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Binary regression models

Models wih data yi ∈ {−1, 1}, predictors xi ∈ Rp, and likelihood

p(D|β) =

nD∏
i=1

F (yiβ
Txi )

where F : R→ [0, 1] is a CDF.

Common examples:

F = Φ (probit),

F = L (logit), where L(z) = 1/(1 + e−z).
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When p = 1
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Connection with classification
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Properties

Unless there is complete separation in the data, the
log-likelihood is concave: MLE is uniquely defined.

One nice way to deal with complete seperation is to add a
proper prior, e.g. Gaussian or Cauchy. (Under Gaussian prior,
log-post is concave.)

Good practice is to standardise the predictors before eliciting
the prior (Gelman et al, 2008).
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Binary regression in Bayesian Computation papers

a long chain of papers on Gibbs sampling for different variants
of binary regression models (Albert & Chib, 1993; Holmes &
Held, 2006; Fruwirth-Schnatter (2009); Gramacy and Polson,
2012; Polson et al, 2013)

nearly any paper introducing any new generic way to
compute a posterior includes a binary regression example:

SMC: C (2002), Del Moral et al (2006)

HMC and variants: Neal (2010), Shahbaba & Neal (2011),
Girolami & Calderhead (2011)

NUTS: Hoffman and Gelman (2013)

nested sampling: C & Robert (2007)
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Questions

1 Does it make sense to promote binary regression as a
benchmark for Bayesian computation? (see similar practice
in optimisation)

2 In practice, which method one should use???
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Plan

1 review of fast approximation schemes:

Laplace (and variants)

EP

Variational Bayes? (see Consonni & Marin, 2007)

2 review of sampling-based approaches:

importance sampling

MCMC (Gibbs, RWHM)

HMC (and variants)

SMC

3 Discussion and comparison
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Considered scenarios

Model: probit and logit.

prior: Gaussian and Cauchy (predictors are standardised).
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Laplace

Based on a second order Taylor expansion of the log posterior:

log p(β|D) ≈ log p(βMAP|D)− 1

2
(β − βMAP)T Q (β − βMAP)

where Q is minus the Hessian of log p(β|D) at β = βMAP.

Exponentiate to get a Gaussian approximation of the posterior. In
practice, use Newton-Raphson to obtain βMAP and Q.

Very fast. May not converge if p is very large.

Nicolas Chopin (joint work with James Ridgway) Leave Pima Indians alone



Introduction
Fast approximations

Sampling-based methods
Numerical study

Variable selection
Conclusions

Impoved Laplace

For each marginal:

p(βj |D) ∝ p(β)p(D|β)

p(β−j |βj ,D)

Choose a fine grid of βj values; for each βj value, compute a
Laplace approximation of p(β−j |βj ,D).

Note: more expensive, connection with INLA.
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EM-Laplace

For a Student prior, Gelman et al (2008) derive an approximate
EM scheme based on

βj |σ2j ∼ N1(0, σ2j ), σ2j ∼ Inv −Gamma(ν/2, sjν/2)

However, we will observe in our simulations that Laplace still works
well for such a prior.
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Expectation Propagation

From the following decomposition:

p(β|D) =
1

p(D)

nD∏
i=0

li (β), li (β) = F (yiβ
Txi ) for i ≥ 1,

and l0 is prior, EP computes iteratively a parametric approximation
of the posterior with the same structure:

qEP(β) =

nD∏
i=0

1

Zi
qi (β).

Taking qi to be an unnormalised Gaussian density

qi (β) = exp

{
−1

2
βTQiβ + βT ri

}
,

qEP is a Gaussian with parameters Q =
∑n

i=0Qi , r =
∑n

i=0 ri .Nicolas Chopin (joint work with James Ridgway) Leave Pima Indians alone
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EP site update

Update each ‘site’ in turn: update qi , while keeping qj , j 6= i fixed,
by minimising the Kullback-Leibler divergence between

h(β) ∝ li (β)
∏
j 6=i

qj(β)

and q(β) ∝
∏

j qj .

Thanks to nice properties of exponential families, this boils to
match the moments of h and q.

In binary regression, these site updates lead to explicit expressions
(probit) or one-dimensional integrals that are easy to approximate
accurately (logit).
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General remarks

Since the approximation methods covered in the previous
section are faster by orders of magnitude than sampling-based
methods, we will assume that a Gaussian approximation q(β)
(from Laplace or EP) has been computed in a preliminary step.

