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Some theoretical results
Introduction

Previously on Variational Bayes methods...
@ In case of non tractable posterior, marginal likelihood...

@ Replace an integration by an optimization over a set of functions
where the computation is easy.

log p(x) = 5@ + KL(q,p) > i@

functional Kullback divergence lower bound
. ~ * . = i KL — ‘F
p(Ix) = g*(-|x) = argmin KL(q, p) = argmax./(q)

@ Define a specific (parametric) form of one component, factorize
the posterior q(6,z) = g(#)qg(z), mean field q(z) = [[; q9(z));
@ Cycling algorithm

exp Eji¢(log p(x, Z))
J., exp Eii(log p(x,2)) dz

q; = arg mquf(m,.-.,qn) =

@ Fast but distorsion on p



Some theoretical results

Questions

@ localization of the mode
@ value at the mode
@ convergence
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Gaussian mixture models [wang and Titterington 2003, 2004, 2005]

Factorized variational distribution gy q:

» the variational simplification comes from the fact that the
variational posterior is a single member of the corresponding
conjugate family, whereas the true posterior is a complicated
mixture of large number of such conjugate distribution

Theorem (Convergence of fyg in case of Gausian mixtures)

@ The coupled equations of the VBEM iterating algorithm leads to
a VB estimator 6z = E,-(0) that converges locally to the true
value 6* with probability 1 and when the starting values are
sufficiently closed to 6*

® Oys converges locally to the maximum likelihood estimator at a
rate O(1/n) in the large sample limit

» VB converges to different limits if different starting values are
chosen

44



Some theoretical results
oe

Mixture models [wang and Titterington 2003, 2004, 2005]

Moreover,

@ Covariance matrices from the VB approximation are in general
"to small" compared with those for the MLE
— especially if the components of the mixture model are not well
separed

@ extension to exponential family models with missing values

@ at nfixed, approximated and exact posteriors are different by
nature
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Bayesian probit model with latent variables [consonni and

Marin 2007]

n latent variables z;|0 ~ N (v;0,1) are observed through n binary
variables x;
xi=1 six;i>0, x;=0 sinon

A Gaussian prior is defined on 6

@ Although the posterior is intractable, it is possible to compute the
posterior variance for ¢

var(0|x) = (I, + V'V)~ ' +var((l, + V'V)"'V'z).
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Bayesian probit model with latent variables [consonni and

Marin 2007]

n latent variables z;|60 ~ N (v;0, 1) are observed through n binary
variables x;

xi=1 six;>0, x;=0 sinon
A Gaussian prior is defined on 6

@ Although the posterior is intractable, it is possible to compute the
posterior variance for ¢

var(0|x) = (I, + V'V)~ ' +var((l, + V'V)"'V'z).

@ Variational Bayes EM

e VBEM algorithm is clearly faster than a Gibbs sampler

e VBEM always underestimates the exact posterior variance
(variational variance: (I, + V' V)™

e for small sample sizes, VBEM approximation to the posterior
location could be poor, but it becomes better with more
observations
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Markovian models with missing values
Hall, Humphreys and Titterington 2002

A Gaussian markovian process y = (x, z) is partially observed : x are
the accessible observations, z the missing ones. If the z; are
sufficiently far from each others

p(z]x) = p(z|x*) = [ pzlx’) = [T a=(2).

i€eH ieH

If not, define a variational posterior with a mean field approximation

p(2lx) = g:(z1x) = [] p(z/x*) = [ ¢a ().

ieH ieH

» asymptotic: When the m missing sites define a little number of
well separated groups such that m/n — 0, then

5\/5 - 5Mv = O(m/n) with the same asymptotical variance
» non asymptotic: likelihoods have identical forms but offseted
» fast compared to an exact EM
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Result in case of a AR(1) process (m=36, n=64)

-64.12485

loglikelihoods

loglikelihood
—
—
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Fig. 2. Log-likelihood surfaces for a single realization (m = 36), plotted as one-dimensional sections, (a)
with respect to o, with ¢ fixed at its maximum likelihood estimate, and (b) with respect to &, with « fixed
at its maximum likelihood estimate (see the text for details of the offsets to the approximate log-likelihood
surfaces): -+~ , exact log-likelihood; , mean field approximation (offset)

-67.0

0.84
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State space model
Wang and Titterington 2004

@ Model:

)(i+1 = 0)(i+O—WVVI'; X1 NN(,U'OaOz)
Yi = aXi+o Vi, ow=o0ov=0

@ EM with mean field approximation:
9 (x) = TTk=q @i(x) with Gi(x;) ~ N (ui, 07).
@ Kullback dissemblance D(qgx(x)||p(x|y,6))
e does not tend to 0 when n — oo, except if  tends to 0
@ does not depends on o, so that it does not tend to 0, no matter how
small the noise variance
@ VB (and VBEM) are consistant if the noise variance tends to 0,
non consistant otherwise
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Summary

Easier to catch the localization of the maximum than the value at the
maximum

@ the mode can be quite well estimated when there is not too much
missing data

@ But the value of the functional at the mode is often not recovered,
even when the mode is correct

p(y|m)
p(y|m’)

— need to be cautious when using the difference F(m) — F(m’)
for model selection ...

log = F(m)—F(m')+D(q'(9)|p(0]y, m)—D(a(9)||p(0]y, m’)
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Neuroimaging activation map

In functional brain imaging, the observations can be Statistical
Parametric Map: brain images representing a BOLD signal during a
cognitive task

E e

@ regular lattice of observations y where y; is the observation at
spacial location (voxel) i

@ the task is to classify areas in the brain: activated, deactivacted
and neutral

@ encode the prior belief that neighboring voxels are likely to come
from the same class
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Mixture model on a regular lattice
Woolrich et al 2006

@ observations y

@ mixture with K = 3 components, discrete labels z. Under the
assumption of the conditional independance of the likelihood

p(z = £,0,¢.]y) o H{P(y/'\zi = ki, OK)} % p(z = k|p2)p(d2)p(0)

@ Spatial prior on z : markov random field

p(z = kl¢x) o f(p2) exp(— ZZ]J[x,;Az,

i jeN;

The best value of ¢, will depend on the topography of the
classes (control parameter) with prior

p(¢z|a, b) = Ga(a, b)
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Mixture model with continuous weights

@ f(¢,) cannot be calculated analytically and computation is very
difficult — continuous weights

H{p yl|zl = "ﬁuek } — HZ{WIKP yl|zl =k ek)}

i k=1
with -
Wi — exp(Wi /)
ik = K ~
> =1 ExXp(Wir/)

n K
Pz =r,0,0.0y) < [ D _{wip(yilzi = k,0k)} x p(W|é2)p(¢2)p(0)

i k=

@ prior p(W|¢w) = [1x P(Wk|¢w) with
Pl dw) ~ Na(0, (I = C) " /¢4)

@ densities for each class: Gaussian (neutral), Gamma (activated
Ga(y;; ax, bx) and deactivated Ga(—y;; ck, dk) )
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Mixture model with continuous weights

VB inference

posterior p(w, ¢y y) o p(y
a(w, wly) = Qs (00) [1; 9

@ VBE: update q(w;|y)
Gu(Wily) o exp(Eq,_q,_[10g p(#, bsly)])
@ VBM: update g(¢g|y)

Qs (Pwly) o< exp(Eq,[log p(W, ¢w|y)])

» needs to compute an integral of non linear components (weights)

» the likelihood log p(y;|W;) is approximated by Laplace
approximation
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Mixture model with continuous weights

Comparison with MCMC inference

Result: build spatial activation map from the a posteriori mean of the
weights wi, for the activated and de-activated classes
With simulated data:

@ the need to set adaptatively the spacial control parameter ¢;;.

@ only little difference between VB and MCMC

@ slight advantage for MCMC with regards for the classification error
e real improvment of the computation time for the VB method (ratio
15 for 10 000 voxels)

These results are also observed on real data sets.
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Unsupervised block clustering framework

» Aim: to find a block clustering structure simultaneously on rows
and columns leading to a dramatically parsimonious
representation : co-clustering

» Application: huge data sets arising in recommendation systems,
genomic data analysis, text mining,...
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Unsupervised block clustering framework
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» Aim: to find a block clustering structure simultaneously on rows
and columns leading to a dramatically parsimonious
representation : co-clustering

» Application: huge data sets arising in recommendation systems,
genomic data analysis, text mining,...
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Latent Block Model: a mixture model

Assume:
» blocks define a 'checker board’

p(x;0) = Y p(z, w; 6) p(x|z, w;0)

