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Main theme (1): Intractable likelihoods

» The Bayesian inferential approach has had a profound impact on statistical
learning.

» Monte Carlo methods which were popularised in the early 1990s provide a
simulation-based approach to overcoming the intractability inherent in
almost all posterior distributions.
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Main themes

Main theme (1): Intractable likelihoods

> The Bayesian inferential approach has had a profound impact on statistical
learning.

» Monte Carlo methods which were popularised in the early 1990s provide a
simulation-based approach to overcoming the intractability inherent in
almost all posterior distributions.

p(O1y)ocf(y10)p(0)

> However it turns out that there are many statistical models for which the
likelihood function is intractable

p(0ly)x f(y[0)p(6)-

» A central theme in this talk is the notion that, although intractable,
efficient statistical inference can result through simulating from the
likelihood.
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Main theme (2): Approximate MCMC

> It is often the case that one has an 'exact’ MCMC available which target
the posterior of interest.

» However, it is simply not possible to make a transition of this exact chain.
Eg, a posterior with an intractable likelihood; a likelihood with too many
observations etc.

» This was the topic of Daniel's talk yesterday.

> Big data: the volume of data prohibits calculation of the likelihood.
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faced with very large datasets? We argue that computing the likelihood for
N datapoints twice in order to reach a single binary decision is
computationally inefficient.”
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Main themes

Main theme (2): Approximate MCMC

> It is often the case that one has an 'exact’ MCMC available which target
the posterior of interest.

» However, it is simply not possible to make a transition of this exact chain.
Eg, a posterior with an intractable likelihood; a likelihood with too many
observations etc.

» This was the topic of Daniel's talk yesterday.
> Big data: the volume of data prohibits calculation of the likelihood.

> See, eg, “Austerity in MCMC land: cutting the MCMC budget” by
Korattikara et al. (arXiv)
“Can we make Bayesian posterior MCMC sampling more efficient when
faced with very large datasets? We argue that computing the likelihood for
N datapoints twice in order to reach a single binary decision is
computationally inefficient.”

> “Bayesian posterior sampling via stochastic gradient Fisher scoring” by Ahn
et al. (ICML 2012)
“Can we approximately sample from a Bayesian posterior if we are only
allowed to touch a small mini-batch of data-items for every sample we
generate?”
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Main themes

Main theme (2): Approximate MCMC

» Doubly intractable posterior distributions.

> Gibbs random fields which are widely used in spatial statistics and network
analysis, eg, autologistic distribution, exponential random graph model.

> For this class of models the likelihood can rarely be calculated explicitly.

> See eg “Playing Russian roulette with intractable likelihoods” by Girolami et
al. (arXiv).
"A fundamental open problem of growing importance in the widespread
application of MCMC methods for Bayesian computation is the definition of
transition kernels for target distributions with data densities that are
analytically or computationally intractable”

> See also, Johndrow et al. (2015, arXiv); Rudolf and Schweizer (2015,
ArXiv) and many more...
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The exponential random graph (or p*) model

First proposed by Frank and Strauss (JASA, 1986).

Consider a graph with an adjacency matrix {y;i}, where y;; = 1 denote an edge
connecting nodes i and j; otherwise y;; = 0.
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The exponential random graph model

The exponential random graph (or p*) model

First proposed by Frank and Strauss (JASA, 1986).

Consider a graph with an adjacency matrix {y;i}, where y;; = 1 denote an edge
connecting nodes i and j; otherwise y;; = 0.

1. Edges yjj and yi are neighbours, if they share a common node.

2. If yj and yi are not neighbours, then y;; and yi are conditionally
independent, given the rest of the graph.
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The exponential random graph model
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z(0) z(0)

fyl0) =
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s(y) known vector of sufficient statistics
0 vector of parameters

z(0) normalizing constant
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The exponential random graph model

The exponential random graph model

_exp{0's(y)} _ ao(y)

y observed graph

s(y) known vector of sufficient statistics
0 vector of parameters

z(0) normalizing constant

vvyVvyy

0= S ep{t'sy)}

all possible graphs

v

2(2) possible undirected graphs of n nodes
Calculation of z(0) is infeasible for non-trivially small graphs

\4
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The exponential random graph model

Model Specification: Network Statistics

edge mutual edge 2-in-star 2-out-star
2-mixed-star transitive triad cyclic triad
edge 2-star 3-star triangle

o

ADS IV,






Approximate Bayesian inference for Gibbs random fields
Intractable likelihoods

The exponential random graph model

Scientific collaborations

Agent-based
Models

Mathematical
Ecology



e
Approximate Bayesian inference for Gibbs random fields

Intractable likelihoods

The exponential random graph model

High school dating
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Intractable likelihoods
L The exponential random graph model

Example: Spatial statistics — Ising model

v

Defined on a lattice y = {y1,...,yn}
Lattice points y; take values {—1,1}.

v

F(y10) o qa(y) = exp {;91 Zy,-yj} .

inj
Here ~ means “is a neighbour of”.
The normalising constant

A0 =3 aly).

