Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

February 29, 2016

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- Bayesian inference is a powerful statistical methodology
- But for most generative models, it's also computationally intractable

$$p(x|O_1...O_n) = p(x)\prod_i p(O_i|x)$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- Bayesian inference is a powerful statistical methodology
- But for most generative models, it's also computationally intractable

$$p(x|O_1...O_n) = p(x)\prod_i p(O_i|x)$$

- What can we do ?
 - Point estimates ! (maximum likelihood, MAP)

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- Bayesian inference is a powerful statistical methodology
- But for most generative models, it's also computationally intractable

$$p(x|O_1...O_n) = p(x)\prod_i p(O_i|x)$$

- What can we do ?
 - Point estimates ! (maximum likelihood, MAP)
 - Sampling methods ! Generate $X \sim p(x|O_1 \dots O_n)$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- Bayesian inference is a powerful statistical methodology
- But for most generative models, it's also computationally intractable

$$p(x|O_1...O_n) = p(x)\prod_i p(O_i|x)$$

- What can we do ?
 - Point estimates ! (maximum likelihood, MAP)
 - Sampling methods ! Generate $X \sim p(x|O_1 \dots O_n)$
 - Approximate inference ! Find $q \approx p$

Expectation Propagation

 It's used to match players in skill level in Halo (Microsoft True Skill, XBox)

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

EP is powerful ...

- EP has great potential:
 - It's powerful (Kuss et al, 05; Nickish et al, 08):
 - Empirically, it gives high-quality approximations at minimal cost
 - It's universal:
 - it can be applied to any p(x) with a simple factor structure
 - Can perform the computation in parallel

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

but poorly understood !!

- But EP is also very poorly known !!
- Open questions:
 - How good are the approximations ?
 - Does it always terminate ?

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

but poorly understood !!

- But EP is also very poorly known !!
- Open questions:
 - How good are the approximations ?
 - Does it always terminate ?
- We've been able to tackle those questions in the large-data limit:
 - We prove it gives good approximations
 - We prove that it has a simple limit behavior

Contents

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Background

How does EP work ? The large-data limit

2 Why does EP give accurate approximations

3 The EP iteration behaves like Newton's algorithm

Notations

We will approximate a 1D probability distribution p(x) that has a simple factor structure

$$p(x|O_1 \dots O_n) = p(x) \prod_{i=1}^n p(O_i|x)$$
$$p(x) = \prod_{i=1}^n f_i(x)$$

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Guillaume Dehaene, Simon Barthelmé

Expectation Propagation

in the large data limit

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

We will approximate a 1D probability distribution p(x) that has a simple factor structure

Notations

$$p(x|O_1...O_n) = p(x)\prod_{i=1}^n p(O_i|x)$$
$$p(x) = \prod_{i=1}^n f_i(x)$$

We will approximate p with a Gaussian g that also factorizes:

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx p(x)$$

$$\forall i \ g_i(x) \approx f_i(x)$$

> Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

We will approximate a 1D probability distribution p(x) that has a simple factor structure

Notations

$$p(x|O_1 \dots O_n) = p(x) \prod_{i=1}^n p(O_i|x)$$
$$p(x) = \prod_{i=1}^n f_i(x)$$

We will approximate p with a Gaussian g that also factorizes:

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx p(x)$$

$$\forall i \ g_i(x) \approx f_i(x)$$

We will often work with negative logs:

$$\psi(x) = -\log [p(x)]$$

$$\phi_i(x) = -\log [f_i(x)]$$

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx \prod_{i=1}^{n} f_i(x) = p(x)$$

- EP proceeds iteratively
- The basic idea: How do we improve a current approximation [g^t_i(x)] ??

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx \prod_{i=1}^{n} f_i(x) = p(x)$$

- EP proceeds iteratively
- The basic idea: How do we improve a current approximation [g^t_i(x)] ??

$$\begin{array}{c|c} f_1 & f_2 & f_3 & f_4 & p \\ \hline g_1 & g_2 & & g_4 & g \\ \end{array}$$

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

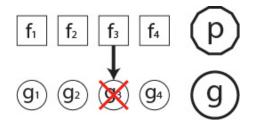
The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx \prod_{i=1}^{n} f_i(x) = p(x)$$

- EP proceeds iteratively
- The basic idea: How do we improve a current approximation [g^t_i(x)] ??



Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

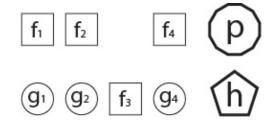
The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx \prod_{i=1}^{n} f_i(x) = p(x)$$

- EP proceeds iteratively
- The basic idea: How do we improve a current approximation [g^t_i(x)] ??



Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

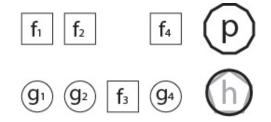
The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx \prod_{i=1}^{n} f_i(x) = p(x)$$

- EP proceeds iteratively
- The basic idea: How do we improve a current approximation [g^t_i(x)] ??



Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

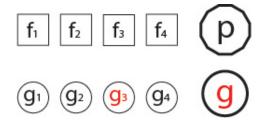
The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

$$g(x) = \prod_{i=1}^{n} g_i(x) \approx \prod_{i=1}^{n} f_i(x) = p(x)$$

- EP proceeds iteratively
- The basic idea: How do we improve a current approximation [g^t_i(x)] ??



Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- Select *i* for updating
- Compute

$$h_{i}(x) = f_{i}(x) \prod_{j \neq i} g_{j}(x)$$

The EP loop

• Compute a Gaussian approximation:

$$g^{t+1}(x) \approx h_i(x)$$

• update the approximation of f_i :

$$g_{i}^{t+1} = \frac{g^{t+1}}{\prod_{j\neq i}g_{j}(x)}$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- Select *i* for updating
- Compute

$$h_{i}(x) = f_{i}(x) \prod_{j \neq i} g_{j}(x)$$

• Compute a Gaussian approximation:

$$g^{t+1}(x) \approx h_i(x)$$

• update the approximation of f_i :

$$g_{i}^{t+1} = \frac{g^{t+1}}{\prod_{j\neq i}g_{j}(x)}$$

- Terminology:
 - $g_{-i} = \prod g_j$ is the cavity distribution
 - *h_i* is the **hybrid**

The EP loop

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Approximating the hybrid

• How do we compute $g^{t+1} \approx h_i$?

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

• How do we compute $g^{t+1}pprox h_i$?

