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Introduction

Introduction

The use on improper priors has been largely debated in the literature
Against improper prior

it is not a probability,
many undesirable feature appears : marginalization paradox,
non-conglomerability, Jeffreys-Lindley paradox,...

For improper prior

necessary to obtain complete class of admissible estimator.
appear in the construction of "non-informative" priors.
corresponds to limiting posterior distributions.
replacing an improper prior by a proper prior approximation may provide a false
impression of safety.
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Introduction

A basic example

X|θ ∼ N (θ, 1),
θ ∼ N (0, n)

EN (0,n) (θ|x) =
n

n+ 1
x −−−−−−−−−−→

n→+∞
x = Eλ(θ|x)

where λ is the Laplace prior.
So, we would like to write

N (0, n) −−−−−−−→
n→+∞

λ (Laplace prior).

Question : does this apparent convergent depends on the likelihood f(x|θ)
or is it intrinsic ?
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Introduction

More generally

πn

f(x|θ)

��

π

f(x|θ)

��
Eπn(θ|x)

n→+∞
// Eπ(θ|x)
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Introduction

Notation
Let Π be a measure on Θ and h a real-valued function:

Π(h) =

∫
Θ
h(θ)π(θ) dθ

weak convergence of probability measures

Πn
weakly−−−−−−−→
n→+∞

Π⇐⇒ Πn(h) −−−−−−−→
n→+∞

Π(h), ∀h ∈ Cb.

where Cb ={ continuous real-valued bounded functions on Θ}

Vague convergence of Radon measures
If Πn and Π are non-null Radon measures (finite on compact sets),

Πn
vaguely−−−−−−−→
n→+∞

Π⇐⇒ Πn(h) −−−−−−−→
n→+∞

Π(h), ∀h ∈ CK .

where CK is the set of real-valued continuous function with compact support.
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Introduction

If Πn are probability measures that converges vaguely to Π, then

Π(Θ) ≤ lim sup
n

Πn(Θ) = 1.

Thus a sequence of probability measures cannot converge to an improper prior.

We have to find another convergence mode !

Two approaches

Using projective space
Using finitely additive probabilities (FAP)

Pierre Druilhet (UBP) Connvergence of priors 7 / 31



Projective space of measure (PSM)

Projective space of measure (PSM)

The priors Π and αΠ (with α > 0 ) give the same posterior. So, we identify them:

Π ∼ Π′ ⇐⇒ Π′ = α Π for some α > 0.

ww�
The quotient space associated to this equivalence relation is a projective space.
The equivalent class associated to Π is denote by

Π = {αΠ;α > 0} .

For example, the Laplace prior
π(θ) ∝ 1

is an object defined in the PSM and one representative is π(θ) = 1.
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Convergence mode q-vague convergence

q-vague convergence

Let Πn be a sequence of Radon measures, the convergence, called q-vague
convergence (Bioche and D. 2016), derived from the quotient space topology is:

Πn
q−vaguely−−−−−−−→
n→+∞

Π ⇐⇒ Πn
quotient topology−−−−−−−−−−−−→

n→+∞
Π

More tractable, staying in the initial space, we have:

Πn
q−vaguely−−−−−−−→
n→+∞

Π ⇐⇒ anΠn
vaguely−−−−−−−→
n→+∞

Π for some an > 0.
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Convergence mode q-vague convergence

Proposition
If Πn and Π are probabilities,

Πn
q−vaguely−−−−−−−→
n→+∞

Π ⇐⇒ Πn
weakly−−−−−−−→
n→+∞

Π

So, the q-vague converge is an extension of the usual weak convergence of
probability measures.

Proposition
The limit is unique (up to within a scalar factor) : the projective space is an
Hausdorff space.

Proposition
Any improper prior is limit of a sequence of probability measures.
Any probability measure is limit of a sequence of improper measures.
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Convergence mode q-vague convergence

Examples

N (0, n)
q−vaguely−−−−−−−→
n→+∞

λ,

U[−n,n]
q−vaguely−−−−−−−→
n→+∞

λ,

N (n, n)
q−vaguely−−−−−−−→
n→+∞

eθdθ,

N (n,
√
n) does not converge,

P(n) does not converge.
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Convergence mode q-vague convergence

Example (2)

A gamma distribution γ(an, bn) converge to 1/θ1θ>0 when an and bn go to 0.

For γ( 1
n ,

1
n), En(θ) = 1 and limn varn = +∞.

For γ( 1
n ,

1√
n

), limn En(θ) = 0 and limn varn(θ) = 1.

For γ( 1
n ,

1

n
1
3

), limn En(θ) = 0 and limn varn(θ) = 0.

For γ( 1
n ,

1
n2 ), limn En(θ) = +∞ and limn varn(θ) = +∞.