»

v

is intractable for moderately small n.



e
Approximate Bayesian inference for Gibbs random fields

|—MCMC-based inference for ERGMS

Bayesian inference

Doubly-intractable posterior
m(0ly) o< £(y[0)m(0)

» Naive Metropolis algorithm proposes the move from 6 to 8* with

probability:
o = min (1 fO0109)m(67)
= (1’ f(yw)w(e))

o (V) (07) . 2(0)
qo(y)m(0) z(6*)
——

intractable
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LMCMC-based inference for ERGMS

Exchange algorithm

Exchange algorithm
(Murray, Ghahramani & MacKay 2006)

Sample from an augmented distribution

w(@',y",0ly) o< f(y|0)m(0)h(0'10) (y'|0")
whose marginal distribution for € is the posterior of interest.

> f(y'|0") same likelihood model for which y is defined

> h(0'|0) arbitrary distribution for the augmented variable 6" which might
depend on 6 (eg random walk distribution centred at 6)
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L Exchange algorithm

Algorithm 1: Exchange algorithm

1 Draw 0" ~ h(-|0);
2 Draw y' ~ f(:0");
3 With probability

min

1 90/10) =(0') h(010°) a(v10")  2(0)z(0")
" ao(y) m(0) h(610) a(y’l6") — 2(0)z(¢")
1

set U+ = ¢’ otherwise set HUT1) = 90 .
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LMCMC-based inference for ERGMS

Exchange algorithm

MCMC sample from the p* model

» The main difficulty is the need to draw an exact sample y’ ~ f(:|0").
» Perfect sampling is an obvious approach, if this is possible.

» A pragmatic alternative is to take a realisation from a long MCMC run
with stationary distribution f(y’|0") as an approximate draw.

» Everitt (2012) showed that, under certain regularity conditions, the
corresponding stationary distribution resulting from this approximation is
'close’ to the actual target distribution.
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L Noisy MCMC

Noisy MCMC

Joint with: Pierre Alquier (Paris), Richard Everitt (Reading), Aidan Boland
(uCb)
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L Noisy MCMC

Exchange algorithm

Exchange algorithm:

o = min (1 g0 (y) 7(6") qo(y") )
" qo(y) m(0) 90 (v') )"
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L Noisy MCMC

Exchange algorithm

Exchange algorithm:

(1w T(0) al)
@ = (1’ a0(y) 7(0) CW(Y')) '
MH algorithm:
(4 @ ()(0)=(0)
@ = min <1’ 40()(0)2(0") )
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L Noisy MCMC

Exchange algorithm

Exchange algorithm:

— min (1. ) 7(O) a0 (y)
‘= (1’ qe(y) m(9) qe/(y’)>'

MH algorithm:
o = min (1. 9 ()T(0)2(0)
=min (1 2OV

In fact:
anly’) _ 2(0)
qor(y')  2(0)

Ey1|9/
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L Noisy MCMC

Noisy exchange algorithm

Suppose an estimate of z(6')/z(6) is plugged into the MH accept/reject ratio:

EN: (y,

2 \

where {y; } ~ £(/6").
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L Noisy MCMC

Noisy exchange algorithm

Suppose an estimate of z(6')/z(6) is plugged into the MH accept/reject ratio:

EN: (y,

2 \

where {y; } ~ £(/6").