• Minimize the Kullback-Leibler divergence

$$g^{t+1} = \operatorname{argmin}_g KL(h_i, g)$$

- Gives a good approximation
- Is simple to compute

Approximating the hybrid

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Minimizing KL

• Inside exponential families, minimizing KL is easy

Minimizing KL

• Inside exponential families, minimizing KL is easy

• Gaussians are an exponential family:

$$g(x|r,\beta) \propto \exp\left(rx - \beta \frac{x^2}{2}\right)$$

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon

Barthelmé Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Minimizing KL

- Inside exponential families, minimizing KL is easy
- Gaussians are an exponential family:

$$g(x|r,\beta) \propto \exp\left(rx - \beta \frac{x^2}{2}\right)$$

• Relation between r, β and the moments:

$$\mu = rac{r}{eta}$$
var $= eta^{-1}$

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

${\sf Minimizing}\ {\sf KL}$

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

To find argmin_g KL (h_i, g)

- Compute the mean and variance of h_i
- Compute the Gaussian with that mean and variance:

$$egin{array}{rll} r &=& {
m var}^{-1}\mu \ eta &=& {
m var}^{-1} \end{array}$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Working in natural parameters

• Working in the space of Gaussians: $g_i \in \mathcal{G}$: impossible to visualize

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Working in natural parameters

- Working in the space of Gaussians: $g_i \in \mathcal{G}$: impossible to visualize
- Working in moments:

$$\begin{array}{rcl} \mu_i & = & E_{g_i}\left(x\right) \\ v_i & = & \operatorname{var}_{g_i}\left(x\right) \end{array}$$

Better, but hard to multiply and divide Gaussians

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Working in natural parameters

- Working in the space of Gaussians: $g_i \in \mathcal{G}$: impossible to visualize
- Working in moments:

$$\begin{array}{rcl} \mu_i & = & E_{g_i}\left(x\right) \\ v_i & = & \operatorname{var}_{g_i}\left(x\right) \end{array}$$

Better, but hard to multiply and divide GaussiansWorking in natural parameters:

$$g_i(x) \propto \exp\left(r_i x - \beta_i \frac{x^2}{2}\right)$$

Multiplication and division of Gaussians = sums and differences of natural parameters !

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

EP in natural parameters

Sequential algorithm, operating on (2n) dimensional space $[r_i, \beta_i]$

• For *i* in 1...*n*

1 Compute "cavity" parameters: $r_{-i} = \sum_{j \neq i} r_j$, $\beta_{-i} \sum_{j \neq i} \beta_j$

- **1** Compute hybrid distribution $h_i(x) = f_i(x) \mathcal{N}(x|r_{-i}, \beta_{-i})$
- 2 Compute $E_{h_i}(x)$ and $var_{h_i}(x)$
- **3** Update r_i and β_i from the moments of the hybrid

$$r_{i} = \frac{E_{h_{i}}(x)}{var_{h_{i}}} - r_{-i}$$
$$\beta_{i} = \frac{1}{var_{h_{i}}} - \beta_{-i}$$

An example !

Guillaume Dehaene, Simon Barthelmé

Background

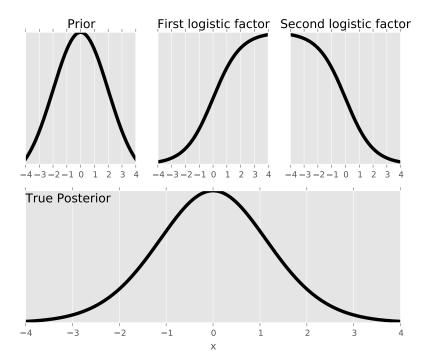
How does EP work ?

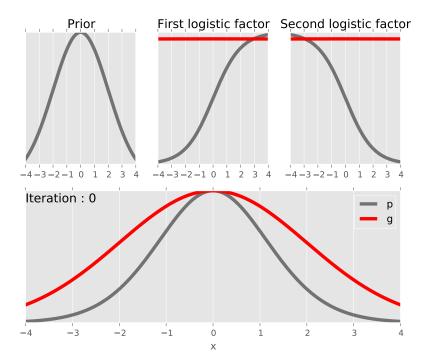
The large-data limit

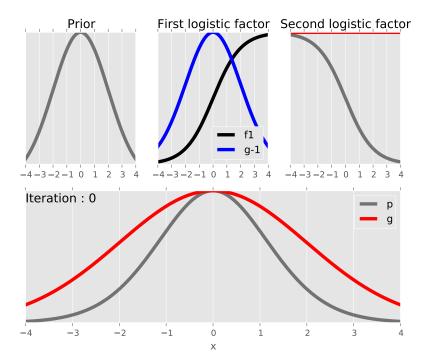
Why does EP give accurate approximations

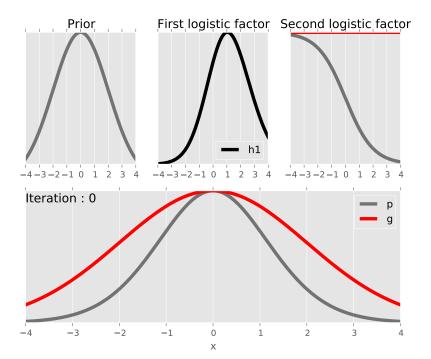
The EP iteration behaves like Newton's algorithm

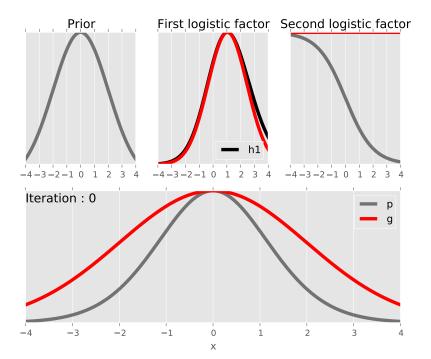
- 3 factors $f_i(x)$:
 - 2 logistic (likelihoods)
 - 1 Gaussian (prior)

