Intractable likelihoods	Doubly intractable models	SMC	Applications	Conclusions

Sequential Monte Carlo with estimated likelihoods

Richard Everitt

University of Reading

March 4th, 2016

Richard Everitt

University of Reading

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Intractable likelihoods 00000000	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Collaborators				

- Noisy MCMC: Pierre Alquier (ENSAE ParisTech), Nial Friel and Aidan Boland (UCD).
- Noisy IS and SMC: Adam Johansen (Warwick), Melina Evdemon-Hogan and Ellen Rowing (Reading).
- Recent SMC work: Philip Maybank (Reading), Dennis Prangle (Newcastle).

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications	Conclusions
Papers				

- Everitt R. G. (2012). Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks, Journal of Computational and Graphical Statistics, 21(4), 940-960, or arXiv(1203.3725)
- Alquier, P., Friel, N., Everitt, R. G., Boland, A. (2015). Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels, Statistics and Computing, or arXiv(1403.5496).
- Everitt, R. G., Johansen, A. M., Rowing, E., Evdemon-Hogan, M. (2016). Bayesian model comparison with un-normalised likelihoods, arXiv(1504.00298).

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions o
Intractable likelihoods				
Bavesian infe	rence			

- θ is unknown.
- *y* is data.

$$egin{array}{rcl} \pi(heta|y) &=& rac{p(heta)f(y| heta)}{p(y)} \ &\propto& p(heta)f(y| heta). \end{array}$$

Richard Everitt

University of Reading

A D > A B > A

Intractable likelihoods ○●○○○○○○	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Intractable likelihoods				
The marginal	likelihood			

The marginal likelihood (also known as the evidence) is

$$p(y) = \int_{\theta} p(\theta) f(y|\theta) d\theta.$$

Used in Bayesian model comparison

$$p(M|y) = p(M)p(y|M),$$

most commonly seen in the Bayes' factor, for comparing models

$$\frac{p(y|M_1)}{p(y|M_2)}.$$

< < >> < <</>

University of Reading

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions
Intractable likelihoods				

Importance sampling (IS)

Importance sampling

Returns a weighted sample $\{(\theta^{(p)}, w^{(p)}) | 1 \le p \le P\}$ from $\pi(\theta|y)$.

Simulate
$$\theta^{(p)} \sim q(.)$$

Weight $\widetilde{w}^{(p)} = \frac{p(\theta^{(p)})f(y|\theta^{(p)})}{q(\theta^{(p)})}$

Then

$$\widehat{\mathbb{E}[\theta]} = \sum_{p=1}^{P} w^{(p)} \theta^{(p)} \qquad \widehat{p}(y) = \frac{1}{P} \sum_{p=1}^{P} \widetilde{w}^{(p)}.$$

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

beamer-icsi

University of Reading

Richard Everitt

Intractable likelihoods 000●0000	Doubly intractable models	SMC 00000000000	Applications	Conclusions ○
Intractable likelihoods				

Types of intractable likelihood

 A likelihood is intractable when it is difficult to evaluate pointwise at θ.

1 Big data

$$f(y|\theta) = \prod_{i=1}^{N} f_i(y_i|\theta).$$

2 When there are a large number of latent variables x, with

$$f(y|\theta) = \int_{X} f(y, x|\theta) dx.$$

3 When, for an intractable $Z(\theta)$ (e.g for a *Markov random field*),

$$f(y|\theta) = \frac{1}{Z(\theta)}\gamma(y|\theta).$$

4 Where $f(\cdot|\theta)$ can be sampled, but not evaluated.

Richard Everitt

Sequential Monte Carlo with estimated likelihoods

University of Reading

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Intractable likelihoods				
Main approacl	h			

- For each θ , it is possible to compute an estimate $\hat{f}(y|\theta)$ of $f(y|\theta)$.
- Includes:
 - approximate Bayesian computation (ABC);
 - synthetic likelihood (SL);
 - psuedo-marginal methods (including particle MCMC);
 - emulators;
 - composite likelihood;
 - many others...

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Intractable likelihoods				

Exact-approximate methods

Suppose that, for any θ , it is possible to compute an unbiased estimate $\hat{f}(y|\theta)$ of $f(y|\theta)$. Then...