Some special cases:

N=1: Exchange algorithm. (Exact)
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L Noisy MCMC

Noisy exchange algorithm

Suppose an estimate of z(6')/z(6) is plugged into the MH accept/reject ratio:

EN: (y,

N
where {y/} ~ £(y[6').
Some special cases:
N=1: Exchange algorithm. (Exact)

1 < N < oco: Noisy exchange. (Approximate)
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L Noisy MCMC

Noisy exchange algorithm

Suppose an estimate of z(6')/z(6) is plugged into the MH accept/reject ratio:

EN: (y,

N
where {y/} ~ £(y[6').
Some special cases:
N=1: Exchange algorithm. (Exact)

1 < N < oco: Noisy exchange. (Approximate)
N — oo: MH algorithm. (Exact)
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L Noisy MCMC

Noisy exchange algorithm

Algorithm 2: Noisy exchange algorithm

1 Draw 6’ ~ h(0']0) ;

2 Draw y' = (y1,...,yn) ~ T2 F (v 10)):
3 With probability

/

N
&(0,0',y") = min <1 Cflle(y 0 Nz:: 9(}’, >

set Ut = ¢’ otherwise set O = 90 .
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Noisy Monte Carlo: MCMC with approximate transition kernels

> The noisy exchange algorithm results in a Markov chain which does not
target w(6]y).

» Essentially we have replaced an underlying transition kernel P which leaves
m invariant with an approximate transition kernel P.

» Can we say how 'close’ this Markov chain with transition P is to the exact
Markov chain with transition kernel P?

> It turns out that a useful answer is given by the study of the stability of
Markov chains, particularly results from Mitrophanov (2005).
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Theorem (Mitrophanov (2005), Corollary 3.1)

Let us assume that

» (H1) the Markov chain with transition kernel P is uniformly ergodic:

sup |06, P" — |1, < Cp"
()

for some C < 0o and p < 1.
Then we have, for any n € N, for any starting point 6y,

n ~n C
1500P" — b0, P ||Tvs(x+ p )nP Pl

where \ = [M]

log(p)
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Metropolis-Hastings algorithm

Algorithm 3: Metropolis-Hastings algorithm
1 draw 0" ~ h(6']0,);

6" with probability 1 A a(6,,0') = Z¢CLe)

2 Opy1 = .
! 0, otherwise.
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In some applications however, it is not possible to compute exactly the ratio
a(6,,0).

In this case, it is reasonable to replace this ratio by an approximation, or an
estimate: we draw x’ ~ Fy/(x’) for some suitable probability distribution
Fe:(x") and approximate «(6,,6") by some function &(6,,6’, x).

This leads us to consider the following noisy Metropolis-Hastings algorithm.
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Algorithm 4: Noisy Metropolis-Hastings algorithm

1 draw 0" ~ h(6']0,);
2 draw x’ ~ Fy:/(x") for some probability distribution Fp/ (x');
2 0 7{ 0’ with proba. 1 A &(0.,0’,x)

"7 6, otherwise.
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Theoretical guarantees for the noisy MH algorithm

Corollary
Let us assume that

» (H1) holds. (The Markov chain with transition kernel P is uniformly
ergodic),

> (H2) &(0,0’,x") satisfies:

vk, |8(6,60,%') — a(8,6')| < 5(,6). (1)
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Theoretical guarantees for the noisy MH algorithm

Corollary
Let us assume that

» (H1) holds. (The Markov chain with transition kernel P is uniformly
ergodic),

> (H2) &(0,0’,x") satisfies:
B, |d(9, 0, x") — a9, 0’)| <4(0,0). (1)
Then we have, for any n € N, for any starting point 0o,

A
1600 P" — 69, Pl 7v < <)\ + %) 2sup/d0'h(9’|9)5(0,0')
- 0

where X = [ 24/9)].

log(p)
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L Noisy MCMC

Note: when the upper bound in (1) is bounded:

]EXINFBI |6‘(970/7X/) - a(07 9/ < 6(0’ 0/) <di< o0,

v

then it results that

n Hn C A
186, P" — b6, P ||Tv55(x+ 1fp).
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Note: when the upper bound in (1) is bounded:
Evnr, |6(8,6',x") = a(8,6")],, <6(6,8) <& < oo,
then it results that

) C
|66, P" — 66, P ||TV<6<)\+ pp).

Obviously, we expect that & is chosen in such a way that 6 < 1 and so in this
case, |06, P" — d6,P"||7v < 1 as a consequence. Letting n — oo gives:

I|msup||7r—590P ||Tv<6<)\+ Cpp>.
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Convergence of the noisy exchange algorithm

Here we show that the noisy exchange algorithm falls into our theoretical
framework.

