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The g-prior in linear model

Consider the model
Y|X,3,0° ~ N(XB,0°I)

where

Y is an n-vector of response

X an x p design matrix (without constant)
B € RP, the coefficient regression

o2 >0, I the identity matrix.



Zellner's g-prior (1986) is given by
BIX, 0%, g ~ N(Bo = 0,90*(X' X))

0? ~1/0?

g > 0 is called the constant of Zellner.
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BIX, 0%, g ~ N(Bo = 0,90*(X' X))

o2 ~1/0?

g > 0 is called the constant of Zellner.

Advantages :
< Simplicity : simple structure 8|Y, X, 02 is Gaussian with
2
o
ariance X'x)™ 1
varian n 1( )

< Automatic : using the structure of the variables (Fisher's
Information Matrix)



But some cons : Consider the null model My with pg = 0 and
another model M; with p; > 0 covariates. Using g prior for M; we
have closed forms for marginal likelihood and
> BF[M, : Mo] = (1+ )" P21 g(1 — RY)]- (=172
» If g — oo (n and p; fixed) then
BF[M; : Mp] — 0 (Bartlett or Lindley’s Paradox)
» If Ry — 1 (n and p; fixed)
BF[M; : My] — constant (Information paradox)



Choice for the parameter g

» g can be fixed arbitrarly (Smith and Kohn, 1997)

» g =n (Kass and Wasserman, 1995) — the BF is close to the
BIC

g = p? (Foster and George, 1994) < related to the Risk
Inflation Criteria

v

v

g = max(n, p?) (Fernandez et al. 2001)

v

Global or local empirical Bayes estimate < avoid the
Information paradox



Prior on the hyperparameter g : mixture of g-priors

» Zellner and Siow (1980) prior

n/2)1/2
(g) = (F(f}2) 326/ (29)

which is an Inv-Gamma(1/2, n/2) prior
» Hyper g prior (Liang et al. 2008)

1
—— ~ Beta(a/2 - 1,1
o~ Betaa/2 = 11
with 2 < a < 4 (a = 2 is the Jeffrey's prior, it is uniform for

a=4)

Rmk : m(g) = 232(1 + g)~*/*

— closed form of posterior distribution of g in terms of
Gaussian hypergeometric function.

» Hyper g/n prior



v

v

v

Truncated gamma prior (Wang et George, 2007)

1 s -1 —
m(u) = u® e U
( ) ’Y(CL,S) (0,1)( )

1+g°

Density of u =
Beta prime prior (Maruyama and George, 2011)

1
T ~ Betal/2.(n—p = 15)/2)

Robust prior (Bayarri et al. 2012) which can be reduced to a
particular truncated gamma prior

) 1 _
Density of u = iy o ow(u)=u 1/2H(o,(p+1)/(n+1))(u)

CH-g prior (Li and Clyde, 2016)



g-prior in mixture of linear models

» Mixture of linear models (Gupta and lbrahim, 2006)
B(m)|X, 0% ~ N (Bo(m), go* (m)(X' X))
» Mixture of linear models (Lee et al, 2016)

B(m)|X, 0% ~ N (Bo(m), g(m)o®(m)(X'(m) X (m)) ")



g-prior and variable selection

Stochastic Search Variable Selection

~ vector indicating which variables are active
v; = 1if B; # 0 and v; = 0 otherwise.

n
> Py = %
i=1
» X, n X p, design matrix with active variables

> B3, py vector with non-null elements.
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g-prior and variable selection

Stochastic Search Variable Selection

~ vector indicating which variables are active
v; = 1if B; # 0 and v; = 0 otherwise.

n
> Py = %
i=1
» X, n X p, design matrix with active variables

> B3, py vector with non-null elements.