1 Using the acceptance probability

$$\alpha\left(\theta^{(p)},\theta^*\right) = \min\left\{1, \frac{\widehat{f}(y|\theta^*)p(\theta^*)q(\theta^{(p)}|\theta^*)}{\widehat{f}(y|\theta^{(p)})p(\theta^{(p)})q(\theta^*|\theta^{(p)})}\right\}$$

yields an MCMC algorithm with target distibution $\pi(\theta|y)$. 2 Using the weight

$$w^{(p)} = \frac{\widehat{f}(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}$$

yields an importance sampling algorithm with target distribution $\pi(\theta|y)$.

Beaumont (2003), Andrieu and Roberts (2009), Fearnhead et al. (2010).

Richard Everitt

University of Reading

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Intractable likelihoods				
M/hy is this t	trup?			

 Write down the joint distrubution of *all* of the variables that are being used

 $\widehat{f}(y|\theta, u)p(u|\theta)p(\theta)$

where u are the random variables used to generate the estimate \hat{f} .

 An algorithm that simulates from π(θ, u|y) has the correct marginal

$$\int_{u} \pi(\theta, u|y) du \propto \int_{u} \widehat{f}(y|\theta, u) p(u|\theta) p(\theta) du$$

= $p(\theta) \int_{u} \widehat{f}(y|\theta, u) p(u|\theta) du$
= $p(\theta) f(y|\theta)$
 $\propto \pi(\theta|y).$

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Intractable likelihoods				
Why is this tr	rue?			

• Using $q(\theta^{(p)}) p(u^{(p)}|\theta^{(p)})$ as a proposal within an importance sampling algorithm yields the desired importance weight.

$$\frac{\widehat{f}(y|\theta^{(p)}, u^{(p)})p(u^{(p)}|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})p(u^{(p)}|\theta^{(p)})}$$
$$=\frac{\widehat{f}(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}.$$

University of Reading

 A similar extended space representation may be used in MCMC.

Richard Everitt

Intractable likelihoods

Doubly intractable models

SMC 000000000 Applications

Conclusions

Doubly intractable models

Noisy images

Richard Everitt

University of Reading

Intractable likelihoods

Doubly intractable models

Applications

Conclusions

Doubly intractable models

Pairwise Markov random fields

beamer-icsi-

Richard Everitt

University of Reading

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Doubly intractable models				
Ising models				

- Originally used as a model for ferromagnetism in statistical physics.
- Generalisations (including the *Potts model*) are frequently used in analysing spatially structured data, especially images.
- A pairwise factorisation on a grid, where each variable can take on either the value -1 or 1.
- Each potential is:

$$\Phi(x_i, x_j | \theta_x) = \exp(\theta_x x_i x_j), \qquad (1)$$

so that the joint distribution is:

$$f(x|\theta_x) = \frac{1}{Z(\theta_x)} \exp\left(\theta_x \sum_{i,j} (x_{i,j} x_{i,j+1} + x_{i,j} x_{i+1,j})\right). \quad (2)$$

So a larger parameter results in neighbouring variables being likely to be similar.

 eritt
 University of Reading

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications	Conclusions O
Doubly intractable models				
lsing models				

• Models undergo a phase transition as θ_{χ} increases:

Figure: θ_x just lower than the critical value.

Richard Everitt Sequential Monte Carlo with estimated likelihoods University of Reading

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Doubly intractable models				
Ising models				

• Models undergo a phase transition as θ_{χ} increases:

Figure: θ_{x} just greater than the critical value.

Richard Everitt Sequential Monte Carlo with estimated likelihoods

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications	Conclusions O
Doubly intractable models				

Type 3: "doubly intractable" distributions

Coined by Murray et al. (2006).

Doubly intractable since the acceptance probability in MH

$$\min\left\{1,\frac{\gamma(y|\theta^*)}{\gamma(y|\theta^{(p)})}\frac{p(\theta^*)}{p(\theta^{(p)})}\frac{q(\theta^{(p)}|\theta^*)}{q(\theta^*|\theta^{(p)})}\frac{1}{Z(\theta^*)}\frac{Z(\theta^{(p)})}{1}\right\}$$

requires evaluating the intractable term Z.

