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Introduction

Previously on Variational Bayes methods...
In case of non tractable posterior, marginal likelihood...
Replace an integration by an optimization over a set of functions
where the computation is easy.

log p(x) = F(q)︸ ︷︷ ︸
functional

+ KL(q,p)︸ ︷︷ ︸
Kullback divergence

≥ F(q)︸ ︷︷ ︸
lower bound

p(.|x) ' q∗(.|x) = arg min
q∈Q

KL(q,p) = arg max
q∈Q
F(q)

Define a specific (parametric) form of one component, factorize
the posterior q(θ, z) = q(θ)q(z), mean field q(z) =

∏
i q(zi);

Cycling algorithm

q∗` = arg max
q`
F(q1, . . . ,qn) =

exp IEi 6=`(log p(x, z))∫
z`

exp IEi 6=`(log p(x, z)) dz`

Fast but distorsion on p
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Questions

localization of the mode
value at the mode
convergence
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Gaussian mixture models [Wang and Titterington 2003, 2004, 2005]

Factorized variational distribution qθqz:
I the variational simplification comes from the fact that the

variational posterior is a single member of the corresponding
conjugate family, whereas the true posterior is a complicated
mixture of large number of such conjugate distribution

Theorem (Convergence of θ̂VB in case of Gausian mixtures)

The coupled equations of the VBEM iterating algorithm leads to
a VB estimator θ̂VB = IEq∗(θ) that converges locally to the true
value θ∗ with probability 1 and when the starting values are
sufficiently closed to θ∗

θ̂VB converges locally to the maximum likelihood estimator at a
rate O(1/n) in the large sample limit

I VB converges to different limits if different starting values are
chosen
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Mixture models [Wang and Titterington 2003, 2004, 2005]

Moreover,
Covariance matrices from the VB approximation are in general
"to small" compared with those for the MLE
↪→ especially if the components of the mixture model are not well
separed
extension to exponential family models with missing values
at n fixed, approximated and exact posteriors are different by
nature
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Bayesian probit model with latent variables [Consonni and

Marin 2007]

n latent variables zi |θ ∼ N (viθ,1) are observed through n binary
variables xi

xi = 1 si xi > 0, xi = 0 sinon

A Gaussian prior is defined on θ

Although the posterior is intractable, it is possible to compute the
posterior variance for θ

var(θ|x) = (Ip + V ′V )−1 + var((Ip + V ′V )−1V ′z).

Variational Bayes EM
VBEM algorithm is clearly faster than a Gibbs sampler
VBEM always underestimates the exact posterior variance
(variational variance: (Ip + V ′V )−1)
for small sample sizes, VBEM approximation to the posterior
location could be poor, but it becomes better with more
observations
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Markovian models with missing values
Hall, Humphreys and Titterington 2002

A Gaussian markovian process y = (x , z) is partially observed : x are
the accessible observations, z the missing ones. If the zi are
sufficiently far from each others

p(z|x) = p(z|xz) =
∏
i∈H

p(zi |x i) =
∏
i∈H

qzi (zi).

If not, define a variational posterior with a mean field approximation

p(z|x) ' qz(z|x) =
∏
i∈H

p(zi |x̂0i) =
∏
i∈H

qzi (zi).

I asymptotic: When the m missing sites define a little number of
well separated groups such that m/n→ 0, then
θ̂VB − θ̂MV = O(m/n) with the same asymptotical variance

I non asymptotic: likelihoods have identical forms but offseted
I fast compared to an exact EM
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Result in case of a AR(1) process (m=36, n=64)
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State space model
Wang and Titterington 2004

Model:

Xi+1 = θXi + σw Wi , X1 ∼ N (µ0, σ
2)

Yi = αXi + σv Vi ; σw = σv = σ

EM with mean field approximation:
qx(x) =

∏n
k=1 qi(xi) with qi(xi) ∼ N (µi , σi).