Choice of ~; : Bernoulli
P(yi=1)=m

Another choice : y|w ~ Bernoulli(w) and w ~ Beta(a,b)



g-prior in GLM and variable selection

WEYi|U, B)) = XiB + ZiU,

where
» h is the link function
» U= (Uy,---,Uyg) are the random effect, with U; of size ¢;

> Byly ~ N(0,2,)
with ¥, = 7(X! X))~

» 7 is the variable selection coefficient (Bottolo and Richardson,
2010)



Different applications of variable selection with g-prior in GLM or
GL2M :

» Probit model : Lee et al. (2003), Sha et al. (2004), Zhou et al.
(2004)

» GLM : Chen and Ibrahim (2003), Marin and Robert (2007),
Wang and George (2007), Gupta and Ibrahim (2009), Bové
and Held (2011), Li and Clyde (2016)

» Probit mixed model : Yang and Song (2010), Baragatti and P.
(2010), Baragatti (2011), Baragatti and P. (2012)

> Logistic model : Hanson et al. (2014)



New g-prior in GLM

Li and Clyde (2016) proposed the truncated Compound Confluent
Geometric Hyperbolic prior (tCCGH)
» Letu=1/(1+g)
» u~tCHHH(a/2,b/2,7,5/2,v,0) ,
which generalizes all previous cited mixtures of g priors.



Another method proposed by Li and Clyde (2016) in GLM

Based on the following idea in linear model (Zellner, 1980,
Maruyama and George, 2011) :

Y =X 161+ XoB2+ €

» Less certain about 3y

» More certain about 3y
Write V = (I — Px, )Xo, where Py, = X1 (X} X;)"1X] is the
projection matrix on X7. Then

Y=X1£+Vpha+e

with € = 1 + (X]X1) "' X| X,



These decomposition allow the use of two independent g-priors
> &~ N(éo, g10% (X1 X1) )
> Bo ~ N(Bo, g2o*(V'V) ™)

If little information is available on X7 < large value for ¢;



A numerical problem with the inversion of (X'X)

BIX ~ N (0, 7(X' X))
(X'X)~! appears in g-prior (for linear models, mixture of linear
models, GLM, GL2M). It can be ill-conditioned
»Ifp>n

» If there are linear dependence between regressors



A numerical problem with the inversion of (X'X)

BIX ~ N (0, 7(X' X))
(X'X)~! appears in g-prior (for linear models, mixture of linear
models, GLM, GL2M). It can be ill-conditioned
»Ifp>n

» If there are linear dependence between regressors

(XQXW)*1 also appears in g-prior with SSVS. It can also be
ill-conditioned

» Ifpy,>n
> If there are linear dependence between regressors of X.,.



Some solutions

» Using the decomposition of Li and Clyde (2016) :

&~ N (&, 1o (X1 X1)™h)
By ~ N (Bo, g20*(V'V) ™)

» Using bounds for p, (as done in Baragatti, 2011)



Using generalized inverse

> In Probit mixed model Yang and Son (2010) replaced
(X! X))~ by (X X,)* its Moore Penrose 's inverse.
— drawback in the MCMC algorithm

» Wang et al. (2014) used also the generalized singular g-prior in
linear model with

B ~ N (po, QUQ(X;XW)—F)



Changing the prior
» Bayesian Lasso (Park and Casella, 2008, Hans, 2009)

BIA, 0%,y ~ N(0,0°A)
A = diag(\y, -+, Ap)

p
§
A a0~ T 5 exp{—0Xi/2}
=1

6~ (a,b)

02 ~1/0?

» Bayesian Lasso and SSVS : Lykou and Ntzoufras (2013)
— introducing the vector ~.

» Bayesian ElasticNet (Li and Lin, 2010)



Ridge-g-prior

Gupta and lbrahim (2009), Baragatti and P. (2012), Lee et al
(2016), Li and CLyde (2016)

BylA, v ~ N (0, 24(N))

where
S(A) = (XX, + M)

7 is the variable selection coefficient, A is the ridge parameter



Choice of 7 and A

Following the idea of the g-prior, where the variance-covariance
structure is preserved, we replicate the total variance of the data as
follows :

» Write ¥,(0) = 70(X/ X,)~" the classical g-prior (without

ridge parameter).

