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Introduction

When the likelihood function f(y|θ) is expensive or impossible to calcu-

late, it is extremely difficult to sample from the posterior distribution

π(θ|y) ∝ π(θ)f(y|θ) .

Two typical situations:

f(y|θ) =

∫
f(y,u|θ)µ(du), the calculation of this integral is intractable

and the latent vector u takes values in a high dimensional space (e.g.

population genetics models).

f(y|θ) = g(y,θ)/Z(θ) and the calculation of Z(θ) is intractable (e.g. for

Markov random fields).
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ABC is a technique that only requires being able to sample from

the likelihood f(·|θ).

This technique stemmed from population genetics models, about 15 years

ago, and population geneticists still significantly contribute to method-

ological developments of ABC.

If, with Christian, we work on ABC methods, we can be very grateful to

our biologist colleagues!
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Likelihood-free rejection sampler

Rubin (1984) The Annals of Statistics

Tavaré et al. (1997) Genetics

Pritchard et al. (1999) Mol. Biol. Evol.

1) Set i = 1,

2) Generate θ′ from the prior distribution π(·),
3) Generate z from the likelihood f(·|θ′),
4) If ρ(η(z), η(y)) ≤ ε, set θi = θ′ and i = i+ 1,

5) If i ≤ N , return to 2).

We keep the θ’s values such that the distance between the corresponding

simulated dataset and the observed dataset is small enough.
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The likelihood-free rejection sampler targets the marginal in z of:

πε(θ, z|y) =
π(θ)f(z|θ)IAε,y(z)∫

Aε,y×Θ
π(θ)f(z|θ)dzdθ

,

• ε > 0 a tolerance level (threshold),

• IB(·) the indicator function of a given set B,

• Aε,y = {z ∈ D|ρ(η(z), η(y)) ≤ ε}.

The idea behind ABC is that the summary statistics coupled with a small

tolerance should provide a good approximation of the posterior distribu-

tion:

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|y) .
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A toy example from Richard Wilkinson (Tutorial on ABC, NIPS

2013)

y|θ ∼ N1

(
2(θ + 2)θ(θ − 2), 0.1 + θ2

)
and θ ∼ U[−10,10]

y = 2 ρ(z, y) = |y − z|
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Practitioners really use N = bαMc and

1) For i = 1, . . . ,M :

a) Generate θi from the prior π(·),
b) Generate z from the model f(·|θi),
c) Calculate di = ρ(η(z), η(y)),

2) Order the distances d(1), . . . , d(M),

3) Return the θi’s that correspond to the N -smallest distances.

knn approximation, ε corresponds to a quantile of the distances.

• intuitive

• simple to implement

• embarrassingly parallelisable
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Diggle and Gratton (1984) JRSS B suggested using a systematic

simulation scheme to approximate the likelihood function.

They used a grid in the parameter space, several simulations for each grid

point and apply smoothing techniques.

The term Approximate Bayesian Computation was established by Beau-

mont et al. (2002) Genetics extending further the ABC methodology

and discussing the suitability of the ABC-approach more specifically for

problems in population genetics.
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Beaumont (2003) Genetics introduces pseudo-marginal MCMC al-

gorithms which are approximations to an idealized marginal algorithm

which can share the same marginal stationary distribution as the ideal-

ized method.
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Population genetics motivations

Population genetics is concerned with the causes and effects of genetic

variation.

One of the main developments in population genetics modeling is the use

of coalescent methods.
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The goal is to recover some elements of populations history. To analyse

the structure of genetic data, these methods use the gene trees.

The formulation of a model is constrained by an evolutionary scenario

that mimics the historical and demographic reality.

Such a scenario summarizes the evolutionary history of populations by a

sequence of demographic events from an ancestral population.
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Our datasets are composed of genetic informations coming from several

locus, more and more locus...

There are several options to model the relationship between these different

loci: common genealogy, partially shared genealogies and recombination,

or independent genealogies.

For neutral models (Kimura (1968, 1983), there is no selection effect.

The observed polymorphisms are the result of genetic mutations on the

genealogy of individuals.
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With these models, we can answer questions of biological interest:

• estimate divergence times, quantify reductions or increases in effective

population sizes, infer migration rates...

parameter estimation problems

• determine from which ancestral sources comes a population, describe

the invasion routes...

model choice questions
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Human populations example

50,000 SNP markers genotyped in four Human populations: Yoruba

(Africa), Han (East Asia), British (Europe) and American individuals

of African Ancestry; 30 individuals per population.