Lemma
Assuming that the state space © is bounded, then

E, |6(0,6',y") — a(6,0")]

1 h(O10)T(6)a0 () |yar s o ((9ea(Y)
S UN h@)r0)an(y) | le)(qef(}" ) =

Sl

Theorem

sup ||0g, P" — 0, P" || 7v <
6p€0

Sl

where C is explicitly known.
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Experimental results

Simulation study

20 Datasets were simulated from a first-order Ising model defined on a 16 x 16
lattice, with a single interaction parameter 6 = 0.4.

The normalising constant z(#) can be calculated exactly for a fine grid of
{0i:i=1,...,N} values (NF, Rue, 2007), which can be used to estimate

N
i) =y =) (‘f&éiy))w(e,») + 710(';;7(?))71'(9,‘71)) ,

which in turn can be used to estimate of the posterior density at each grid
point:

Sy n.

) & GO0
O Ry T

Here we used a fine grid of 8,000 points in the interval [0, 0.8].
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Experimental results

Bias

0.006
|

0.002
I

-0.002
|

-0.006
|

T T T T T
Exchange Noisy Exch  Noisy Lang MALA Exch  Noisy MALA



e
Approximate Bayesian inference for Gibbs random fields

Accelerating inference by pre-computing

Accelerating Bayesian inference for Gibbs random fields

Joint with: Aidan Boland (UCD)
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Accelerating inference by pre-computing

Speeding up inference by pre-computing

» The main bottle-neck of the (noisy) exchange algorithm is the requirement
to sample from the likelihood at every iteration.

> It could also be considered inefficient, since the chain is likely return to a
previously visited part of the start space to again draw from the likelihood.

> An alternative (and approximate) approach is to pre-compute likelihood
draws over a well-chosen grid of parameter values.

> We will shortly show that this too can be places in a noisy MCMC
framework.
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Accelerating inference by pre-computing

Pre-processing ABC for image analysis
Moores, Mengersen and Robert (2015)

> Also relies on a pre-computed grid.
> Gives impressive speed-ups.

> However, it doesn’t come with any convergence guarantees.

Essential idea:

1. For each grid point 0;, generate M pseudo-datasets, yi, ..., ym, from the
likelihood, giving rise to M summary statistics s(y1), ..., s(ym).

2. Fit an auxiliary model to this collection of summary statistics, eg, a
Gaussian, ¢(0;).

3. Non-parametric regression of ¢(6) on 6 to smooth the effect of finite M
and grid..

4. Apply an on-line SMC-ABC algorithm where instead of drawing from the
likelihood, draw from ¢(0).
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Accelerating inference by pre-computing

Two useful facts

1. Gradient:
Ve logm(0ly) = s(y) — Eyrjos(y’) + Vlog m(6).
2. Hessian:

Hlog m(6ly) = —Covysjes(y) + Hlog m(6).

1. and 2. can be estimated via Monte Carlo.
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Accelerating inference by pre-computing

Defining a grid over the posterior

1. Estimate the MAP, 6™, using a stochastic approximation algorithm, eg,
Robbins-Monro (R-M) algorithm.

2. Estimate the Hessian matrix H at the estimated mode. Let ¥ = H™!, and
the eigendecomposition of H™! be ¥ = VAV, The standardised variable
z is used to explore the parameter space using,

0(z) = 0" + VAY?z.

b2

61
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Accelerating inference by pre-computing

Pre-computing strategy

1. Assume now that a grid of parameter values is selected: {91, e 7(9',\/1}.

2. At each grid point 6; we simulate draws y, ...,y ~ f(y|6;) and calculate
the corresponding sufficient statistics s(y}'), ..., s(y/").

3. Using importance sampling, we can estimate the ratio z(6;)/z(6;) for any
two grid points:

Zéi N 9'-( ) 1 N . ST
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Accelerating inference by pre-computing

02

ét(l)

01

In an on-line phase of the algorithm, for any two parameters 0, 6"

20) _ 20 | Z0q)  Z(0)

Z(0") Z(0:))  Z(0y2))  Z(0")
20)_, Z0w) ( 2(¢) )_1. )
Z(0x1)  Z(042) Z(04(2))

using the off-line pre-computed likelihood draws!
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Accelerating inference by pre-computing

Algorithm 5: Griddy exchange algorithm

1 Select the grid. (Off-line) ;
2 Choose a collection of grid points {6;}. ;
3 For each éj ;

4 draw y; = {y; } ~ f(10;);

5 MCMC sampling using pre-computed grid. (On-line) ;
6 Fori=1to [;

7 Draw 6’ ~ h(-16;) ;

8 Set ;11 = 0’ with probability:

(0 vy — i (1 G ITO)RO10)  Z(0)
00y = (1’ 40, (/)7 (OH(@'107) Z(ﬁ’))

Otherwise 0,11 = 0;;




e
Approximate Bayesian inference for Gibbs random fields

Accelerating inference by pre-computing

Convergence guarantees for the griddy exchange algorithm

Our approach is very similar to the case of noisy exchange algorithm.