For γ( 1
n ,

1

n
2
3

), limn En(θ) = 0 and limn varn(θ) = +∞.
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Convergence mode q-vague convergence

Example (3)

For the beta distribution, there are two limits in the litterature:

β

(
1

n
,

1

n

)
weakly−−−−−−−→
n→+∞

1

2
δ0 +

1

2
δ1

and

β

(
1

n
,

1

n

)
−−−−−−−→
n→+∞

1

θ(1− θ)
(Haldane prior)
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Convergence mode q-vague convergence

Re-parameterizaton
The q − vague convergence is transmitted by continous re-parameterization

Let η = h(θ), with h continuous

πn(θ)
q−vaguely //

h

��

π(θ)

h

��
π̃n(η)

q−vaguely // π̃(η)
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Convergence mode q-vague convergence

Exemple
X|θ ∼ B(N, p)

θ = log
(

p
1−p

)
θ ∼ N (0, n),
p = eθ

1+eθ
= h(θ)

When n goes to +∞, what is the limiting prior for p ?

θ ∼ N (0, n)

h

��
p ∼ ... q−vaguely // ...
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Convergence mode q-vague convergence

Approximation of Jeffreys’ prior by conjugate
priors.

Let X|θ ∼ f(x|θ) = exp{θ · t(x)− φ(θ)} h(x) (exponential model).

We want to approximate the Jeffreys prior πJ(θ) ∝ |IX(θ)|1/2 by conjugate priors.

We define the invariant family of conjugate priors (see D. and Pommeret, 2012):

πJα,β(θ) ∝ exp{α.θ − βφ(θ)} |Iθ(θ)|
1
2 ,

We have the convergence result:

ΠJ
αn,βn

q−vaguely−−−−−−−−−−→
αn→0
βn→0

ΠJ

Note that the standard conjugate prior πα,β(θ) ∝ exp{α.θ − βφ(θ)} approximates
the Laplace prior (and is not invariant by re-parameterization).
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Convergence mode q-vague convergence

From prior to posterior convergence

If the likelihood f(x|θ) is continuous in θ, the q-vague convergence is transmitted
to the posterior.

Πn
q−vaguely−−−−−−−→
n→+∞

Π =⇒ Πn(·|x)
q−vaguely−−−−−−−→
n→+∞

Π(·|x)

Πn
q−vaguely //

f(x|θ)

��

Π

f(x|θ)

��
Πn(·|x)

q−vaguely // Π(·|x)
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f(x|θ)

��

Π

f(x|θ)

��
Πn(·|x)

weakly // Π(·|x)

if Πn are probabilities and Π(·|x) is proper
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Convergence mode q-vague convergence

Proposition
Let Πn be probability measures which converges to an improper prior Π, then Πn

tends to concentrate outside any compact set, i.e.
for any compact K,

Πn(K) −−−−−−−→
n→+∞

0

Application: This property also holds for prior predictive probabilities :
If

p(x) =

∫
f(x|θ)π(θ) dθ

is defined, then it is improper and therefore the sequence of probabilities

pn(x) =

∫
f(x|θ)πn(θ) dθ

that converges q-vaguely to an improper prior and therefore (under mild
assumptions).

Therefore, x generated by pn(x) will be almost always very far from the data, even
in dimension 1 and ABC methods may be inefficient.
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Convergence mode Finitely additive convergence

Finitely additive probability(FAP)

Bayesian inference with improper prior may be legitimated by the use of FAP
(see De Finetti, 1975, Heath and Sudderth 1978, Schervish, Seidenfeld and
Kadane, 1984).

The idea is to remove the assumption of countably additivity from Kolmogorov
axiomatic, which is

Π(
⋃
n∈N
↑ An) = lim

n
Π(An).

A FAP is usually defined implicitly from the posterior distribution related to an
improper prior.

There is no uniqueness and the proof of existence needs the axiom of choice.
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Convergence mode Finitely additive convergence

We try to define a limiting FAP directly from the prior sequence :

Let Πn be a sequence of probabilities. A FAP Π is a limit if

lim inf
n

Πn(f) ≤ Π(f) ≤ lim sup
n

Πn(f), ∀f ∈ Cb.

Proposition
If Πn converge q-vaguely to an improper prior and if a FAP limit is Π then, Π is a
purely FAP (PFAP) .

i.e. let Km be an increasing sequence that converges to θ, then

Π(
⋃
n∈N
↑ Kn) = 1 6= 0 lim

n
Π(Kn).

For example a PFAP on N satisfies Π({i}) = 0 whereas Π(N) = 1
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The Jeffreys-Lindley paradox

The Jeffreys-Lindley paradox

We now explore the Jeffreys-Lindley paradox
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The Jeffreys-Lindley paradox

We must distinguish between two Bayesian paradigms

P1 The prior may be considered as the way to draw the parameter (subjective
approach).