Often take the form

$$f(y|\theta) = \frac{1}{Z(\theta)} \exp\left(\theta^T S(y)\right).$$

beamer-icsi

University of Reading

Richard Everitt

Intractable likelihoods

Doubly intractable models

SMC 0000000000 Applications

Conclusions

Doubly intractable models

Importance sampling for marginal likelihoods

Importance sampling:

р

$$\begin{split} P(\mathbf{y}) &= \int_{\theta} \frac{f(\mathbf{y}|\theta)p(\theta)}{q(\theta)}q(\theta)d\theta\\ &\approx \frac{1}{P}\sum_{p=1}^{P} \frac{f(\mathbf{y}|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}\\ &= \frac{1}{P}\sum_{p=1}^{P} \frac{\gamma(\mathbf{y}|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}\frac{1}{Z(\theta^{(p)})}. \end{split}$$

Intractable...

beamer-icsi-

Richard Everitt

University of Reading

A D > A B > A B

Intractable likelihoods

Doubly intractable models

SMC 0000000000 Applications

Conclusions

Doubly intractable models

Importance sampling for marginal likelihoods

Importance sampling:

р

$$\begin{aligned} (y) &= \int_{\theta} \frac{f(y|\theta)p(\theta)}{q(\theta)}q(\theta)d\theta \\ &\approx \frac{1}{P}\sum_{p=1}^{P} \frac{f(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})} \\ &= \frac{1}{P}\sum_{p=1}^{P} \frac{\gamma(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}\frac{1}{Z(\theta^{(p)})}. \end{aligned}$$

Intractable...

Richard Everitt

University of Reading

Image: A math a math

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Doubly intractable models				
SAV importa	nce sampling			

Everitt et al. (2016) use

$$rac{1}{Z(heta^*)} pprox rac{q_u(u^*| heta^*,y)}{\gamma(u^*| heta^*)}$$

with some distribution q_u and $u^* \sim f(.|\theta^*)$. Using $\frac{q_u(u|\theta^*,y)}{\gamma(u|\theta^*)}$ as an IS estimator of $\frac{1}{Z(\theta^*)}$ we obtain $w^{(p)} = \frac{\gamma(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}\frac{q_u(u|\theta^{(p)},y)}{\gamma(u|\theta^{(p)})}.$

ъ

Note: we may use multiple importance points, i.e. use

$$\frac{1}{Z(\theta^*)} \approx \frac{1}{M} \sum_{m=1}^{M} \frac{q_u(u^{(m)}|\theta^*, y)}{\gamma(u^{(m)}|\theta^*)}.$$

Richard Everitt

University of Reading

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Doubly intractable models				
Noisy method	s			

- The use of "inexact approximate" or "noisy" methods in which an exact method is approximated without resulting in the correct target distribution.
- Focus on doubly intractable problems
 - strong link to work on other types of intractable likelihood.
- In particular, that an exact sampler does not exist for $u^* \sim f(.|\theta^*)$.
- Alternatives:
 - Russian roulette (Lyne et al., 2015);
 - use a long run of an MCMC in place of an exact sampler (Caimo and Friel, 2011; Everitt, 2012).

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions O
Doubly intractable models				

Error of estimates: noisy IS

- Noisy importance sampling and sequential Monte Carlo: Everitt et al (2016).
- Under some simplifying assumptions, noisy importance sampling is more efficient (in terms of mean squared error) compared to an exact-approximate algorithm if

$$\frac{1}{P} \left(\operatorname{Var}_{q} \left[w(\theta) + b(\theta) \right] + \mathbb{E}_{q} [\check{\sigma}_{\theta}^{2}] \right) + \mathbb{E}_{q} [b(\theta)]^{2} \\ < \frac{1}{P} \left(\operatorname{Var}_{q} \left[w(\theta) \right] + \mathbb{E}_{q} [\check{\sigma}_{\theta}^{2}] \right),$$

where $b(\theta) > 0$ is the bias of the noisy weights, $\dot{\sigma}_{\theta}^2$ is the variance of the noisy weights, $\dot{\sigma}_{\theta}^2$ is the variance of the exact-approximate weights and

$$w(\theta) := \frac{p(\theta)\gamma(y|\theta)}{Z(\theta)q(\theta)}.$$

Intractable likelihoods	Doubly intractable models ○○○○○○○○○●○	SMC 00000000000	Applications	Conclusions O
Doubly intractable models				
Application to	lsing models			

- An Ising model is a pairwise Markov random field with binary variables.
- Reanalyse the data from Friel (2013), which consists of 20 realisations from a first-order 10×10 lsing model and 20 realisations from a second-order 10×10 lsing model.
- Compare
 - population exchange;
 - SAVIS / MAVIS

