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Intractable likelihoods

Bayesian inference

θ is unknown.
y is data.

π(θ |y) =
p(θ)f (y |θ)

p(y)

∝ p(θ)f (y |θ).

Richard Everitt University of Reading
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Intractable likelihoods

The marginal likelihood

The marginal likelihood (also known as the evidence) is

p(y) =
∫

θ

p(θ)f (y |θ)dθ .

Used in Bayesian model comparison

p(M|y) = p(M)p(y |M),

most commonly seen in the Bayes’ factor, for comparing
models

p(y |M1)

p(y |M2)
.

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods



beamer-icsi-logo

Intractable likelihoods Doubly intractable models SMC Applications Conclusions

Intractable likelihoods

Importance sampling (IS)

Importance sampling

Returns a weighted sample {(θ (p),w (p)) | 1≤ p ≤ P} from π(θ |y).
For p = 1 : P

Simulate θ (p) ∼ q(.)

Weight w̃ (p) = p(θ (p))f (y |θ (p))

q(θ (p))
.

Then

Ê [θ ] =
P

∑
p=1

w (p)
θ
(p) p̂(y) =

1
P

P

∑
p=1

w̃ (p).

Richard Everitt University of Reading
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Intractable likelihoods

Types of intractable likelihood

A likelihood is intractable when it is difficult to evaluate
pointwise at θ .

1 Big data

f (y |θ) =
N

∏
i=1

fi (yi |θ).

2 When there are a large number of latent variables x , with

f (y |θ) =
∫
x
f (y ,x |θ)dx .

3 When, for an intractable Z (θ) (e.g for a Markov random field),

f (y |θ) =
1

Z (θ)
γ(y |θ).

4 Where f (·|θ) can be sampled, but not evaluated.

Richard Everitt University of Reading
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Intractable likelihoods

Main approach

For each θ , it is possible to compute an estimate f̂ (y |θ) of
f (y |θ).
Includes:

approximate Bayesian computation (ABC);
synthetic likelihood (SL);
psuedo-marginal methods (including particle MCMC);
emulators;
composite likelihood;
many others...

Richard Everitt University of Reading
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Intractable likelihoods

Exact-approximate methods

Suppose that, for any θ , it is possible to compute an unbiased
estimate f̂ (y |θ) of f (y |θ). Then...

1 Using the acceptance probability

α

(
θ
(p),θ ∗

)
= min

{
1,

f̂ (y |θ ∗)p(θ ∗)q(θ (p)|θ ∗)
f̂ (y |θ (p))p(θ (p))q(θ ∗|θ (p))

}
yields an MCMC algorithm with target distibution π (θ |y).

2 Using the weight

w (p) =
f̂ (y |θ (p))p(θ (p))

q(θ (p))

yields an importance sampling algorithm with target
distribution π (θ |y).

Beaumont (2003), Andrieu and Roberts (2009), Fearnhead et al. (2010).
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Intractable likelihoods

Why is this true?

Write down the joint distrubution of all of the variables that
are being used

f̂ (y |θ ,u)p(u|θ)p(θ)

where u are the random variables used to generate the
estimate f̂ .
An algorithm that simulates from π(θ ,u|y) has the correct
marginal∫

u
π(θ ,u|y)du ∝

∫
u
f̂ (y |θ ,u)p(u|θ)p(θ)du

= p(θ)
∫
u
f̂ (y |θ ,u)p(u|θ)du

= p(θ)f (y |θ)

∝ π (θ |y) .

Richard Everitt University of Reading
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Intractable likelihoods

Why is this true?

Using q
(
θ (p)

)
p
(
u(p)|θ (p)

)
as a proposal within an importance

sampling algorithm yields the desired importance weight.

f̂ (y |θ (p),u(p))p(u(p)|θ (p))p(θ (p))

q
(
θ (p)

)
p
(
u(p)|θ (p)

)
=

f̂ (y |θ (p))p(θ (p))

q(θ (p))
.

A similar extended space representation may be used in
MCMC.