Kullback dissemblance D(qx(x)||p(x |y , θ))
does not tend to 0 when n → ∞, except if θ tends to 0
does not depends on σ, so that it does not tend to 0, no matter how
small the noise variance

VB (and VBEM) are consistant if the noise variance tends to 0,
non consistant otherwise

12 / 44



Some theoretical results Spatial mixture models for segmentation Latent Block Model References

Summary

Easier to catch the localization of the maximum than the value at the
maximum

the mode can be quite well estimated when there is not too much
missing data
But the value of the functional at the mode is often not recovered,
even when the mode is correct

log
p(y |m)

p(y |m′)
= F(m)−F(m′)+D(q′(θ)||p(θ|y ,m)−D(q(θ)||p(θ|y ,m′)

↪→ need to be cautious when using the difference F(m)−F(m′)
for model selection ...
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Neuroimaging activation map

In functional brain imaging, the observations can be Statistical
Parametric Map: brain images representing a BOLD signal during a
cognitive task

regular lattice of observations y where yi is the observation at
spacial location (voxel) i
the task is to classify areas in the brain: activated, deactivacted
and neutral
encode the prior belief that neighboring voxels are likely to come
from the same class
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Mixture model on a regular lattice
Woolrich et al 2006

observations y
mixture with K = 3 components, discrete labels z. Under the
assumption of the conditional independance of the likelihood

p(z = κ, θ, φz |y) ∝
n∏
i

{p(yi |zi = κi , θki )} × p(z = κ|φz)p(φz)p(θ)

Spatial prior on z : markov random field

p(z = κ|φx) ∝ f (φz)exp(−φz

4

∑
i

∑
j∈Ni

1I[xi 6= zj ])

The best value of φz will depend on the topography of the
classes (control parameter) with prior

p(φz |a,b) = Ga(a,b)
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Mixture model with continuous weights

f (φz) cannot be calculated analytically and computation is very
difficult ↪→ continuous weights

n∏
i

{p(yi |zi = κi , θki )} ↪→
n∏
i

K∑
k=1

{wik p(yi |zi = k , θk )}

with

wik =
exp(w̃ik/γ)∑K
l=1 exp(w̃il/γ)

p(z = κ, θ, φz |y) ∝
n∏
i

K∑
k=1

{wik p(yi |zi = k , θk )}×p(w̃ |φz)p(φz)p(θ)

prior p(w̃ |φw̃ ) =
∏

k p(w̃k |φw̃ ) with

p(w̃k |φw̃ ) ∼ Nn(0, (I − C)−1/φw̃ )

densities for each class: Gaussian (neutral), Gamma (activated
Ga(yi ;ak ,bk ) and deactivated Ga(−yi ; ck ,dk ) )
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Mixture model with continuous weights
VB inference

posterior p(w̃ , φw̃ |y) ∝ p(y |w̃)p(w̃ |φw̃ )p(φw̃ ), approximated by
q(φw̃ , w̃ |y) = qφw̃ (φw̃ )

∏
i q(w̃i |y)

VBE: update q(w̃i |y)

qw (w̃i |y) ∝ exp(IEqw̃−i qφw̃
[log p(w̃ , φw̃ |y)])

VBM: update q(φw̃ |y)

qφw̃ (φw̃ |y) ∝ exp(IEqw̃ [log p(w̃ , φw̃ |y)])

I needs to compute an integral of non linear components (weights)
I the likelihood log p(yi |w̃i) is approximated by Laplace

approximation
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Mixture model with continuous weights
Comparison with MCMC inference

Result: build spatial activation map from the a posteriori mean of the
weights wik , for the activated and de-activated classes
With simulated data:

the need to set adaptatively the spacial control parameter φw̃ .
only little difference between VB and MCMC

slight advantage for MCMC with regards for the classification error
real improvment of the computation time for the VB method (ratio
15 for 10 000 voxels)

These results are also observed on real data sets.
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Unsupervised block clustering framework

I Data: Let x = {(xij ; i = 1, . . . ,n; j = 1, . . . ,d)} be a n × d matrix

I Aim: to find a block clustering structure simultaneously on rows
and columns leading to a dramatically parsimonious
representation : co-clustering

I Application: huge data sets arising in recommendation systems,
genomic data analysis, text mining,...
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Latent Block Model: a mixture model

Assume:
I blocks define a ’checker board’

and row and column labels are
independently assigned : zi ∼M(1,π), wj ∼M(1,ρ)