Lemma
Assuming that the state space © is bounded, our approximate acceptance
ratio, &(0,0’',y) satisfies

Ey|a(6,6y) — a(6,6)] < 5(6,6)
C 1 4>
=—|—=+K").
VN (W
Here K is a constant which depends on the grid-size.

Theorem

n C 1
SUP ||560P _560P ||T T (T+K4)

where C is exp/:c:t/y known.
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Accelerating inference by pre-computing

Ising study

Here 24 lattices of size 80 x 80 were simulated.

The posterior density was estimated for each graph using a long run (24 hours)
of the exchange algorithm.

Performance assessment
We assess performance of each algorithm in terms of the total variation
distance.

1

7 (Oly) = 7(@ly)lIrv = 5 / [w(0ly) — 7(6ly)| d0,

For two-dimensional targets the total variation distance was approximated by
splitting the state-space into bins with a pre-defined window size.

Within each bin the absolute difference of the frequencies was calculated, such
that TV takes values in [0,1]
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Accelerating inference by pre-computing

Mean bias (first 20 mins) Mean Esti Total Variation
0.0015 5e-05- | o Exch
4 Direct Path
0.00107 0005 | + Full Path
0.0005- : x SMC-ABC
N — - -5e-057 |
0.0000 °
> T
8 o - —054
0.0005- .0e-05
0.0010-] .0e-06-1
0.0015 .0e+00-
T T T T T T T y 7 T T
Exch Full Direct SMCABC 0 10 20 30 40 50 60
Method Time in mins

It takes the exchange algorithm 3 hours to reach the same total variation
distance as the noisy grid exchange does after 30 minutes.
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Accelerating inference by pre-computing

Autologistic model: Absence/Presence of red deer

The picture represents the presence (red) or
absence (black) of deer in a 1km? square region
in the Grampian region of Scotland.

F(y10) oc exp(0151(y) + 0252(y)),
where si(y) = SV, yi and s:(y) = > i~ Yiy; with i ~ j denoting node i and
node j are neighbours.

The parameter 01 controls the relative abundance of —1 and +1 values while 6
controls the level of spatial aggregation.
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Accelerating inference by pre-computing

01 02
Mean Var Mean Var
Exchange (long) | -0.1435429 0.00028611 0.1516334 0.00016096
Exchange | -0.1424322 0.00026794 0.1530567 0.00014771
Griddy exchange | -0.1436186 0.00028256 0.1515273 0.00016495

Posterior mean and variance estimates for model parameters for the exchange
algorithm and griddy exchange for a fixed computational time of 4 minutes.
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Accelerating inference by pre-computing

0.25+ ‘
&l o Exchange
| A Direct Path
{1
0.201 S I + Full Path
F ||
k] .|
< 2 |
0.15- o,
E M.
17} I o,
w I
0.10- I ]
B tatststostaosk koot
-020 -015 -010 -0.0! 0 200 400 600 800
0, Seconds

Note: It takes the exchange algorithm 45 minutes to reach the same total
variation distance as the griddy exchange algorithm after 4 minutes.
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Accelerating inference by pre-computing

Future directions: Noisy MCMC

» Our framework give bounds on the total variation distance between a
desired target distribution, and the invariant distribution of a noisy MC
algorithm.

» An important question for future work concerns the statistical efficiency of
the resultant estimators. This is a key question since the use of noisy MC
will usually be motivated by the inefficiency of a standard alternative
algorithm.

> This framework also applies in more general situations, apart from Gibbs
random field models, and it will be important to generalise our results and
findings.

> We have further noisy Monte Carlo algorithms, in particular, noisy
Langevin algorithm (where we approximate the gradient of the log target).
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Accelerating inference by pre-computing

A quick advertisement!

GiRaF

Gibbs Random Fields: An R package. Stoehr, Pudlo and Friel.

» Normalisation constant calculations.
» Exact sampling.

» And many more to come.
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Accelerating inference by pre-computing
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