Richard Everitt University of Reading
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Doubly intractable models

Noisy images
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Doubly intractable models

Pairwise Markov random fields
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Doubly intractable models

Ising models

Originally used as a model for ferromagnetism in statistical
physics.
Generalisations (including the Potts model) are frequently used
in analysing spatially structured data, especially images.
A pairwise factorisation on a grid, where each variable can
take on either the value -1 or 1.
Each potential is:

Φ(xi ,xj |θx) = exp(θxxixj), (1)

so that the joint distribution is:

f (x |θx) =
1

Z (θx)
exp

(
θx ∑

i ,j

(xi ,jxi ,j+1 + xi ,jxi+1,j)

)
. (2)

So a larger parameter results in neighbouring variables being
likely to be similar.

Richard Everitt University of Reading
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Doubly intractable models

Ising models

Models undergo a phase transition as θx increases:

Figure: θx just lower than the critical value.

Richard Everitt University of Reading
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Doubly intractable models

Ising models

Models undergo a phase transition as θx increases:

Figure: θx just greater than the critical value.

Richard Everitt University of Reading
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Doubly intractable models

Type 3: “doubly intractable” distributions

Coined by Murray et al. (2006).
Doubly intractable since the acceptance probability in MH

min

{
1,

γ(y |θ ∗)
γ(y |θ (p))

p(θ ∗)

p(θ (p))

q(θ (p)|θ ∗)
q(θ ∗|θ (p))

1
Z (θ ∗)

Z (θ (p))

1

}

requires evaluating the intractable term Z .
Often take the form

f (y |θ) =
1

Z (θ)
exp
(

θ
TS(y)

)
.

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods



beamer-icsi-logo

Intractable likelihoods Doubly intractable models SMC Applications Conclusions

Doubly intractable models

Importance sampling for marginal likelihoods

Importance sampling:

p(y) =
∫

θ

f (y |θ)p(θ)

q(θ)
q(θ)dθ

≈ 1
P

P

∑
p=1

f (y |θ (p))p(θ (p))

q(θ (p))

=
1
P

P

∑
p=1

γ(y |θ (p))p(θ (p))

q(θ (p))

1
Z (θ (p))

.

Intractable...

Richard Everitt University of Reading
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Doubly intractable models

Importance sampling for marginal likelihoods

Importance sampling:

p(y) =
∫

θ

f (y |θ)p(θ)

q(θ)
q(θ)dθ

≈ 1
P

P

∑
p=1

f (y |θ (p))p(θ (p))

q(θ (p))

=
1
P

P

∑
p=1

γ(y |θ (p))p(θ (p))

q(θ (p))

1
Z (θ (p))

.

Intractable...
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Doubly intractable models

SAV importance sampling

Everitt et al. (2016) use

1
Z (θ ∗)

≈ qu(u∗|θ ∗,y)

γ(u∗|θ ∗)

with some distribution qu and u∗ ∼ f (.|θ ∗).
Using qu(u|θ ∗,y)

γ(u|θ ∗) as an IS estimator of 1
Z(θ ∗) we obtain

w (p) =
γ(y |θ (p))p(θ (p))

q(θ (p))

qu(u|θ (p),y)

γ(u|θ (p))
.

Note: we may use multiple importance points, i.e. use

1
Z (θ ∗)

≈ 1
M

M

∑
m=1

qu(u(m)|θ ∗,y)

γ(u(m)|θ ∗)
.

Richard Everitt University of Reading
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Doubly intractable models

Noisy methods

The use of “inexact approximate” or “noisy” methods in which
an exact method is approximated without resulting in the
correct target distribution.
Focus on doubly intractable problems

strong link to work on other types of intractable likelihood.

In particular, that an exact sampler does not exist for
u∗ ∼ f (.|θ ∗).
Alternatives:

Russian roulette (Lyne et al., 2015);
use a long run of an MCMC in place of an exact sampler
(Caimo and Friel, 2011; Everitt, 2012).

Richard Everitt University of Reading
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Doubly intractable models

Error of estimates: noisy IS

Noisy importance sampling and sequential Monte Carlo:
Everitt et al (2016).
Under some simplifying assumptions, noisy importance
sampling is more efficient (in terms of mean squared error)
compared to an exact-approximate algorithm if

1
P

(
Varq [w(θ) +b(θ)] +Eq[σ̀2

θ ]
)

+Eq[b(θ)]2

<
1
P

(
Varq [w(θ)] +Eq[σ́2

θ ]
)
,

where b(θ) > 0 is the bias of the noisy weights, σ̀2
θ
is the

variance of the noisy weights, σ́2
θ
is the variance of the

exact-approximate weights and

w(θ) :=
p(θ)γ(y |θ)

Z (θ)q(θ)
.