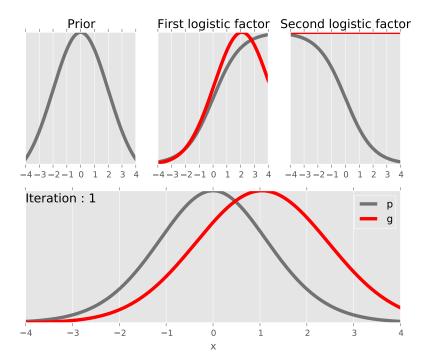


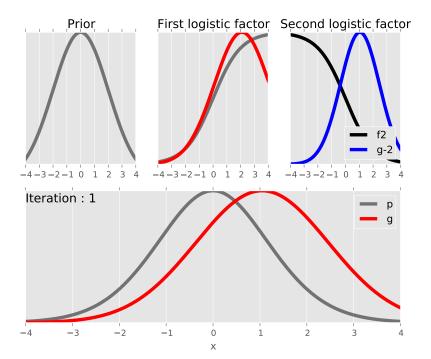


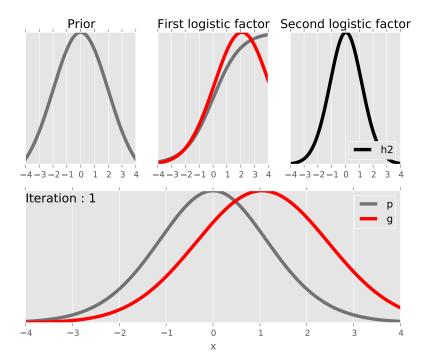


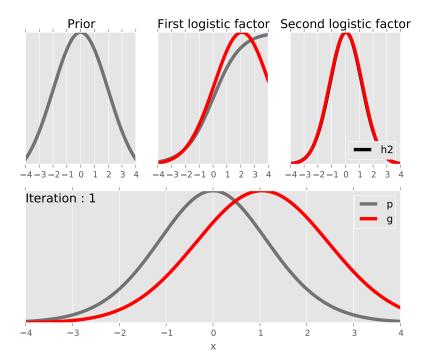


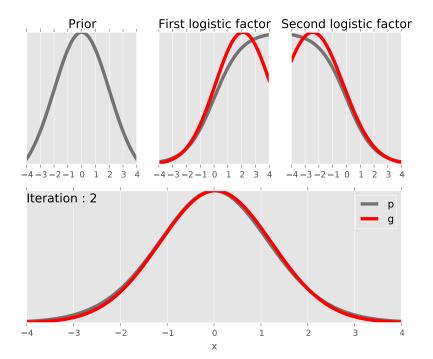


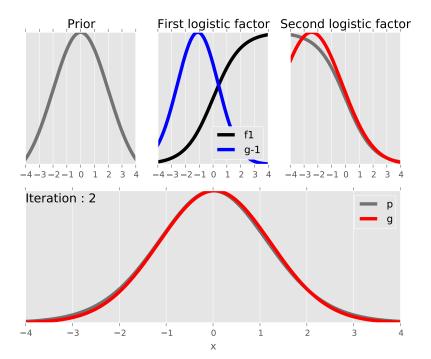


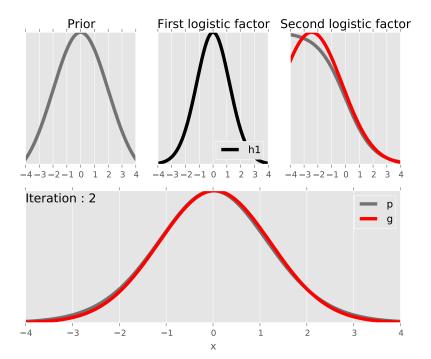


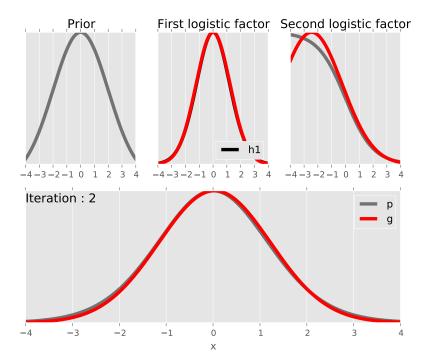


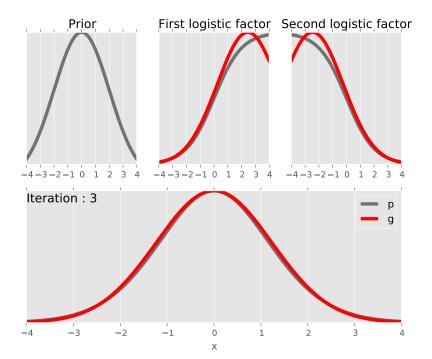


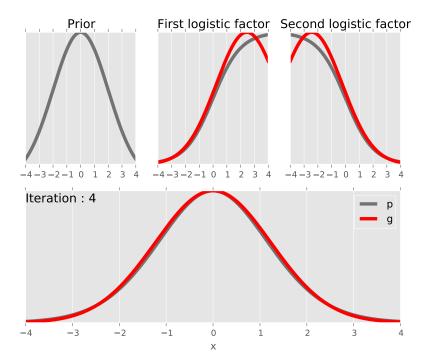


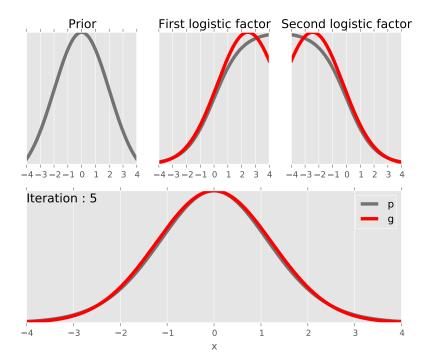


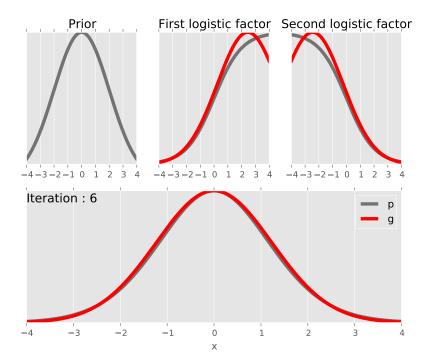


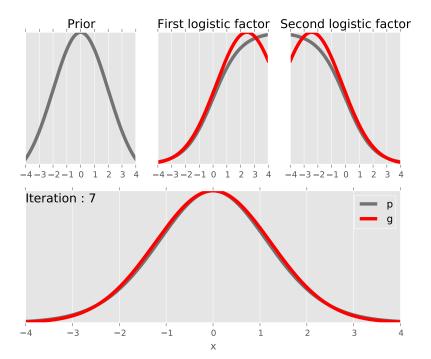












Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

• We presented the base algorithm which is **sequential**:

Pick *i*, then update *g_i*, ...

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

• We presented the base algorithm which is sequential:

- Pick *i*, then update *g_i*, ...
- We can also:
 - Update all approximations at once (parallel EP)
 - Update 10% (batch EP)
 - Update asynchronously

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

- We presented the base algorithm which is sequential:
 - Pick *i*, then update g_i , ...
- We can also:
 - Update all approximations at once (parallel EP)
 - Update 10% (batch EP)
 - Update asynchronously
- We can also "slow-down" the updates

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

- We presented the base algorithm which is sequential:
 - Pick i, then update g_i, \ldots
- We can also:
 - Update all approximations at once (parallel EP)
 - Update 10% (batch EP)
 - Update asynchronously
- We can also "slow-down" the updates
- All of those don't modify the fixed-points !

EP summary

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

- EP approximates each factor *f_i* as a Gaussian *g_i*, and refines these approximations iteratively
- $h_i = f_i g_{-i}$ is a better approximation than g

EP summary

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

- EP approximates each factor *f_i* as a Gaussian *g_i*, and refines these approximations iteratively
- $h_i = f_i g_{-i}$ is a better approximation than g
- The parameter space is the natural parameters: (r_i, β_i)
- Variants of EP modify the updating schedule, or change the updating rule

When to use EP

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

- EP apparently works well if all h_i are almost Gaussian
- EP is dangerous to use on multimodal distributions. Like VB, EP sometimes fits a single mode of p (x), missing most of the probability mass
- The EP iteration can be frustrating:
 - slow it down or do it sequentially

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The large-data limit

- Large-data limit: number of observations tends to ∞
- Frequentist result: Central Limit Theorem: the distribution of empirical means become Gaussian

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The large-data limit

- Large-data limit: number of observations tends to ∞
- Frequentist result: Central Limit Theorem: the distribution of empirical means become Gaussian
- Bayesian result: Bernstein-von Mises: posteriors converge to Gaussian distributions
- And the variance quickly goes to 0:

$$\mathsf{var}_{p}\left(x\right) \propto n^{-1}$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The large-data limit and EP

• If approximate inference methods aren't exact in the large-data limit, they shouldn't be used

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

⊤he large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The large-data limit and EP

- If approximate inference methods aren't exact in the large-data limit, they shouldn't be used
- The large-data limit makes theoretical analysis simple
 - The influence of a single factor f_i becomes negligible

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ?