We compared six scenarios of evolution which differ from each other by

one ancient and one recent historical events:

A) a single out-of-Africa colonization event giving an ancestral out-of-

Africa versus two independent out-of-Africa colonization events;

B) the possibility of a recent genetic admixture of Americans of African

origin with their African ancestors and individuals of European or

East Asia origins.
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Outline

A - Population genetics models

A.1 - Data

A.2 - Sample genealogies

A.3 - Mutation process

A.4 - Inferential difficulties

B - ABC methods for model choice

B.1 - Bayesian model choice

B.2 - Standard ABC model choice

B.3 - The use of machine learning procedures

C - Human populations example
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A - Population genetics models

Mark Beaumont, Jean-Marie Cornuet, Arnaud Estoup, Mathieu Gautier

Raphaël Leblois, Pierre Pudlo, François Rousset, Mohammed Sedki
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A.1 Data

The dataset consists of different samples.

Each sample corresponds to a population.

We consider D populations, Pop1, . . . , PopD, the sample size of popula-

tion Popi is denoted by ni.

We assimilate a diploid individual to two haploid individuals.
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For each individual, we consider a large number of locus on the

genome.

For these loci, the DNA sequence can vary for an individual to another

due to mutations: genetic polymorphism.

Different types of loci: microsatellite, SNP (Single Nucleotide Poly-

morphism) or a sequence of DNA.

Bayesian Statistics and Algorithms 23/53



Monday 26 February 2016 CIRM, Marseille

A.2 Sample genealogies

Coalescent theory (Kingman (1982), Tajima, Tavaré...)

The Kingman coalescent model describes the genealogy of a sample of

genes back to the Most Recent Common Ancestor (MRCA) of the sample

The genealogy of a sample is represented by a dendrogram. Ancestral

lineages are generated until the MRCA.

A coalescent event occurs when the lineages of two individuals merge at

a node of the dendrogram.

Bayesian Statistics and Algorithms 24/53



Monday 26 February 2016 CIRM, Marseille

Let Tk, . . . , T2 be the durations between successive coalescent events.

The genealogy probability distribution of k individuals is characterized

by the choice of the lineages at each coalescent event and the distribution

of durations between coalescent events Tk, . . . , T2.

Let Ne be the effective population size.

For the Kingman coalescent, the durations between coalescent

events Tk, . . . , T2 are independent and Tk is distributed according

to an exponential distribution with parameter k
(
k − 1

)
/(2Ne).
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while k ≥ 2 do

1) Generate a duration Tk from an exponential distribution with param-

eter
k
(
k−1

)
2Ne

2) Add Tk to the lengths of the k lineages

3) Choose at random (uniformly) two lineages and merge them to create

a node of the dendrogram

4) k ← k − 1

end while
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Five individuals from a closed population at equilibrium

•

4

•

2

•

5

•

3

•

1

Passé

Présent

T5

T4

T3

T2

MRCA

Ecole de Printemps, ANR MANEGE, avril 2014, Aussois Page 25
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Several structured populations

We consider an evolutionary scenario described by inter-populational

events.

We combine these events with the Kingman coalescent which describes

the intra-populational genealogies.

Three inter-populational events:

• Divergence the fusion of two populations back in time.

• Admixture the split of a population in two parts.

• Migration move of lineages from one population to another over a

fixed period.
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At a divergence event, back in time, the lineages of the two populations

are merged to constitute a new population.

At an admixture event, back in time, the admixture sample Pop3 is split

at random in two parts: a lineage of Pop3 is associated to Pop1 with

probability r and to Pop2 with probability 1− r where r is the admixture

rate.

38 2. Modèles de génétique des populations

•
4

•
2

•
5

•
3

•
1

Lignée ancestrale

Passé

Présent
T5

T4

T3

T2

MRCA

FIGURE 2.2: Exemple de généalogie de cinq individus issus d’une seule population fermée à l’équilibre. Les
individus échantillonnés sont représentés par les feuilles du dendrogramme, les durées inter-coalescences
T2, . . . , T5 sont indépendantes, et Tk est de loi exponentielle de paramètre k

�
k - 1

�
/2.

Pop1 Pop2

Pop1
Divergence

(a)

t

t0

Pop1 Pop3 Pop2

Admixture

(b)

1 - rr

t

t0

m12

m21

Pop1 Pop2

Migration

(c)

t

t0

FIGURE 2.3: Représentations graphiques des trois types d’évènements inter-populationnels d’un scénario
démographique. Il existe deux familles d’évènements inter-populationnels. La première famille est simple,
elle correspond aux évènement inter-populationnels instantanés. C’est le cas d’une divergence ou d’une
admixture. (a) Deux populations qui évoluent pour se fusionner dans le cas d’une divergence. (b) Trois po-
pulations qui évoluent en parallèle pour une admixture. Pour cette situation, chacun des tubes représente
(on peut imaginer qu’il porte à l’intérieur) la généalogie de la population qui évolue indépendamment des
autres suivant un coalescent de Kingman.
La deuxième correspond à la présence d’une migration.(c) Cette situation est légèrement plus compliquée
que la précédente à cause des flux de gènes (plus d’indépendance). Ici, un seul processus évolutif gouverne
les deux populations réunies. La présence de migrations entre les populations Pop1 et Pop2 implique des
déplacements de lignées d’une population à l’autre et ainsi la concurrence entre les évènements de coales-
cence et de migration.

a coalescent process within each pipeline
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A.3 Mutation process

Position of mutations on the tree

The mutation rate per diploid individual is denoted by µ.