University of Reading

Richard Everitt

 Intractable likelihoods
 Doubly intractable models
 SMC
 Applications
 Conclusions

 00000000
 000000000
 000000000
 00000000
 0
 0
 0

 Doubly intractable models

 0
 0
 0
 0

Ising models: results

A D M A B M A

beamer-icsi-

University of Reading

Richard Everitt

Intractable likelihoods

SMC

Doubly intractable models

SMC ••••••• Applications

Conclusions

Sequential Monte Carlo

beamer-icsi-

Richard Everitt

University of Reading

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Intractable likelihoods	Doubly intractable models	SMC ○●○○○○○○○○○	Applications	Conclusions O
SMC				
SMC sample	rs			

An iteration of an SMC algorithm at target t+1.

• Update $\theta_t^{(p)}$ to $\theta_{t+1}^{(p)}$ using some kernel K.

Reweight: find $\widetilde{w}_{t+1}^{(p)}$, so that the $\left(\theta_{t+1}^{(p)}, \widetilde{w}_{t+1}^{(p)}\right)$ are (unnormalised) weighted points from $p_{t+1}(.|y)$.

• Normalise
$$\left\{\widetilde{w}_{t+1}^{(p)}\right\}_{p=1}^{P}$$
 to give $\left\{w_{t+1}^{(p)}\right\}_{p=1}^{P}$.

- Resample the weighted points if some threshold is met.
- An estimate of the marginal likelihood is given by $\prod_{t=1}^{T} \sum_{p=1}^{P} \widetilde{w}_{t}^{(p)}.$

Richard Everitt Sequential Monte Carlo with estimated likelihoods

Intractable likelihoods	Doubly intractable models	SMC ००●०००००००	Applications	Conclusions
SMC				
SMC for doub	ly intractable mo	dels		

Suppose that our sequence of distributions is

$$\pi_t(\theta|y) = p(\theta)f_t(y|\theta) = p(\theta)\frac{\gamma_t(y|\theta)}{Z_t(\theta)}.$$

Using an MCMC kernel, we obtain an weight of

$$\widetilde{w}_{t}^{(p)} = \frac{\gamma_{t}(y|\theta_{t-1}^{(p)})}{\gamma_{t-1}(y|\theta_{t-1}^{(p)})} \frac{Z_{t-1}(\theta_{t-1}^{(p)})}{Z_{t}(\theta_{t-1}^{(p)})} w_{t-1}^{(p)}.$$
 (3)

< • • • • •

University of Reading

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC ०००●००००००	Applications	Conclusions
SMC				
SMC for doub	ly intractable mo	dels		

Use an unbiased IS estimator of the ratio of Zs

$$\frac{Z_{t-1}(\theta_{t-1}^{(p)})}{Z_t(\theta_{t-1}^{(p)})} = \frac{1}{M} \sum_{m=1}^M \frac{\gamma_{t-1}(u_t^{(m,p)}|\theta_{t-1}^{(p)})}{\gamma_t(u_t^{(m,p)}|\theta_{t-1}^{(p)})},$$
(4)

Image: A math a math

University of Reading

where $u_t^{(p,m)} \sim f_t(.|\theta_{t-1}^{(p)}).$

Viewed on an extended space, this is not *quite* the SMC construction of Del Moral et al. (2006), but is still exact.

Intractable likelihoods	Doubly intractable models	SMC ००००●००००००	Applications	Conclusions O
SMC				
Sequence of	distributions			

- Suppose there are *T* data points.
- Use $\pi_t(heta|y) =
 ho(heta) f_t(y| heta)$ with

$$f_t(y|\theta) = f\left(y_{1:t/T}|\theta\right) = \gamma(y_{1:t/T}|\theta)/Z_t(\theta), \quad (5)$$

- i.e. essentially we add in one data point for each increment of t.
- As in Chopin 2002, or Chopin et al. 2013.
- Then it is simple to use IS to estimate $1/Z_t(\theta)$ (and ratios of Zs).