(z,w)eZxW

@ g row clusters: z = (zk) where zj = ljcc,
@ m column clusters: w = (wj,) where wj, = 1;cce

23/44
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Latent Block Model: a mixture model

Assume:

» blocks define a 'checker board’ and row and column labels are
independently assigned : z; ~ M(1, ), w; ~ M(1, p)

pii6) = > II=¢  II~" p(x|z,w;0)
84

(z,w)eZXW ik

@ g row clusters: z = (zk) where zj = ljcc,

@ m column clusters: w = (wj,) where wj, = 1;cce

@ m = (my,...,mg): the mixing proportions for the rows

@ p=(p1,...,pm): the mixing proportions for the columns

24/44
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Latent Block Model: a mixture model

Assume:
» blocks define a ’checker board’ and row and column labels are
independently assigned : z; ~ M(1, ), w; ~ M(1, p)
» the n x d variables x; are conditionally independent given z and
w and follow the same distribution which parameter only
depends on the block: x| zkWje ~ ©(Xj; cke)

pece) = > JI=  IIA" 11 oo™
i

(z,w)EZXW ik iK€

@ g row clusters: z = (zk) where zj = ljcc,

@ m column clusters: w = (wj,) where wj, = 1;cce

@ m = (my,...,mg): the mixing proportions for the rows

@ p=(p1,...,pm): the mixing proportions for the columns
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Latent Block Model: a mixture model

Observed Loglikelihood

ZW)EZXW ik INN. ¥4

£(6) = log p(x; 6) = log ( > HpW T o(xi: cuke)? e
(

@ parameter to estimate: 8 = (w, p,a) € ©
@ parsimononious representation
@ generic identifiability [K et al 2014]

@ likelihood for 2 x 2 blocks and 20 x 20 matrix: ~ 220 x 220 ~ 1012
terms —: intractable

@ Estimation with EM?

26/44
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ML estimation with the EM algorithm

» E step: computation of the expectation of the complete likelihood
conditionally to the observations

Q)0 Z s logmi+>_ 1 10g pet- > €%, , log (X auke)
Jit ij,k,e
where
s = P(zi = 110©, X =x), 1 = P(wj = 119, X = x)

and

o= Pz~ 1199, X =)

» Intractable due to the dependence structure among the rows and
columns

» M step: 9(°+1) = argmaxy Q(6]6(?)), no problem !
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Variational EM [Govaert and Nadif 2008]

Principle:

p(x.2.wi0) |
Ea, |log P00 | 1 KLtz wiki )

= F(Qzw,0) + KL(qzw||p(z, W|X; 0))

£(6)

p(z, w|0("), X) is approximated by a distribution which considers z and
w conditionally independent

p(z.w|6'9,x) ~ G:(2|6'?, x)qu(w|6'”, )

Ovar = arg [max F(Gz. Gu. )

28/44
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Alternate optimization

Thanks to the factorization q., = g-qw the computation of sfkc) and
i) is straightforward

/k *QZ( Zy =16 ) /e *QW(W//*‘I 6)

c _a(e)4(c)
e/(.,j,)k.ﬁ = ka L

Govaert et Nadif 2008

@ VE step : Maximize F(q;, qw, ) wrt g, and g, until convergence

1.1 compute si with fixed t; and 6
1.2 compute t; with fixed sj and 6
s get1) gt fo+D)

@ M step : Maximize F(qSt', g5t', 0) wrt 6: — g(¢+1)

29/44
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VEM properties

Properties:

>

>
>
>

the parameter estimates could be expected to be a good
approximation of the maximum likelihood estimator
provides a lower bound of the observed loglikelihood
sensitive to the starting values

replace the E step by a SE step (Gibbs sampling needed to
simulate (z,w)) — SEM-Gibbs:
e do not increase the likelihood at each step
@ but generates a irreductible MC with a unique stationary distribution
expected to be concentrated around the ML parameter estimate
o far less sensitive to initial values
» marked tendency to provide solutions with empty clusters:

use Bayesian priors on p and = to regularize
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Bayesian LBM on categorical data (K. et al 2014)

Define priors on the parameters

w~D(a,...,a), p~D(a,...,a), ag ~D(b,...,b),

beta(a,b) distribution

31/44
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Bayesian LBM

Model parameter can be estimated by maximising the posterior
density p(0ly), — Maximum A Posteriori estimate

EMAP =arg mglx p(Oly).
Use the Bayes formula

log p(0ly) = log p(y|€) + log p(@) — log p(y)

to define an EM algorithm for the computation of the MAP estimate:

@ E-V step : same as VE step

@ M-Bayes step : maximization of a slighly different objective
function [McLachlan and Krishnan 2008]

6+ — arg = (Q(6,06) + log p(6)).