Richard Everitt University of Reading
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Doubly intractable models

Application to Ising models

An Ising model is a pairwise Markov random field with binary
variables.
Reanalyse the data from Friel (2013), which consists of 20
realisations from a first-order 10×10 Ising model and 20
realisations from a second-order 10×10 Ising model.
Compare

population exchange;
SAVIS / MAVIS

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods
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Doubly intractable models

Ising models: results
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SMC

Sequential Monte Carlo

Richard Everitt University of Reading
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SMC

SMC samplers

An iteration of an SMC algorithm at target t +1.
For p = 1 : P

Update θ
(p)
t to θ

(p)
t+1 using some kernel K .

For p = 1 : P

Reweight: find w̃
(p)
t+1, so that the

(
θ
(p)
t+1, w̃

(p)
t+1

)
are

(unnormalised) weighted points from pt+1(.|y).

Normalise
{
w̃

(p)
t+1

}P

p=1
to give

{
w

(p)
t+1

}P

p=1
.

Resample the weighted points if some threshold is met.

An estimate of the marginal likelihood is given by
∏

T
t=1 ∑

P
p=1 w̃

(p)
t .

Richard Everitt University of Reading
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SMC

SMC for doubly intractable models

Suppose that our sequence of distributions is

πt (θ |y) = p(θ)ft(y |θ) = p(θ)
γt(y |θ)

Zt(θ)
.

Using an MCMC kernel, we obtain an weight of

w̃
(p)
t =

γt(y |θ (p)
t−1)

γt−1(y |θ (p)
t−1)

Zt−1(θ
(p)
t−1)

Zt(θ
(p)
t−1)

w
(p)
t−1. (3)

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods
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SMC

SMC for doubly intractable models

Use an unbiased IS estimator of the ratio of Z s

̂
Zt−1(θ

(p)
t−1)

Zt(θ
(p)
t−1)

=
1
M

M

∑
m=1

γt−1(u
(m,p)
t |θ (p)

t−1)

γt(u
(m,p)
t |θ (p)

t−1)
, (4)

where u
(p,m)
t ∼ ft(.|θ (p)

t−1).

Viewed on an extended space, this is not quite the SMC
construction of Del Moral et al. (2006), but is still exact.

Richard Everitt University of Reading
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SMC

Sequence of distributions

Suppose there are T data points.
Use πt(θ |y) = p(θ)ft(y |θ) with

ft(y |θ) = f
(
y1:t/T |θ

)
= γ(y1:t/T |θ)/Zt(θ), (5)

i.e. essentially we add in one data point for each increment of
t.
As in Chopin 2002, or Chopin et al. 2013.
Then it is simple to use IS to estimate 1/Zt(θ) (and ratios of
Z s).

Richard Everitt University of Reading
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SMC

Sequential Monte Carlo results

Richard Everitt University of Reading
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SMC

An alternative choice

Why not use πt(θ |y) = p(θ)ft(y |θ) with

ft(y |θ) = f t/T (y |θ)?

Suppose unbiased estimates f̂ of f are available

includes doubly intractable situation, but more general than
this.

Can we use
ft(y |θ) = f̂ t/T (y |θ)?

Results in biased estimates of the weights

noisy SMC.

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods
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SMC

An alternative choice
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SMC

Noisy SMC: strong mixing assumptions

In Everitt et al (2016), we

use biased weights at every step of the SMC;
are interested in how the error accumulates as the SMC
algorithm iterates.

Under

strong mixing assumptions (stronger than a global Doeblin
condition)
a small difference between exact and noisy weight functions

Obtain a uniform bound on total-variation discrepancy between
the iterated target distributions of the exact and noisy methods

strong mixing can prevent the accumulation of error even in
systems with biased weights.