The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The large-data limit and EP

- If approximate inference methods aren't exact in the large-data limit, they shouldn't be used
- The large-data limit makes theoretical analysis simple
 - The influence of a single factor f_i becomes negligible
 - In the hybrid distribution, $h_i = f_i g_{-i}$, the cavity dominates

Contents

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Background

How does EP work ? The large-data limit

2 Why does EP give accurate approximations

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

EP gives very good approximations

- We know empirically that fixed-points of EP give very good approximations of p(x):
 - can we prove it ?

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Assumptions

• We will constrain the factors $f_i(x)$

Assumptions

- Expectation Propagation in the large data limit
 - Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- We will constrain the factors $f_i(x)$
- We will assume that all $f_i \propto \exp(-\phi_i)$ are strongly log-concave:

$$\phi_{i}^{''}(\mathbf{x}) \geq \beta_{m}$$

• This is an unrealistic assumption

Assumptions

Guillaume Dehaene, Simon Barthelmé

Expectation Propagation

in the large data limit

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

- We will constrain the factors $f_i(x)$
- We will assume that all $f_i \propto \exp(-\phi_i)$ are strongly log-concave:

$$\phi_i''(\mathbf{x}) \geq \beta_m$$

- This is an unrealistic assumption
- We will assume that the higher-derivatives are bounded:

$$\left|\phi_{i}^{\left(d\right)}\left(x\right)\right|\leq K_{d}$$

Assumptions

Guillaume Dehaene, Simon Barthelmé

Expectation Propagation

in the large data limit

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

- We will constrain the factors $f_i(x)$
- We will assume that all $f_i \propto \exp(-\phi_i)$ are strongly log-concave:

$$\phi_{i}^{''}(\mathbf{x}) \geq \beta_{m}$$

- This is an unrealistic assumption
- We will assume that the higher-derivatives are bounded:

$$\left|\phi_{i}^{\left(d\right)}\left(x\right)\right|\leq K_{d}$$

• These assumptions transfer from the f_i to $p = \prod f_i$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The "Laplace" approximation

• We will compare EP fixed-points to the "Laplace" approximation (LA):

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The "Laplace" approximation

- We will compare EP fixed-points to the "Laplace" approximation (LA):
- Find the mode x^* of p(x)
- At x^{\star} , compute $\psi^{''}\left(x^{\star}
 ight)$

$$p(x) \approx \exp\left(-\psi^{\prime\prime}(x^{\star})\frac{(x-x^{\star})^2}{2}\right)$$

Why LA is good

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

- The Bernstein-von Mises theorem justifies the LA:
 - In the large-data limit, $p_n(x) \rightarrow g_{LA}(x)$

Why LA is good

Expectation Propagation in the large data limit

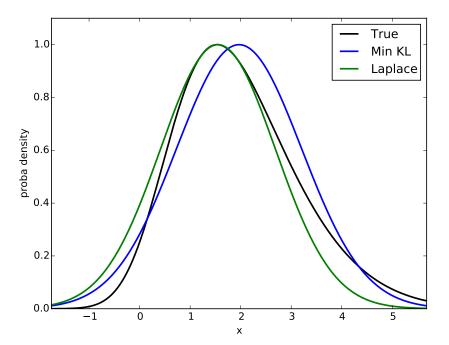
Guillaume Dehaene, Simon Barthelmé

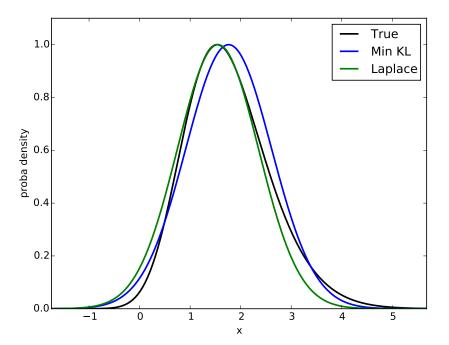
Background

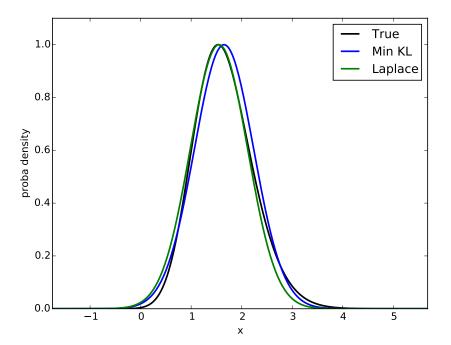
How does EP work ? The large-data limit

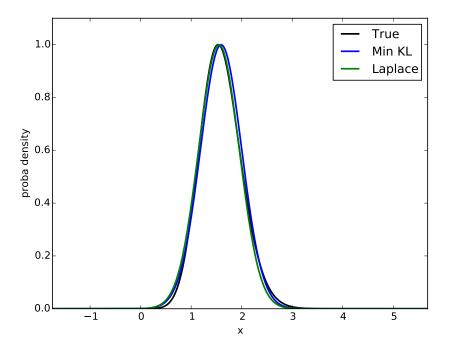
Why does EP give accurate approximations

- The Bernstein-von Mises theorem justifies the LA:
 - In the large-data limit, $p_n(x) \rightarrow g_{LA}(x)$
- But that doesn't mean it's perfect:
 - it looks at point estimates
 - it ignores higher derivatives









Why LA is good

• We can derive the expression of the bias:

$$\begin{array}{rcl} x^{\star} - \mu & = & -\frac{\psi^{(3)}\left(x^{\star}\right)}{\psi^{''}\left(x^{\star}\right)^{2}} + O\left(n^{-2}\right) \\ \psi^{''}\left(x^{\star}\right) - v & = & O\left(n^{-2}\right) \end{array}$$

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

Why LA is good

• We can derive the expression of the bias:

$$\begin{array}{rcl} x^{\star} - \mu & = & -\frac{\psi^{(3)}\left(x^{\star}\right)}{\psi^{''}\left(x^{\star}\right)^{2}} + O\left(n^{-2}\right) \\ \psi^{''}\left(x^{\star}\right) - v & = & O\left(n^{-2}\right) \end{array}$$

- Since LA misses the mean consistently, there is room for improvement
- If EP is able to always correct this miss, it will improve on LA

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

Why EP is better !!