Conditional on the genealogy, the mutations are distributed according to

a Poisson point process with intensity µ/2.

On a branch of length t, the number of mutations N is dis-

tributed according to a Poisson distribution with parameter µt/2

and the N mutations are uniformly distributed on the branch.
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For microsatellite data, two mutation models: SMM (Stepwise Muta-

tion Model) and GSM (Generalized Stepwize Mutation Model), symmet-

ric random walks.

SNP loci have low mutation rates, we consider that polymorphism at such

loci results from a single mutation.

For SNP data, a single mutation event is put at random on one branch

of the genealogy, the branch being chosen with a probability proportional

to its length.

To generate the genotypes of a sample at a given locus, we just

have to modify the genotype of the MRCA along the genealogy.
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2.5 Conclusion 39

•
2N° d’individu:
99Génotype:

•
4
96

•
3
96

•
1
99

•
7
98

•
8
98

•
5

103

•
6

101

?-1
?-1
?-1
?-1

?-1

?-1

?-1

?+1

?-1

?+1

?+1

?+1

MRCA

100

FIGURE 2.4: Exemple de simulation des génotypes d’un échantillon de huit individus en un locus microsa-
tellite. Les mutations sont données par le modèle SMM. Les positions des mutations sont représentées par
les étoiles (?) sur les lignées du dendrogramme. Le génotype d’un individu (représenté par un nombre en-
tier en rouge sur le dendrogramme) est obtenu en appliquant les mutations à partir du génotype du MRCA
(100), ici, le long de la lignée de l’individu.
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A.4 Inferential difficulties

Each model is characterized by a set of parameters θ historical (divergence

times, admixture times, ...), demographic (effective population sizes, ad-

mixture rates, migration rates, ...) and genetic (mutation rate, ...).

The goal is to estimate these parameters from a polymorphism dataset x

observed at the present time.

Difficulty: we cannot calculate the likelihood of x f(x|θ).
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Let fθ(G) denote the probability density of the genealogy of genes dG.

Let fθ(M|G) denote the probability density of the mutation process M
given the genealogy G.

The likelihood is given by

`
(
x|φ
)

=
∏

i∈{locus}

∫

Mi→xi

fθ
(
Mi

∣∣Gi
)
fθ
(
Gi
)

dGi dMi, (1)

where xi is the data at locus i and Mi → xi is the set of genotypes on

the dendrogram compatible with xi.
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That is a very high-dimensional integral with discrete (such as the geno-

type) and continuous (such as the length of branches) parts.

Despite the simplicity of the Kingman coalescent and the mu-

tation processes, we cannot expect any simplification in the cal-

culation of the likelihood.
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B - Approximate Bayesian Computation methods for model

choice

Jean-Marie Cornuet, Arnuad Estoup, Natesh Pillai

Pierre Pudlo, Christian Robert, Judith Rousseau
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B.1 - Bayesian model choice

J models in competition

A model is characterized by a likelihood function fk(y|θk) and a prior

distribution on the parameter θk ∈ Θk.

Prior probabilities in the model space are defined.

The posterior distribution in the model space is such that

Pπ (M = k|y) ∝ P(M = k)

∫

Θk

fk(y|θk)πk(θk) dθk .
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Some computational difficulties:

• How to approximate the evidences?

• When the number of models in consideration is huge, how to explore

the models’s space?

• How to proceed when the calculation of the likelihood in intractable?
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B.2 - Standard ABC model choice procedure

Let N = bαMc.

1) For i = 1, . . . ,M :

a) Generate mi from the prior π(M = m),

b) Generate θ′mi from the prior πmi(·),
c) Generate z from the model fmi(·|θ′mi),
d) Calculate di = ρ(η(z), η(y)),

2) Order the distances d(1), . . . , d(M),

3) Return the mi’s that correspond to the N -smallest distances.

Note that Ratmann et al. (2009) PNAS proposed methodology for

testing the fit of a model without reference to other models.
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Infering population history with DIY ABC: a user-friedly approach Ap-

proximate Bayesian Computation Cornuet, Santos, Beaumont, Robert,

Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation

inferences about population history using Single Nucleotide Polymorphism,

DNA sequence and microsatellite data Cornuet, Pudlo, Veyssier, Dehne-

Garcia, Gautier, Leblois, Marin, Estoup (2014) Bioinformatics
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If η(y) is a sufficient statistics for the model choice problem, this can work

pretty well.