I the n × d variables xij are conditionally independent given z and
w and follow the same distribution which parameter only
depends on the block: xij |zik wj` ∼ ϕ(xij ;αk`)

p(x ;θ) =
∑

(z,w)∈Z×W

p(z,w ; θ) p(x |z,w ; θ)

g row clusters: z = (zik ) where zik = 1Ii∈Ck

m column clusters: w = (wj`) where wj` = 1Ij∈C`

π = (π1, . . . , πg): the mixing proportions for the rows
ρ = (ρ1, . . . , ρm): the mixing proportions for the columns
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Latent Block Model: a mixture model

Observed Loglikelihood

L(θ) = log p(x ;θ) = log

 ∑
(z,w)∈Z×W

∏
i,k

πzik
k

∏
j,`

ρ
wj`
`

∏
i,j,k,`

ϕ(xij ;αk`)
zik wj`


parameter to estimate: θ = (π,ρ,α) ∈ Θ

parsimononious representation
generic identifiability [K et al 2014]

likelihood for 2× 2 blocks and 20× 20 matrix: ≈ 220 × 220 ≈ 1012

terms ↪→: intractable
Estimation with EM?
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ML estimation with the EM algorithm

I E step: computation of the expectation of the complete likelihood
conditionally to the observations

Q(θ|θ(c)) =
∑
i,k

s(c)
ik logπk+

∑
j,`

t (c)
j` log ρ`+

∑
i,j,k,`

e(c)
i,j,k,` logϕ(xij ;αk`)

where

s(c)
ik = P(zik = 1|θ(c),X = x), t (c)

j` = P(wj` = 1|θ(c),X = x)

and
e(c)

i,j,k,` = P(zik wj` = 1|θ(c),X = x).

I Intractable due to the dependence structure among the rows and
columns

I M step: θ(c+1) = arg maxθ Q(θ|θ(c)), no problem !
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Variational EM [Govaert and Nadif 2008]

Principle:

L(θ) = IEqzw

[
log

p(x, z,w|θ)
qzw (z,w)

]
+ KL(qzw ||p(z,w|x; θ))

= F(qzw , θ) + KL(qzw ||p(z,w|x; θ))

p(z,w|θ(c),x) is approximated by a distribution which considers z and
w conditionally independent

p(z,w|θ(c),x) ' qz(z|θ(c),x)qw (w|θ(c),x)

θ̂VAR = arg max
θ,qz ,qw

F(qz ,qw ,θ)
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Alternate optimization

Thanks to the factorization qzw = qzqw the computation of s(c)
ik and

t (c)
j` is straightforward

s(c)
ik = qz(Zik = 1; θ(c)), t (c)

j` = qw (Wj` = 1; θ(c))

e(c)
i,j,k,` = s(c)

ik t (c)
j`

Govaert et Nadif 2008
1 VE step : Maximize F(qz ,qw , θ) wrt qz and qw until convergence

1.1 compute sik with fixed tjl and θ(c)

1.2 compute tjl with fixed sik and θ(c)

↪→ s(c+1) et t (c+1)

2 M step : Maximize F(qc+1
z ,qc+1

w , θ) wrt θ: ↪→ θ(c+1)
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VEM properties

Properties:
I the parameter estimates could be expected to be a good

approximation of the maximum likelihood estimator
I provides a lower bound of the observed loglikelihood
I sensitive to the starting values
I replace the E step by a SE step (Gibbs sampling needed to

simulate (z,w)) ↪→ SEM-Gibbs:
do not increase the likelihood at each step
but generates a irreductible MC with a unique stationary distribution
expected to be concentrated around the ML parameter estimate
far less sensitive to initial values

I marked tendency to provide solutions with empty clusters:

use Bayesian priors on ρ and π to regularize
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Bayesian LBM on categorical data (K. et al 2014)

Define priors on the parameters

π ∼ D(a, . . . ,a), ρ ∼ D(a, . . . ,a), αk` ∼ D(b, . . . ,b),
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Bayesian LBM

Model parameter can be estimated by maximising the posterior
density p(θ|y), ↪→ Maximum A Posteriori estimate

θ̂MAP = arg max
θ

p(θ|y).