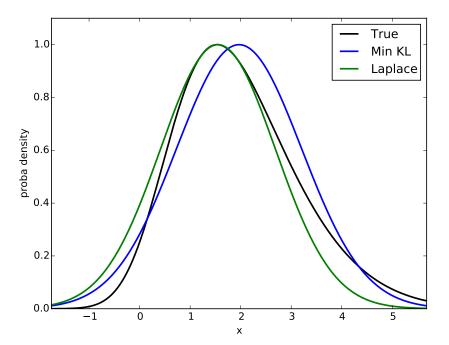
Guillaume Dehaene, Simon Barthelmé

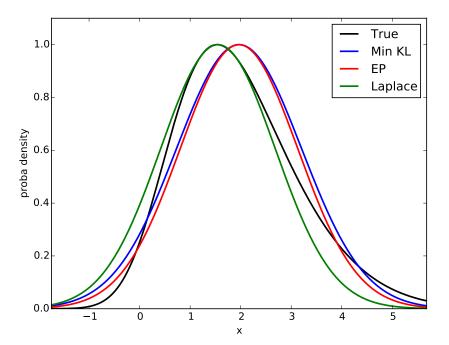
Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

- Consider an EP fixed-point $g(x) = \prod g_i(x) \approx p(x)$
- EP captures the $\psi^{(3)}\left(x^{\star}
 ight)$ deviation





Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Why EP is better !!

• With a similar proof as for the LA result, we prove:

$$\mu_{EP} - \mu = O(n^{-2})$$
$$v_{EP} - v = O(n^{-2})$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Comparing LA and EP

Theorem (Quality of the LA and EP approximations)

• LA:

$$\mu - x^{\star} = O(n^{-1})$$
$$v - \left[\psi^{''}(x^{\star})\right]^{-1} = O(n^{-2})$$

• EP:

$$\mu - \mu_{EP} = O(n^{-2})$$
$$v - v_{EP} = O(n^{-2})$$

• The first term of the error for the variance is slightly smaller for EP than for the LA

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

The log-concavity assumption

- The strongly log-concave sites assumption is unrealistic
- However, simple log-concavity should be enough
- proof ?

Summary

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

- Both EP and LA give asymptotically correct approximations of *p*(*x*)
- But LA fails slightly on asymmetric distributions whereas EP doesn't

Summary

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

- Both EP and LA give asymptotically correct approximations of *p*(*x*)
- But LA fails slightly on asymmetric distributions whereas EP doesn't
- Important result for credible intervals from EP approximations
- But problematic assumptions

Contents

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Background

How does EP work ? The large-data limit

2 Why does EP give accurate approximations

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Understanding the EP iteration

• The EP iteration has **one complicated step**: the site-approximation update

1 Compute hybrid distribution $h_i = f_i g_{-i}$

- **2** Compute $E_{h_i}(x)$ and var_{h_i}
- Compute the Gaussian with same mean and variance:
 \$\mathcal{N}(x|E_{h_i}(x); var_{h_i})\$
- 4 update g_i

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Understanding the EP iteration

• The EP iteration has **one complicated step**: the site-approximation update

1 Compute hybrid distribution $h_i = f_i g_{-i}$

- **2** Compute $E_{h_i}(x)$ and var_{h_i}
- Compute the Gaussian with same mean and variance:
 \$\mathcal{N}(x|E_{h_i}(x); var_{h_i})\$
- 4 update g_i
- This is the step we need to understand

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Assumptions

• Much looser assumptions

Assumptions

• Much looser assumptions

• We bound the range of the second derivatives

$$orall i, \; \max\left(\phi_{i}^{''}
ight) - \min\left(\phi_{i}^{''}
ight) \leq B$$

• Still uniform bound on the higher derivatives

$$\left|\phi_{i}^{\left(d\right)}\left(x
ight)\right|\leq K_{d}$$

Propagation in the large data limit Guillaume

Expectation

Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

Assumptions

• Much looser assumptions

• We bound the range of the second derivatives

$$orall i, \; \max\left(\phi_{i}^{''}
ight) - \min\left(\phi_{i}^{''}
ight) \leq B$$

• Still uniform bound on the higher derivatives

$$\left|\phi_{i}^{\left(d\right)}\left(x\right)\right|\leq K_{d}$$

Applies to any GLM, can be extended so that B and K_d depend on n

Expectation Propagation in the large data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work? The large-data limit

Why does EP give accurate approximations

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Intuitive understanding

• Rewrite KL minization:

$$g_i = [g_{-i}]^{-1} \operatorname{argmin}_g KL(h_i, g)$$

$$\approx \operatorname{argmin}_g \int h_i [\log(f_i) - \log(g_i)]$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Intuitive understanding

• Rewrite KL minization:

$$egin{array}{rcl} g_i &=& \left[g_{-i}
ight]^{-1} \operatorname{argmin}_g \mathcal{K}L\left(h_i,g
ight) \ &pprox & \operatorname{argmin}_g \int h_i \left[\log\left(f_i
ight) - \log\left(g_i
ight)
ight] \end{array}$$

- h_i tells us where g_i needs to fit f_i
- If g_{-i} has very small variance (ie: β_{-i} is big):
 - g_i is almost Dirac
 - $h_i \approx g_{-i}$ and is also Dirac

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

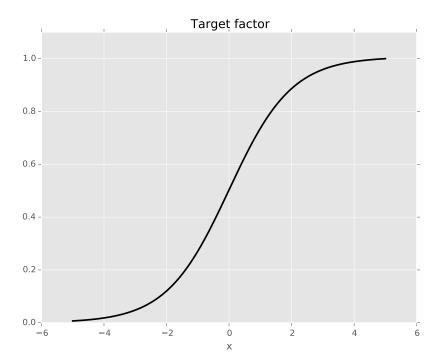
The EP iteration behaves like Newton's algorithm

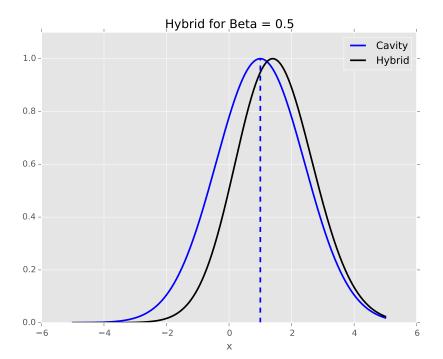
Intuitive understanding

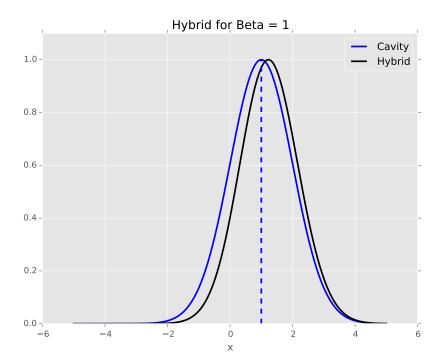
• Rewrite KL minization:

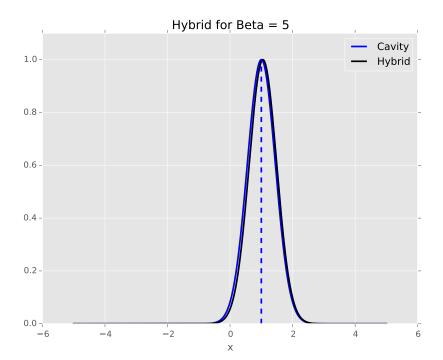
$$egin{array}{rcl} g_i &=& \left[g_{-i}
ight]^{-1} \operatorname{argmin}_g \mathcal{K}L\left(h_i,g
ight) \ &pprox & \operatorname{argmin}_g \int h_i \left[\log\left(f_i
ight) - \log\left(g_i
ight)
ight] \end{array}$$

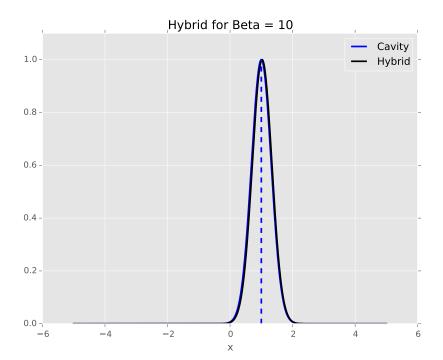
- h_i tells us where g_i needs to fit f_i
- If g_{-i} has very small variance (ie: β_{-i} is big):
 - g_i is almost Dirac
 - $h_i \approx g_{-i}$ and is also Dirac
- The best approximation is the Taylor expansion of $\log(f_i)$.

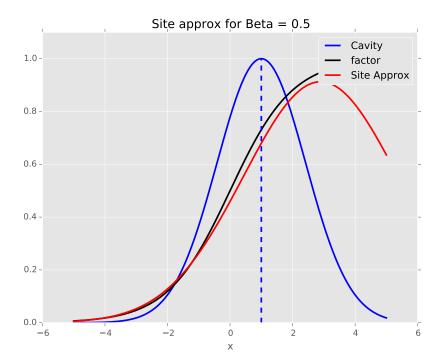


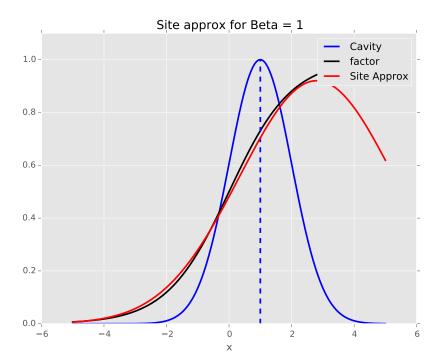


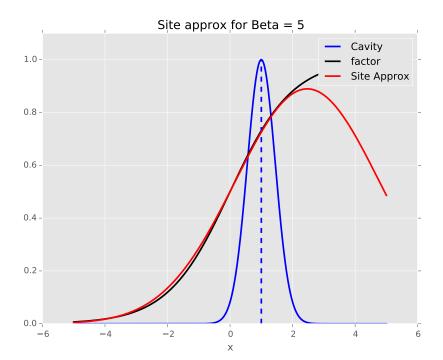


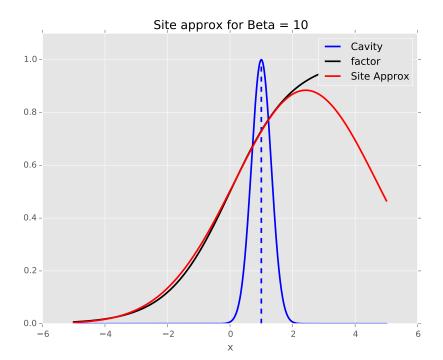












Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Limit behavior of the approximation

Theorem (Limit behavior of the factor approximation)

When $\beta_{-i} \to \infty$, the limit of the EP approximation of $f_i \propto \exp{(-\phi_i)}$ is:

$$g_i^{\infty} \propto \exp\left(-\phi_i'\left(\mu_{-i}
ight)\left(x-\mu_{-i}
ight) - rac{\phi_i''\left(\mu_{-i}
ight)}{2}\left(x-\mu_{-i}
ight)^2
ight)$$

 Many important details in the error term: non-uniform convergence in μ_{-i}, ...

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Limit behavior of EP iterations

• The limit behavior of parallel EP = the sum of the limit behaviors

Theorem (Limit behavior of EP)

When $\beta_{-i} \to \infty$ for all *i*, the limit of the next EP approximation of $p(x) \propto \exp(-\psi(x))$ is:

$$q_{t+1}^{\infty} \propto \exp\left(-\psi^{'}\left(\mu_{t}
ight)\left(x-\mu_{t}
ight)-rac{\psi^{''}\left(\mu_{t}
ight)}{2}\left(x-\mu_{t}
ight)^{2}
ight)$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Limit behavior of EP iterations

• The limit behavior of parallel EP = the sum of the limit behaviors

Theorem (Limit behavior of EP)

When $\beta_{-i} \to \infty$ for all *i*, the limit of the next EP approximation of $p(x) \propto \exp(-\psi(x))$ is:

$$q_{t+1}^{\infty} \propto \exp\left(-\psi^{'}\left(\mu_{t}
ight)\left(x-\mu_{t}
ight)-rac{\psi^{''}\left(\mu_{t}
ight)}{2}\left(x-\mu_{t}
ight)^{2}
ight)$$

• Did you recognize Newton's algorithm ?

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Newton's algorithm

- Objective of Newton's algorithm:
 - find the mode x^* (in order to compute the LA)

$$\psi^{'}(x^{\star})=0$$

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

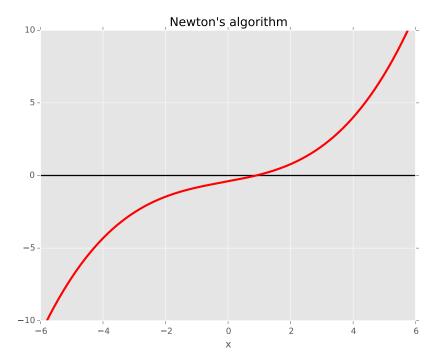
• Objective of Newton's algorithm:

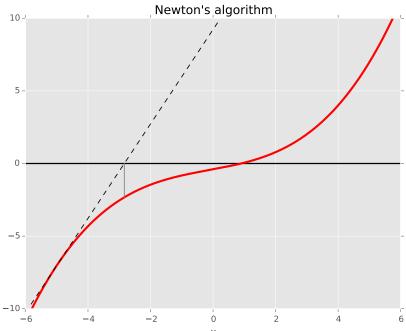
• find the mode x^* (in order to compute the LA)

$$\psi^{'}(x^{\star})=0$$

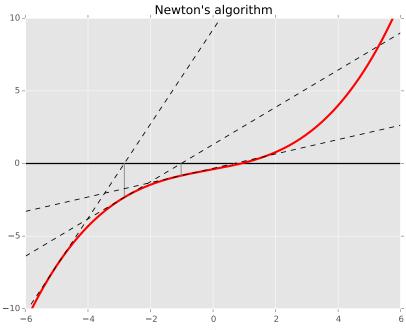
Newton's algorithm

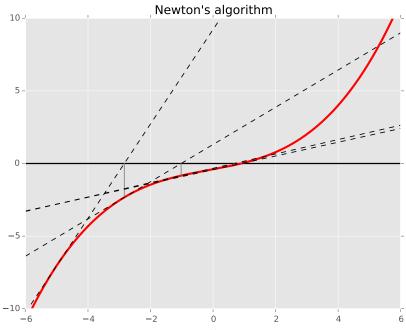
- Iterative algorithm:
 - At μ_t , compute the tangent to $\psi^{'}$
 - Solve tangent = 0: this is μ_{t+1}











Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Newton and $\operatorname{\mathsf{EP}}$

• At each step, we approximate

$$\psi' \approx ax + b$$

 $\psi \approx a\frac{x^2}{2} + b$
 $p(x) \approx \exp\left(-a\frac{x^2}{2} - b\right)$

Newton is iterating over Gaussian approximations of p(x)

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Newton and $\ensuremath{\mathsf{EP}}$

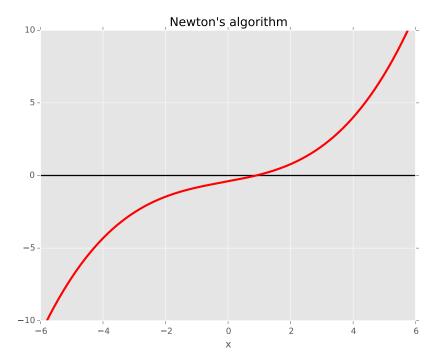
• At each step, we approximate

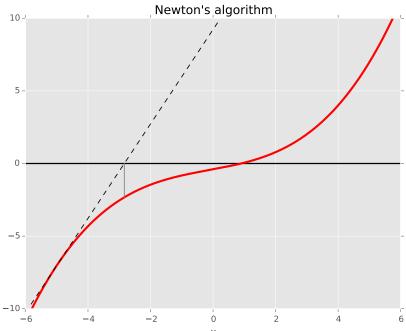
$$\psi' \approx ax + b$$

 $\psi \approx a\frac{x^2}{2} + b$
 $p(x) \approx \exp\left(-a\frac{x^2}{2} - b\right)$

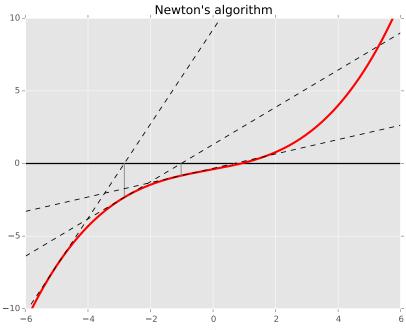
- Newton is iterating over Gaussian approximations of p(x)
- The EP limit approximation is:

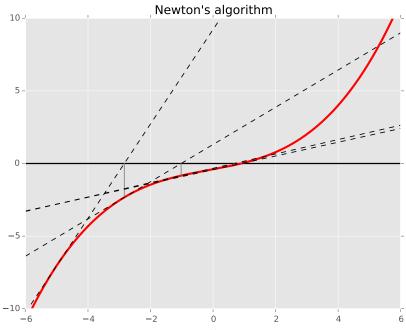
$$p(x) \approx \exp\left(-\psi^{'}(\mu_{t})(x-\mu_{t})-\frac{\psi^{''}(\mu_{t})}{2}(x-\mu_{t})^{2}\right)$$

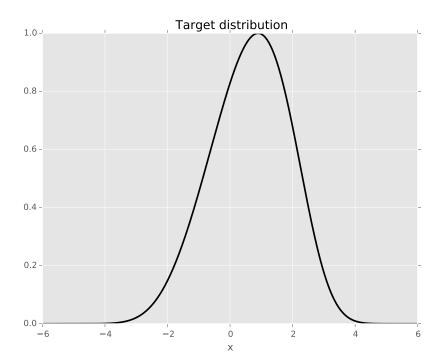


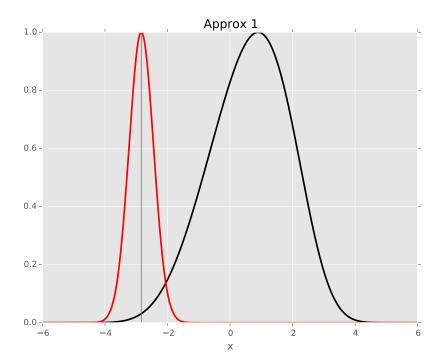


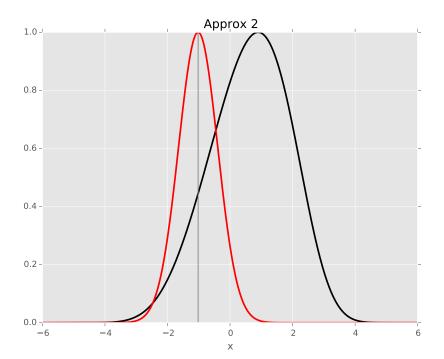


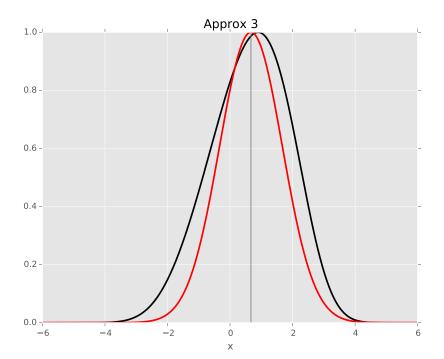


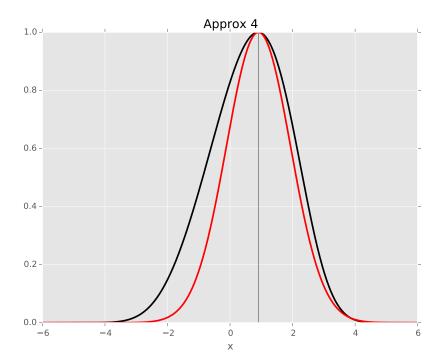












Guillaume Dehaene, Simon Barthelmé

Background

How does EP work? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Reaching the high-precision limit

• High-precision limit \neq large-data limit

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Reaching the high-precision limit

- High-precision limit \neq large-data limit
- Approximation quality result:

• Around fixed-points (where it matters), EP is close to Newton

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Reaching the high-precision limit

- High-precision limit \neq large-data limit
- Approximation quality result:

- Around fixed-points (where it matters), EP is close to Newton
- We can derive other links
- We can always check

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Intuitions from $EP \approx Newton$