32/44
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VBayes M-Step

@ M Bayes step : update 0(¢t1) with

1
et 87 H‘E/SEKCH) (c+1) _ LZ/G(@H)
k g@a—1)+n = m(a—1)+d

1 1
h(C+1) _1+Z// /(If+) o )Vljh

Qg - 1
(b—1)+%;s ff* 't
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VBayes does the job!

o o5 L L L L L L L
o 10 20 a0 a0 50 60 70 0 o 0 20 a0 a0 50 60 70 0

But depending on the initial values

34/44
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Gibbs sampler

Full Bayesian settings: full conditional posterior distributions of the
LBM parameters are closed form with Dirichlet prior distributions

@ Draw z(°+") according to p(z|x, w(©), §())

@ Draw w(¢t") according to p(w]|x, z(c+1) §())

@ Draw 7(°t") according to p(r|x, z(ct") w(ct1) () n(e))
@ Draw p(¢t1) according to p(p|x,2(¢t1) wlc+1) rle+1) ()

@ Fork=1,...,g;:¢=1,...,m,draw o\ according to
p(a|x, Z(CH),W(CH),7r(c+1),p(c+1))

— the stationary distribution of the Markov chain is p(z,w, 7, p, «|x)
< Ogibbs i the mean of 0(°) after a burn-in period.
— labels are defined by assignment to the majority class

35/44
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Algorithmes [K et al 2014]

e EM
— intractable
@ Algorithme VEM [Govaert and Nadif 2008]
— difficult initialisation
@ SEM-Gibbs
— absorbing states
@ V-Bayes
— rapidly leads to reasonable parameter estimates with a good
initialisation
@ Gibbs sampling
— essentially unsensitive to starting values but fluctuating and
tricky stopping criteria
Recommandation: Gibbs sampling as initialization, followed by
VBayes

36/44
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Model selection

Aim: choosing a relevant number of clusters

» A couple (g,m) to select instead of a single number
» Standard penalized likelihood criteria such as BIC need the
computation of the loglikelihood which is not tractable
BIC(g.m) = [ p(x|6: . mp(6; 6. m)als

~  max log(p(x; 8)) — g log(n)

The good news is that the integrated completed likelihood (ICL) can
be derived straightforwardly

37/44
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Integrated Completed Likelihood criterion

» Bayesian setting: ICL is the logarithm of the integrated
completed likelihood

p(x.2,wlg. m) = / p(x,2,W|6; g, m)p(6; g, m)do

where the missing data are replaced by their most probable
inferred values Z, w [Biernacki et al (2000)]

— ICL is focussing on the clustering view of the model

» Proper non informative conjugate priors are available for
multinomial LBM :

— Dirichlet distribution D(a, ..., a) for r and p
— Dirichlet distribution D(b, . .., b) for ay

38/44
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ICL is closed form

Using the conjugacy properties of the prior distributions we get
logp(x,z,w) = logl(ga)+ logl(ma)— (m+ g)logl(a)+ mg(logl(rb) — rlog (b))

g m
—logT(n+ ga) — log(da) + > logl(z.x + a) + > _ logM(w,¢ + a)
k=1 =1

+>° { (Z tog I (Nfp,zm + b)) — log M(z.x W, + rb)
k.l

h=1
where
» Z is the number of rows in cluster k
» w, is the number of columns in cluster ¢
» N7, is the number of h in the block (k, ¢)

computed from the missing labels replaced by

(2, W) = argmax p(z, w|x; §),
(z,w)
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Collapsed sampler [Wyse and Friel; 2012]

» Marginalisation over the model parameters with uniform prior to
compute the distribution of the most visited models and the
maximum a posteriori cluster membership

» Analogous to maximising ICL
logp(z,w, g, mx) = ICL(z,w,g,m)
+log p(g, m) — log p(x).

» ICL appears to be efficient to find (z, w, g, m) and less
computationally demanding, but is unable to recover the
uncertainty

— further work: analyze the variability of ICL
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Thank you for your attention!
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