ABC likelihood-free methods for model choice in Gibbs random fields

Grelaud, Robert, Marin, Rodolphe and Taly (2009) Bayesian Analysis

If not...

Lack of confidence in approximate Bayesian computation model choice

Robert, Cornuet, Marin, Pillai (2011) PNAS

Relevant statistics for Bayesian model choice

Marin, Pillai, Robert, Rousseau (2014) JRSS B
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B.4 - The use of machine learning procedures

The standard ABC model choice technique corresponds to a knn approx-

imation of the posterior probabilities!

New insights into Approximate Bayesian Computation

Biau, Cérou, Guyader (2015) Annales de l’IHP

We investigate some ABC model choice techniques that use others ma-

chine learning procedures.

Estimation of demo-genetic model probabilities with Approximate Bayesian

Computation using linear discriminant analysis on summary statistics

Estoup, Lombaert, Marin, Guillemaud, Pudlo, Robert, Cornuet (2012)

Molecular Ecology
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Key points

• ABC model choice seen as learning about which model is most ap-

propriate from a huge (reference) table

• exploiting a large number of summary statistics is not an issue for

some machine learning methods intended to estimate efficient combi-

nations
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Random Forests

Technique that stemmed from Leo Breiman’s bagging (or bootstrap aggre-

gating) machine learning algorithm for both classification and regression

Bagging Predictors

Breiman (1996) Machine Learning

Improved classification performances by averaging over classification

schemes of randomly generated training sets, creating a forest of CART

decision trees

Random forests

Breiman (2001) Machine Learning
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Breiman’s solution for inducing random features in the trees of the forest:

• boostrap resampling of the dataset and

• random subseting of the covariates driving the classification at every

node of each tree
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Input ABC reference table involving model index and summary statis-

tics for the associated simulated pseudo-data [possibly large collection of

summary statistics (from scientific theory input to available statistical

softwares, to machine-learning alternatives)]

Output a random forest classifier to infer model indexes m̂(η(y))

Some theoretical guarantees for sparse problems:

Analysis of a random forest model

Biau (2012) JMLR

Consistency of random forests

Scornet, Biau, Vert (2015) The Annals of Statistics
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Random forest predicts a MAP model index, from the observed dataset:

the predictor provided by the forest is good enough to select the most

likely model but not to derive directly the associated posterior probability

frequency of trees associated with majority model is no proper

substitute to the true posterior probability

Bayesian Statistics and Algorithms 47/53



Monday 26 February 2016 CIRM, Marseille

Estimate of the posterior probability of the selected model

P[M = m̂(η(y))|η(y)]

random comes from M (bayesian)!

P[M = m̂(η(y))|η(y)] = 1− E
[
I(M 6= m̂(η(y)))|η(y)

]
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A second random forest in regression

1) compute the value of I(M 6= m̂(η(z)) for the trained random forest

m̂ and for all terms in the ABC reference table using the out-of-bag

classifiers;

2) train a RF regression and get %(η(z)) =

∧

E
[
I(M 6= m̂(η(z)))|η(z)]

]
;

3) return

∧

P[M = m̂(η(y))|η(y)] = 1− %(η(y)).

on same reference table out-of-bag magic trick avoid overfitting!
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Reliable ABC model choice via random forests

Pudlo, Marin, Estoup, Cornuet, Gauthier, Robert (2015) Bioinformatics

The proposed methodology is implemented in the R package abcrf avail-

able on the CRAN.
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C - Human populations example

We used all the summary statistics provided by DIYABC for SNP markers,

namely 112 statistics in this setting complemented by the five LDA axes

as additional statistics.
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Estimated prior error rates for classification methods and three sizes of

reference table

Classification method Prior error rates (%)

trained on Nref = 10, 000 Nref = 20, 000 Nref = 50, 000

LDA 9.91 9.97 10.03

standard ABC 23.18 20.55 17.76

standard ABC with LDA axes 6.29 5.76 5.70

local logistic reg. 6.85 6.42 6.07

RF 8.84 7.32 6.34

RF with LDA axes 5.01 4.66 4.18
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ABC-RF on the Human dataset selects Scenario 2 as the forecasted sce-

nario.

Considering previous population genetics studies in the field, it is not

surprising that this scenario was selected.

It includes a single out-of-Africa colonization event giving an ancestral

out-of-Africa population with a secondarily split into one European and

one East Asian population lineage and a recent genetic admixture of

Americans of African origin with their African ancestors and European

individuals.

This selection is associated with a high confidence level as we got an

estimate of the posterior probability of scenario 2 equal to 0.998.
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