• Intuitively, if EP behaves like Newton in some limit, even away from that limit, it should have similar properties

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Intuitions from $EP \approx Newton$

- Intuitively, if EP behaves like Newton in some limit, even away from that limit, it should have similar properties
- Newton is very well-known
 - It converges extremely fast once it gets close to its fixed-point
 - But it can fail to converge
 - We have to supplement it with line-search algorithms
 - If we don't, it can "bounce" around its fixed-point

Guillaume Dehaene, Simon Barthelmé

Background

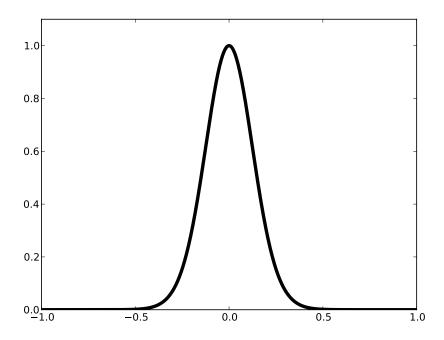
How does EP work ? The large-data limit

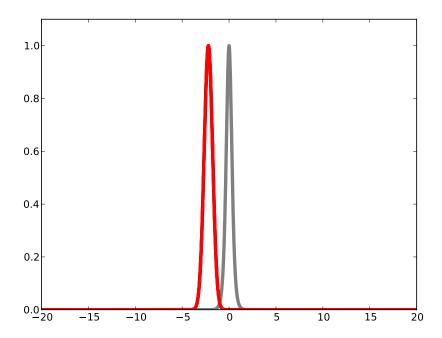
Why does EP give accurate approximations

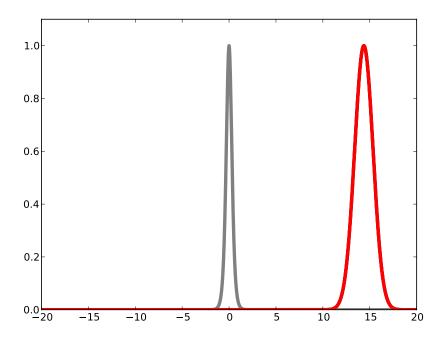
The EP iteration behaves like Newton's algorithm

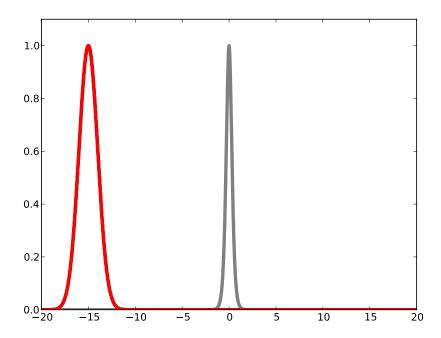
Intuitions from $EP \approx Newton$

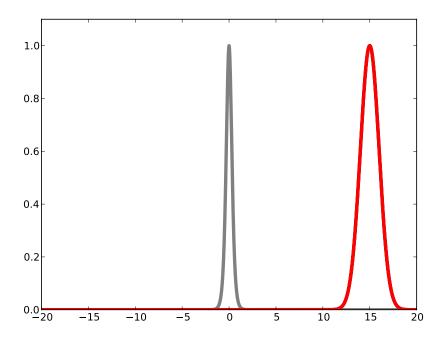
- Intuitively, if EP behaves like Newton in some limit, even away from that limit, it should have similar properties
- Newton is very well-known
 - It converges extremely fast once it gets close to its fixed-point
 - But it can fail to converge
 - We have to supplement it with line-search algorithms
 - If we don't, it can "bounce" around its fixed-point
- EP probably has similar properties !

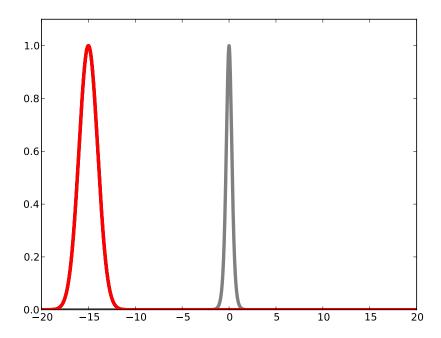


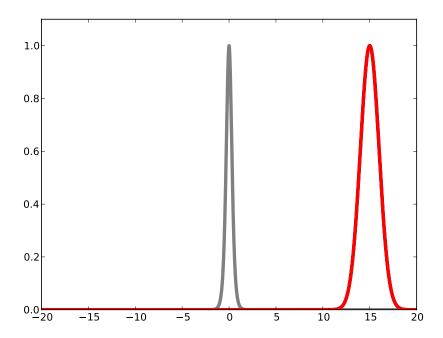


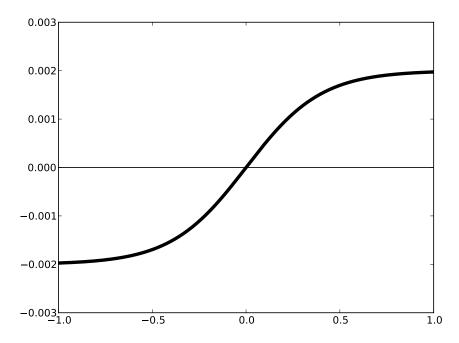












Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Intuitions from $EP \approx Newton$

• On a multi-modal p(x), Newton has multiple fixed-points

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Intuitions from $EP \approx Newton$

- On a multi-modal p(x), Newton has multiple fixed-points
- We can prove that sufficiently peaked modes have an EP fixed-point
 - EP can be "captured" by a mode and miss most of the probability mass
 - Avoid multi-modal distributions like the plague

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Summary of our results

• EP is a better approximation than LA (with some caveats)

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Summary of our results

- EP is a better approximation than LA (with some caveats)
- EP behaves like Newton's algorithm in the high-precision limit
- The high-precision limit is reached in the large-data regime

Guillaume Dehaene, Simon Barthelmé

Background

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

Summary of our results

- EP is a better approximation than LA (with some caveats)
- EP behaves like Newton's algorithm in the high-precision limit
- The high-precision limit is reached in the large-data regime
- This sheds new light on the dynamical behavior of EP:
 - It can bounce around it's fixed-point
 - We might need to supplement EP with line-search algorithms
 - EP can be captured by modes

References

Barthelmé Background

Expectation Propagation

in the large data limit Guillaume Dehaene, Simon

How does EP work ? The large-data limit

Why does EP give accurate approximations

The EP iteration behaves like Newton's algorithm

• Our work:

- "Bounding errors of Expectation-Propagation", Dehaene, Barthelmé, 2015, NIPS
- "Expectation Propagation is Newton-like in the large-data limit", Dehaene, Barthelmé, 2015, In review
- Further references:
 - "Birth" of EP: Minka, 2001, UAI
 - Best explanation: Seeger, 2008, Berkely course notes
 - *EP as a way of life*: Gelman, Vehtari, Jylanki, Robert, Chopin, Cunningham