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Intractable likelihoods

SMC

Doubly intractable models

SMC 00000000000 Applications

Conclusions

Sequential Monte Carlo results

Intractable likelihoods	Doubly intractable models	SMC ००००००●००००	Applications	Conclusions
SMC				
An alternative	e choice			

• Why not use $\pi_t(\theta|y) = p(\theta)f_t(y|\theta)$ with $f_t(y|\theta) = f^{t/T}(y|\theta)?$

Suppose unbiased estimates \hat{f} of f are available includes doubly intractable situation, but more general the

Can we use

$$f_t(y|\theta) = \hat{f}^{t/T}(y|\theta)?$$

< < >> < <</>

Results in biased estimates of the weights
 noisy SMC.

Richard Everitt Sequential Monte Carlo with estimated likelihoods University of Reading

Intractable likelihoods	Doubly intractable models	SMC ००००००●००००	Applications	Conclusions O
SMC				
An alternative	e choice			

• Why not use $\pi_t(\theta|y) = p(\theta)f_t(y|\theta)$ with

$$f_t(y|\theta) = f^{t/T}(y|\theta)?$$

- Suppose unbiased estimates \hat{f} of f are available
 - includes doubly intractable situation, but more general than this.
- Can we use

$$f_t(y|\theta) = \hat{f}^{t/T}(y|\theta)?$$

Results in biased estimates of the weights
 noisy SMC.

Intractable likelihoods	Doubly intractable models	SMC ००००००●००००	Applications	Conclusions O
SMC				
An alternative	e choice			

• Why not use $\pi_t(\theta|y) = p(\theta)f_t(y|\theta)$ with

$$f_t(y|\theta) = f^{t/T}(y|\theta)?$$

- Suppose unbiased estimates \hat{f} of f are available
 - includes doubly intractable situation, but more general than this.
- Can we use

$$f_t(y|\theta) = \hat{f}^{t/T}(y|\theta)?$$

Results in biased estimates of the weights

noisy SMC.

Intractable likelihoods	Doubly intractable models	SMC 0000000●000	Applications	Conclusions O
SMC				

Noisy SMC: strong mixing assumptions

- In Everitt et al (2016), we
 - use biased weights at every step of the SMC;
 - are interested in how the error accumulates as the SMC algorithm iterates.
- Under
 - strong mixing assumptions (stronger than a global Doeblin condition)
 - a small difference between exact and noisy weight functions
- Obtain a uniform bound on total-variation discrepancy between the iterated target distributions of the exact and noisy methods
 - strong mixing can prevent the accumulation of error even in systems with biased weights.

Intractable likelihoods

SMC

Doubly intractable models

 Applications

Conclusions

Noisy SMC: empirical results

University of Reading

Sequential Monte Carlo with estimated likelihoods

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC ०००००००००●०	Applications	Conclusions
SMC				
Marginal SM0	2			

- Marginal SMC (very similar to PMC) offers a solution
 - integrates over the previous target, rather than sampling from the path space of targets
 - thus bias does not accumulate
 - has the correct target as long as \hat{f} is unbiased.
- Weight update is

$$\tilde{w}_{t}^{(p)} = \frac{p\left(\theta_{t}^{(p)}\right)\hat{f}^{t/T}\left(y|\theta_{t}^{(p)}\right)}{\sum_{r=1}^{P}w_{t-1}^{(r)}K_{t}\left(\theta_{t}^{(p)}\mid\theta_{t-1}^{(r)}\right)}.$$

• Can be used very generally with estimated likelihoods.

beamer-icsi-

University of Reading

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC ○○○○○○○○○●	Applications	Conclusions
SMC				
Marginal SMC				

- Adaptation is natural.
- \hat{f} computed at early stages of the SMC can be used in the later stages.
- Population of points moves from a disperse distribution to a concentrated one
 - when using pre-computation, helps avoid the problem of having poor estimates in regions that have not been visited (e.g. the tails).
- Avoids stickiness of MCMC chain caused to high variance estimates.

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications ●○○○○○○	Conclusions O
Applications				
SAV revisited				

Suppose we alter the (unnormalised weight) to be

$$w^{(p)} = \frac{p(\theta^{(p)})\gamma(y|\theta^{(p)})}{q(\theta^{(p)})} \frac{Z(\tilde{\theta})}{Z(\theta^{(p)})},$$

for some $\tilde{\theta}$.