If we change the prior, we change the marginal model and the way to generate
x. Therefore it is not relevant to consider the behavior of the posterior for x
fixed.
We can applied probability rules.
It is relevant to consider the joint distribution (X, θ) or the prior predictive
probability p(x).
Improper priors have to be banished

P2 The prior is way to make inference (objective approach).
If we change the prior, it is relevant to consider the behavior of the posterior for
x fixed.
We cannot applied all the probability rules.
"One should not interpret any non-subjective prior as a probability distribution"
(Bernardo, 1997)
It is not relevant to consider the joint distribution (X, θ) or the prior predictive
probability p(x)
Improper priors are part of the paradigm, at least has limit of proper prior.
PSM seems more appropriate.
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The Jeffreys-Lindley paradox

Let X|θ ∼ N (θ, 1)
and the point null hypothesis H0 : θ = 0 tested against H1 : θ 6= 0.
Consider the prior

Π =
1

2
δ0 +

1

2
λ

then
Π(θ = 0|x) 6

[
1 +
√

2π
]−1
≈ 0.285

whatever the data are.
Moreover, the is no reason to choose λ instead of αλ with α > 0. The posterior
distribution depends on α !
So, let replace λ by an approximation

Πn =
1

2
δ0 +

1

2
N (0, n)

We have now
Πn(θ = 0|x) −−−−−−−→

n→+∞
1

whatever the data are.
What is wrong ?
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The Jeffreys-Lindley paradox

The convergence is for x fixed, so we are in the second paradigm.
The prior Π = 1

2δ0 + 1
2λ involves an improper prior.

→ you are in a PSM.

A convex combination of priors is not compatible with the PSM !

→ You cannot consider it as a combination of separate prior on H0 and H1.
This is also true for 1

2δ0 + 1
2N (0, n).

In fact we have 1
2δ0 + 1

2N (0, n) is not an approximation of Π = 1
2δ0 + 1

2λ, but

1

2
δ0 +

1

2
N (0,n)

q−vaguely−−−−−−−−−−→
n→+∞

δ0

So Πn(θ = 0|x) −−−−−−−→
n→+∞

1 is not surprising (but does not hold

systematically).
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The Jeffreys-Lindley paradox

Remark:

1
2
√

2πn
δ0 + 1

2N (0, n) −−−−−−→
n→+∞

1
2δ0 + 1

2λ

This kind of prior was also considered by C.P. Robert (1993, Stat. Sinica)
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The Jeffreys-Lindley paradox

More generally

Proposition
Consider

Θ = {θ0}
⋃

Θ1

Πn = ρδθ0 + (1− ρ) Π̃n where 0 < ρ < 1,
Π̃n a probability on Θ1

Π̃n
q−vaguely−−−−−−→ Π̃ improper

Then
Πn

q−vaguely−−−−−−→ δθ0

.
Moreover, if θ 7−→ f(x|θ) is continuous and belongs to C0(Θ), then

Πn(θ = θ0|x)
weakly−−−−→ 1.
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The Jeffreys-Lindley paradox

A non-paradox

We consider now that we are in paradigm 1 : when we change the prior, the way
x is generated change.
Consider again

Πn =
1

2
δ0 +

1

2
N (0, n)

Under the alternative hypothesis, the prior predictive probability

p(1)
n (x) =

∫
H1

f(x|θ)πn(θ)dθ.

is a N (0, 1 + n) which converge q-vaguely to the Lebesgue measure.

Therefore p(1)
n (x) tends to concentrate outside any given compact set.
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The Jeffreys-Lindley paradox

For any fixed α ≈ 0, define

Iα(n) =
[
−u
√
n ; u

√
n
]

where u is the quantile of a N (0, 1) of order 1− α/2. Then

PH1(X ∈ Iα(n)) = α ≈ 0

For x 6∈ Iα(n)

P(θ = 0|x) ≤

(
1 +

√
1

1 + n
eun/2

)−1
n→+∞−−−−−−−−→ 0

and there is no paradox !
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The Jeffreys-Lindley paradox

Another Jeffreys-Lindley paradox

(Dauxois, D. and Pommeret, 2006)
Consider a sample X1, ..., Xn.
We have to choice a model between Poisson, Binomial(N,p) or Negative
Binomial(N,p).
We assume that the mean m is known.
The distributions are characterized by their variance functions

V (m) = am2 +m

where :
a = 0 for the Poisson distribution.
a = −1/N for the Binomial Distribution.
a = 1/N for the negative Binomial Distribution.

So, we have to decide if ”a = 0”, ”a < 0” or ”a > 0”.
We put a truncated flat prior for the parameter N for the Bin. and Neg. Bin.
models.
We put probabilities p0, p− and p+ on each model,
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The Jeffreys-Lindley paradox

Thank you for your attention !
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