» The constraint used is : tr(X,(0)7!) = tr(X,(A\)™1)

» We choose A =1/p
70

W tT = 14—
> Weget T=19 +t7"(X’X)—7'0



[llustration with a probit mixed model

The model is
> P(Y;=1|U,B) = (X7 B+ ZTU),
where @ stands for the standard Gaussian cumulative
distribution function.
Following Albert and Chib (1993) and Lee et al. (2003), a
vector of latent variables L = (L1, ..., Ly)" is introduced,
and we assume that that is L | U, 8 ~ N, (XB + ZU, I,,).

1 ifLi>0
Yi_{ 0 if L < 0.



» The ~; are assumed to be independent Bernoulli(7;)

» U|D ~ N(0,D)
with (for simplicity) D = diag(Ay, ..., Ax), where A; = 0?1,
l=1,...,K

2

» of are Inverse Gamma ZGamma(a, b)



» The full conditional distribution of L is given by :

Li|B,U,Y; =1~ N(X}B + ZI'U,1) left truncated at 0
Li|B,UY; =0~ N (XI5 + ZZ»TU, 1) right truncated at 0.

» Defining W = (Z7Z + D=1)71, the full conditional
distribution of U is :

UL, B,D ~ Ny(WZT (L — XB), W).

» The full conditional distribution of the UZQ,Z =1,...,K are
Inverse-Gamma :

ol | Uy ~ Igamma(% +a, (éUlTUl + b))



Only the full conditional distributions of 3, and ~ depend on A, as
follows :

» For 3, :

By LU,y ~ N(V,XT(L = ZU), V),

with V;, = | XX + 01|
» And for v :
FGILULB,) o s HJ LT (L =)t
xexp |~ (7 VV 1/37 (L= ZU)X, 5y~ TXT (L - 20)]

with £, (\) = (171X X, + ML)~



MCMC

Simulations from all the full conditional distributions can be easily
obtained, except for v which does not correspond to a standard
multivariate one.

We use a Metropolis-within-Gibbs algorithm.

Following Lee et al. (2003) combined with the grouping technique
of Liu (1994), we consider v and /3, jointly. We have

f(y|IL U)ocw 5 WVJ(l_W)lfw
R NOVITEE S S
Y j=1

X exp [ — (L= 2U)"(I - X, V,XT)(L - ZU)]



Metropolis-Hasting step :

@) xy _ o f(*IL,U)

p(f)/ 7'7 ) —mlﬂ{l, f(’}/(l)|L,U) )
. f(IL,U)

W O D)

1/2
_ (VB0 (W)
[Zy (M V0]
X exp { — 3L = Z2U)T (X Voo XT) = X Ve XL ) (L - ZU)}
( )

Xl_‘[(l_.ﬂ])% |

where ~* corresponds to v(*) in which r components have been
randomly changed (see Chipman et al. 2001, George and
McCulloch, 1997).




Post-processing :

The number of iterations of the algorithm is b + m, where b
corresponds to the burn-in period and m to the observations from
the posterior distributions. For selection of variables, the sequence
{7(’5) = (,Y£t)7 . ,yz(,t))J =b+1,...,b4+m} is used. The most
relevant variables for the regression model are those corresponding
to the v components with higher posterior probabilities, and can be
identified as the v components that are most often equal to 1.



The Bayesian Lasso :
For each j,7 = 1,...,p we consider
> Bi | Aj ~ N(0, )
> \j ~ Expo(6/2).
Writing A = diag(A1, ..., Ap), we have
B A~ N, (0,A).
d : 6 ~ Gammal(e, f),



BIL, U, A ~ N,(VAXT(L — ZU), Vi)

with

Va = [XTX 4+ A7

Aj| B~ Zgauss<ﬂij,5).

The posterior for the Lasso parameter § is a gamma distribution :
A -1

S| A~ gamma<p+e, (22 I+ %) )




Post-processing for Lasso approach : From the results of the
Bayesian Lasso we obtain posterior estimates for the ;s and the
Ajs, and the variables can be selected by different ways :

> One can select the variables corresponding to an absolute
value |3;| higher than a threshold (Li et al. 2011).