We now require an estimate of

$$\frac{Z(\tilde{\theta})}{Z(\theta^{(p)})}.$$

Now

$$\frac{\widehat{Z(\tilde{\theta})}}{Z(\theta^{(p)})} = \frac{\gamma\left(u|\tilde{\theta}\right)}{\gamma\left(u|\theta^{(p)}\right)}$$

with $u \sim f(\cdot | \theta^{(p)})$. Use $\hat{f}^{t/T}$ within marginal SMC.

Richard Everitt

University of Reading

Intractable likelihoods

Doubly intractable models

SMC 0000000000 Applications

Conclusions

Applications

Low variance estimates

Image from Nial Friel.

$$\frac{\widehat{Z(\tilde{\theta})}}{Z(\theta^{(p)})} = \frac{\widehat{Z(\theta_1)}}{Z(\theta^{(p)})} \times \frac{\widehat{Z(\theta_2)}}{Z(\theta_1)} \times \ldots \times \frac{\widehat{Z(\tilde{\theta})}}{Z(\theta_m)}$$

Here

Richard Everitt

University of Reading

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications	Conclusions
Applications				

Application to precision estimation

- Estimating the posterior expectation of θ for a 10 × 10 lsing model.
- Marginal SMC with 50 particles and 20 targets (1: without path; 2: with path).
- Compare to a long run of the exchange algorithm.

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications ○○○●○○○	Conclusions O
Applications				
Synthetic lik	elihood			

From Wood (2010), use the estimate

$$\widehat{f}_{\mathsf{SL}}(S(y)|\theta) = \mathscr{N}\left(S(y);\widehat{\mu}_{\theta},\widehat{\Sigma}_{\theta}\right),$$

where

$$\widehat{\mu}_{\theta} = \frac{1}{M} \sum_{m=1}^{M} S\left(u^{(m)}\right),$$
$$\widehat{\Sigma}_{\theta} = \frac{ss^{T}}{M-1},$$

<ロト <回ト < 回ト

for $\{u^{(m)}\}_{m=1}^{M} \sim f(\cdot | \theta^*)$. • A type of noisy MCMC.

beamer-icsi-

University of Reading

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 00000000000	Applications ○○○○●○○	Conclusions O
Applications				
Regression id	ea			

- If we are prepared to accept a little bias...
- ... wasteful to estimate $\hat{f}(y|\theta)$ independently for each theta.
- We could try to exploit local smoothness of f in θ by estimating a regression of f on θ .
- Use the regression predictions as the likelihood
 - introduces a bias;
 - lower variance;
 - also explored in other papers...

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications ○○○○○●○	Conclusions O
Applications				
Subsampling				

- **Problem:** expensive if the dimension *N* of *y* is large.
- Approach: estimate regression of μ_θ and Σ_θ on θ via estimates based on subsamples of y (and using a small M) and use the regression predictions
 - reduces the variance of these estimates;
 - also see Moores et al. (2015) (regression without subsampling).
- Use within marginal SMC.

• where
$$f_t(y|\theta) = \widehat{f}_{SL}^{t/T}(S(y)|\theta)$$
.

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications 000000●	Conclusions 0
Applications				

Application to precision estimation

University of Reading

True data size: N = 100,000. Size of data simulated each time: 1,000. Simulations per iteration: M = 10.

Richard Everitt

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications	Conclusions •
Conclusions				
Conclusions				

Use exact methods where possible...

- ... however the bias from a noisy method may be small compared to errors resulting from commonly accepted approximate techniques such as ABC (and also the Monte Carlo variance).
- What is the best we can do fo some finite computational budget?
- Marginal SMC is useful when working with estimated likelihoods
 - many potential applications.

beamer-icsi-

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications	Conclusions ●
Conclusions				
Conclusions				

- Use exact methods where possible...
- ... however the bias from a noisy method may be small compared to errors resulting from commonly accepted approximate techniques such as ABC (and also the Monte Carlo variance).
- What is the best we can do fo some finite computational budget?
- Marginal SMC is useful when working with estimated likelihoods
 - many potential applications.

Intractable likelihoods	Doubly intractable models	SMC 0000000000	Applications	Conclusions ●
Conclusions				
Conclusions				

- Use exact methods where possible...
- ... however the bias from a noisy method may be small compared to errors resulting from commonly accepted approximate techniques such as ABC (and also the Monte Carlo variance).
- What is the best we can do fo some finite computational budget?
- Marginal SMC is useful when working with estimated likelihoods
 - many potential applications.