterior estimates for the βjs and the
λjs, and the variables can be selected by di�erent ways :

I One can select the variables corresponding to an absolute
value |βj | higher than a threshold (Li et al. 2011).

I Bae and Mallick (2004) proposed to select variables
corresponding to high values of λj .

I Finally, the results of the Lasso enable us to obtain posterior
credible intervals (CI) for the βjs (Kyung et al. 2010).



Numerical study

We start with n = 200 observations : 100 for training set, 100 for
test set. With p = 300 variables
The response are obtained using a probit mixed model with only 5
of these variables : V1, · · · ,V5 and one random e�ect of length 4.
V1, · · · , V 280 are iid Uniform(0, 1).
V 281 = 2× V 1, · · · , V 290 = 2× V 10
V 291 = V 1 + V 2, V 292 = V 3− V 4, V 293 = V 5 + V 13
V294 · · · , V300 linear combinations of V 6, · · · , V 20.

β = (1,−1, 2,−2, 3)



Summary of important variables : V1, · · · ,V5
V281 = 2×V1, · · · ,V285 = 2×V5
V291 = V1 + V2,V292 = V3−V4,V293 = V5 + V13



We used 10 runs, starting with τ0 = 50, πj = π = 5/300, b = 2000
burn-in iterations, m = 4000 observations after burn-in, λ = 1/300.



Boxplot of a run with ridge g-prior



Variables Number of selections Number of selections
among the 10 runs among the 10 runs
with 280 variables with 300 variables

V 1 0 10
V 2 9 8
V 3 10 2
V 4 5 0
V 5 10 10

V 281 = 2× V 1 10
V 282 = 2× V 2 9
V 283 = 2× V 3 3
V 284 = 2× V 4 0
V 285 = 2× V 5 10
V 291 = V 1 + V 2 7
V 292 = V 3− V 4

Not available

10



Figure: Number of iterations of the runs associated with a number of

selected variables from 1 to 15. For the 10 runs, there were a total of

40000 post burn-in iterations.





To compare Bayesian Lasso and ridge g prior we keep the �ve most
selected variable at each run.



Variables Using Bayes Lasso Using Ridge g prior

selected in 9 runs V 285 V 292

selected in 8 runs V 5, V 285

selected in 7 runs V 283, V 292 V 281

selected in 6 runs V 282

selected in 4 runs V 283, V 291

selected in 3 runs V 282 V 2

selected in 2 runs V 281

selected in 1 runs None of interest



Comparison with Bayesian Lasso with SSVS

I we chose a linear model with 300 covariates and with a sample
size n = 50, 100, 200.

I The n× 300 design matrix X is �rst formed by a centered
normal vector of size 100, with very high correlations
(uniformly distributed between 0.6 and 1). The 200 next
covariates are independent and uniformly distributed into
(−5, 5).

I The response y is constructed from the relation :

y = Xβ> + ε,

I with (β1, · · · , β8) = (1,−1, 2,−2, 3,−3, 5,−5) and βj = 0,
∀j > 8, and ε a vector of i.i.d. centered normal variables with
variance 4

I In general no more than eight variables was clearly most
retained by the algorithms and we then restricted our attention
to the 3, 5 and 8 most often selected variables.



n SSVS Baye-
sian Lasso

SSVS ridge
g prior

SSVS g prior

RSS (3) 50 331 328 343

RSS (5) 50 232 224 231

RSS (8) 50 178 141 134

RSS (3) 100 1145 1066 1076

RSS (5) 100 491 505 508

RSS (8) 100 340 345 347

RSS (3) 200 2740 2607 2696

RSS (5) 200 1445 1318 1400

RSS (8) 200 784 795 793



Conclusion

I Ridge g prior is easy to implement

I It seems that it stabilizes the variable selections (in presence of
colinearity)

I It works for p > n

I Automatic choice

I Not too much sensible wrt the choice of (τ, λ).

I It could be compared to Bayesian ridge regression.





Figure: Boxplot of the number of selections of a variable after the burn-in

period, for two runs with 300 variables.



Figure: Number of iterations of the runs 1,4 and 5 associated with a

number of selected variables from 1 to 14. For each run, there were 4000

post burn-in iterations.



Figure: Number of iterations of the runs 16,17 and 18 associated with a

number of selected variables from 1 to 100. For each run, there were

4000 post burn-in iterations.