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods



beamer-icsi-logo

Intractable likelihoods Doubly intractable models SMC Applications Conclusions

SMC

Noisy SMC: empirical results

Richard Everitt University of Reading
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SMC

Marginal SMC

Marginal SMC (very similar to PMC) offers a solution

integrates over the previous target, rather than sampling from
the path space of targets
thus bias does not accumulate
has the correct target as long as f̂ is unbiased.

Weight update is

w̃
(p)
t =

p
(

θ
(p)
t

)
f̂ t/T

(
y |θ (p)

t

)
∑
P
r=1w

(r)
t−1Kt

(
θ
(p)
t | θ (r)

t−1

) .
Can be used very generally with estimated likelihoods.

Richard Everitt University of Reading
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SMC

Marginal SMC

Adaptation is natural.
f̂ computed at early stages of the SMC can be used in the
later stages.
Population of points moves from a disperse distribution to a
concentrated one

when using pre-computation, helps avoid the problem of
having poor estimates in regions that have not been visited
(e.g. the tails).

Avoids stickiness of MCMC chain caused to high variance
estimates.

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods
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Applications

SAV revisited

Suppose we alter the (unnormalised weight) to be

w (p) =
p(θ (p))γ(y |θ (p))

q(θ (p))

Z (θ̃)

Z (θ (p))
,

for some θ̃ .
We now require an estimate of

Z (θ̃)

Z (θ (p))
.

Now

Ẑ (θ̃)

Z (θ (p))
=

γ

(
u|θ̃
)

γ
(
u|θ (p)

)
with u ∼ f

(
·|θ (p)

)
. Use f̂ t/T within marginal SMC.

Richard Everitt University of Reading
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Applications

Low variance estimates

θ2

θ1

θ̇t(1)

θ̇t(C)

θ

θ′

Image from Nial Friel.

Ẑ (θ̃)

Z (θ (p))
=

Ẑ (θ1)

Z (θ (p))
× Ẑ (θ2)

Z (θ1)
× ...× Ẑ (θ̃)

Z (θm)

Here
θ̃ = 1

P ∑
P
p=1 θ

(p)
t−1;

θ1, ...,θm are a path of previously visited values from previous
steps of the SMC.

Richard Everitt University of Reading
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Applications

Application to precision estimation
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Estimating the posterior expectation of θ for a 10×10 Ising
model.
Marginal SMC with 50 particles and 20 targets (1: without
path; 2: with path).
Compare to a long run of the exchange algorithm.
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Applications

Synthetic likelihood

From Wood (2010), use the estimate

f̂SL (S(y)|θ) = N
(
S(y); µ̂θ , Σ̂θ

)
,

where

µ̂θ =
1
M

M

∑
m=1

S
(
u(m)

)
,

Σ̂θ =
ssT

M−1
,

for {u(m)}Mm=1 ∼ f (·|θ ∗).
A type of noisy MCMC.

Richard Everitt University of Reading
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Applications

Regression idea

If we are prepared to accept a little bias...
... wasteful to estimate f̂ (y |θ) independently for each theta.
We could try to exploit local smoothness of f in θ by
estimating a regression of f on θ .
Use the regression predictions as the likelihood

introduces a bias;
lower variance;
also explored in other papers...

Richard Everitt University of Reading
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Applications

Subsampling

Problem: expensive if the dimension N of y is large.
Approach: estimate regression of µθ and Σθ on θ via
estimates based on subsamples of y (and using a small M) and
use the regression predictions

reduces the variance of these estimates;
also see Moores et al. (2015) (regression without
subsampling).

Use within marginal SMC.

where ft(y |θ) = f̂
t/T

SL (S(y)|θ).

Richard Everitt University of Reading

Sequential Monte Carlo with estimated likelihoods
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Applications

Application to precision estimation
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True data size: N = 100,000.
Size of data simulated each time: 1,000.
Simulations per iteration: M = 10.
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Conclusions

Conclusions

Use exact methods where possible...

... however the bias from a noisy method may be small
compared to errors resulting from commonly accepted
approximate techniques such as ABC (and also the Monte
Carlo variance).
What is the best we can do fo some finite computational
budget?

Marginal SMC is useful when working with estimated
likelihoods

many potential applications.

Richard Everitt University of Reading
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