Use the Bayes formula

log p(θ|y) = log p(y|θ) + log p(θ)− log p(y)

to define an EM algorithm for the computation of the MAP estimate:

VBayes

E-V step : same as VE step
M-Bayes step : maximization of a slighly different objective
function [McLachlan and Krishnan 2008]

θ(c+1) = arg max
θ

(
Q(θ, θ(c)) + log p(θ)

)
.
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VBayes M-Step

M Bayes step : update θ(c+1) with

π
(c+1)
k =

a− 1+
∑

i s(c+1)
ik

g(a− 1)+n
, ρ

(c+1)
` =

a− 1+
∑

j t (c+1)
j`

m(a− 1)+d

αh
k`

(c+1)
=

b − 1+
∑

ij s(c+1)
ik t (c+1)

j` vijh

r(b − 1)+
∑

ij s(c+1)
ik t

.
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VBayes does the job!

But depending on the initial values
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Gibbs sampler

Full Bayesian settings: full conditional posterior distributions of the
LBM parameters are closed form with Dirichlet prior distributions

Repeat
1 Draw z(c+1) according to p(z|x,w(c), θ(c))

2 Draw w(c+1) according to p(w|x, z(c+1), θ(c))

3 Draw π(c+1) according to p(π|x, z(c+1),w(c+1), ρ(c), α(c))

4 Draw ρ(c+1) according to p(ρ|x, z(c+1),w(c+1), π(c+1), α(c))

5 For k = 1, . . . ,g; ` = 1, . . . ,m , draw α
(c+1)
k` according to

p(α|x, z(c+1),w(c+1), π(c+1), ρ(c+1))

↪→ the stationary distribution of the Markov chain is p(z,w, π, ρ, α|x)
↪→ θ̂gibbs is the mean of θ(c) after a burn-in period.
↪→ labels are defined by assignment to the majority class
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Algorithmes [K et al 2014]

EM
↪→ intractable
Algorithme VEM [Govaert and Nadif 2008]
↪→ difficult initialisation
SEM-Gibbs
↪→ absorbing states
V -Bayes
↪→ rapidly leads to reasonable parameter estimates with a good
initialisation
Gibbs sampling
↪→ essentially unsensitive to starting values but fluctuating and
tricky stopping criteria

Recommandation: Gibbs sampling as initialization, followed by
VBayes
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Model selection

Aim: choosing a relevant number of clusters

I A couple (g,m) to select instead of a single number
I Standard penalized likelihood criteria such as BIC need the

computation of the loglikelihood which is not tractable

BIC(g,m) =

∫
p(x|θ;g,m)p(θ;g,m)dθ

' max
θ

log(p(x; θ))− D
2

log(n)

The good news is that the integrated completed likelihood (ICL) can
be derived straightforwardly
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Integrated Completed Likelihood criterion

I Bayesian setting: ICL is the logarithm of the integrated
completed likelihood

p(x, z,w|g,m) =

∫
p(x, z,w|θ;g,m)p(θ;g,m)dθ

where the missing data are replaced by their most probable
inferred values ẑ, ŵ [Biernacki et al (2000)]
↪→ ICL is focussing on the clustering view of the model

I Proper non informative conjugate priors are available for
multinomial LBM :
↪→ Dirichlet distribution D(a, . . . , a) for π and ρ
↪→ Dirichlet distribution D(b, . . . , b) for αkl
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ICL is closed form
Using the conjugacy properties of the prior distributions we get

log p(x, z,w) = log Γ(ga) + log Γ(ma)− (m + g) log Γ(a) + mg(log Γ(rb)− r log Γ(b))

− log Γ(n + ga)− log Γ(da) +

g∑
k=1

log Γ(z�k + a) +
m∑

l=1

log Γ(w�` + a)

+
∑
k,l

[(
r∑

h=1

log Γ
(

Nh
k`;z,w + b

))
− log Γ(z�k w�` + rb)

]

where
I z�k is the number of rows in cluster k
I w�` is the number of columns in cluster `
I Nh

k`;z,w is the number of h in the block (k , `)

computed from the missing labels replaced by

(ẑ, ŵ) = arg max
(z,w)

p(z,w|x; θ̂),
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Collapsed sampler [Wyse and Friel; 2012]

I Marginalisation over the model parameters with uniform prior to
compute the distribution of the most visited models and the
maximum a posteriori cluster membership

I Analogous to maximising ICL

log p(z,w,g,m|x) = ICL(z,w,g,m)

+ log p(g,m)− log p(x).

I ICL appears to be efficient to find (z,w,g,m) and less
computationally demanding, but is unable to recover the
uncertainty
↪→ further work: analyze the variability of ICL
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Thank you for your attention!
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