» Bae and Mallick (2004) proposed to select variables
corresponding to high values of ;.

» Finally, the results of the Lasso enable us to obtain posterior
credible intervals (Cl) for the 3;s (Kyung et al. 2010).



Numerical study

We start with n = 200 observations : 100 for training set, 100 for

test set. With p = 300 variables

The response are obtained using a probit mixed model with only 5

of these variables : V1,--- V5 and one random effect of length 4.
Vi,---, V280 are iid Uniform(0,1).

V281l =2 x V1,---,V290 = 2 x V10

V291 =V1+V2,V292=V3-V4,V293=V5+V13

Vagq - -+, Voo linear combinations of V6, .-+, 1V20.

5 - (]-a _17 2) _27 3)



Summary of important variables : V1,--- | V5
V281 =2x V1,---, V285 =2 x V5
V291 =V1+V2,V292=V3-V4,V293 =V5+ V13



We used 10 runs, starting with 79 = 50, 7; = 7 = 5/300, b = 2000
burn-in iterations, m = 4000 observations after burn-in, A = 1/300.



Boxplot of a run with ridge g-prior
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Variables

Number of selections
among the 10 runs
with 280 variables

Number of selections
among the 10 runs
with 300 variables

V1 0 10

V2 9 8

V3 10 2

V4 5 0

V5 10 10

V281 =2 x V1 10
V282 =2x V2 9
V283 =2xV3 3
V284 =2xV4 0
V285 =2x V5 Not available 10
V291 =V1+V2 7

V292 =V3-V4

10




Mumber of iterations

z0oo 4000 6000 gooo 10000 1z000

a

\With 300 variables

Mumber of selected variahles



Posterior estimates of the j;
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To compare Bayesian Lasso and ridge g prior we keep the five most
selected variable at each run.



Variables

Using Bayes Lasso

Using Ridge g prior

selected in 9 runs V285 V292
selected in 8 runs V5, V285
selected in 7 runs V283,V292 V281
selected in 6 runs V282
selected in 4 runs V283,V291
selected in 3 runs V282 V2
selected in 2 runs V281

selected in 1 runs

None of interest




Comparison with Bayesian Lasso with SSVS

» we chose a linear model with 300 covariates and with a sample
size n = 50, 100, 200.

» The n x 300 design matrix X is first formed by a centered
normal vector of size 100, with very high correlations
(uniformly distributed between 0.6 and 1). The 200 next
covariates are independent and uniformly distributed into
(—5,5).

» The response y is constructed from the relation :

y = XBT—FQ

» with (B1,---,08s) =(1,-1,2,-2,3,-3,5,—5) and 3; =0,
Vj > 8, and € a vector of i.i.d. centered normal variables with
variance 4

> In general no more than eight variables was clearly most
retained by the algorithms and we then restricted our attention
to the 3, 5 and 8 most often selected variables.



n SSVS Baye- | SSVS ridge | SSVS g prior
sian Lasso g prior

50 331 328 343
50 232 224 231
50 178 141 134
100 | 1145 1066 1076
100 | 491 505 508
100 | 340 345 347
200 | 2740 2607 2696
200 1445 1318 1400
200 | 784 795 793




Conclusion

» Ridge g prior is easy to implement
» It seems that it stabilizes the variable selections (in presence of
colinearity)

» It works for p > n
» Automatic choice
» Not too much sensible wrt the choice of (7, ).

> |t could be compared to Bayesian ridge regression.
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Figure: Boxplot of the number of selections of a variable after the burn-in
period, for two runs with 300 variables.
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Figure: Number of iterations of the runs 1,4 and 5 associated with a
number of selected variables from 1 to 14. For each run, there were 4000

post burn-in iterations.



run 16
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Figure: Number of iterations of the runs 16,17 and 18 associated with a
number of selected variables from 1 to 100. For each run, there were

4000 post burn-in iterations.
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