Complexity: Laplace is O(nD + p3), EP is O(nDp
3).
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Importance sampling

Proposal q set to some Gaussian approx of the posterior. Then to
approximate p(D), generate β1, . . . ,βN ∼ q, compute

ZN =
1

N

N∑
n=1

w(βn), w(β) :=
p(β)p(D|β)

q(β)

and to approximate the posterior expectation of ϕ, compute

ϕN =

∑N
n=1 w(βn)ϕ(βn)∑N

n=1 w(βn)
.
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IS pros and cons

Pros:

simple, generic

embarassingly parallel

approximates the marginal likelihood at no extra cost

IID sampling: MC error is easy to assess

can plug in QMC points

Cons:

ESS may collapse when p is large.
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MCMC general remarks

The following points

choice of starting point

MCMC convergence assessment

are not big issues for binary regression models.

More important issues for us are:

chain autocorrelations

difficulty to parallelise
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Gibbs

Well-known, based on data augmentation:

zi = βTxi + εi

yi = sgn(zi )

then sample iteratively (probit/Gaussian case):

1 β|z (regression posterior, tractable)
2 z|β, y (product of truncated Gaussians)

Gibbs is particularly not generic: any change in the prior of F
requires deriving a new algorithm. This can also change the
complexity (e.g. from O(p2) to O(p3) when using a Student prior).
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Random walk Metropolis-Hastings

One iteration of RWMH

Input: β
Output: β′

1. Sample β? ∼ Np(β,Σ)
2. With probability 1 ∧ r ,

r =
p(β?)p(D|β?)

p(β)p(D|β)
,

set β′ = β?; otherwise set β′ = β

In practice, choose Σ as some fraction of Σq.
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HMC

Consider (β,α), β ∼ p(β|D), α ∼ Np(0,M−1), with joint
un-normalised density exp {−H(β,α)},

H(β,α) = E (β) +
1

2
αTMα, E (β) = − log {p(β)p(D|β)} .

The physical interpretation of HMC is that of a particle at position
β, with velocity α, potential energy E (β), kinetic energy 1

2α
TMα,

and thus total energy given by H(β,α). The particle is expected to
follow a trajectory such that H(β,α) remains constant over time.
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HMC iteration

One iteration of HMC

Input: β
Output: β′

1. Sample momentum α ∼ Np(0,M).
2. Perform L leap-frog steps, starting from (β,α); call (β?,α?)
the final position.
3. With probability 1 ∧ r , r = exp {H(β,α)− H(β?,α?)} set
β

′
= β?; otherwise set β

′
= β.
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Leapfrog step

Leapfrog step

Input: (β,α)
Output: (β1,α1)
1. α1/2 ← α− ε

2∇βE (β)
2. β1 ← β + εα1/2

3. α1 ← α1/2 − ε
2∇βE (β1)
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HMC variants

Riemanian HMC (Girolami and Calderhead, 2011): simply too
expensive

NUTS (No U-Turn Sampler, Hoffman & Gelman, 2013):
HMC with on-the-fly calibration of L and ε. Included in our
comparisons.
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SMC

We consider tempering SMC, i.e. SMC for sequence

πt(β) ∝ q(β)1−δt {p(β)p(D|β)}δt

Principle: sequence of importance sampling steps, from πt−1 to
πt . When weight degeneracy becomes too high, resample, and
move particles through MCMC (e.g. random walk Metropolis).

The algorithm can choose the δj on the fly (Jasra et al, 2011).
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SMC algorithm

Operations involving index n must be performed for all n ∈ 1 : N.

0 Sample βn ∼ q(β) and set δ ← 0.
1 Let, for δ ∈ [δ, 1],

EF(δ) =
1

N

{∑N
n=1 wγ(βn)

}2{∑N
n=1 wγ(βn)2

} , uδ(β) =

{
p(β)p(D|β)

q(β)

}δ
.

If EF(1) ≥ τ , stop and return (βn,wn)n=1:N with wn = u1(βn);
otherwise, use the bisection method to solve numerically in δ the
equation EF(γ) = τ .

2 Resample according to normalised weights
Wn = wn/

∑N
m=1 wm; with wn = uδ(βn).

3 Update the βn’s through m MCMC steps that leaves invariant
πt(β).

4 Set δ ← δ. Go to Step 1.
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Remarks on SMC

Completely automatic: we can use the current set of particles
to adjust the random walk proposal, the number of MCMC
steps, and so on.

Will often collapse to a single IS step (when ESS from q to
posterior is not too low)
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First set of datasets

Dataset nD p

Pima (Indian diabetes) 532 8
German (credit) 999 25
Heart (Statlog) 270 14
Breast (cancer) 683 10
Liver (Indian Liver patient) 579 11
Plasma (blood screening data) 32 3
Australian (credit) 690 15
Elections 2015 52

This is a superset of datasets considered in most papers.
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Fast approximations

Logit/Cauchy scenario. We compare: Laplace, Improved Laplace,
EM-Laplace, and EP, in term of

marginal accuracies (one minus half the L1 distance between
approximate and true marginals)

approximation error for marginal likelihood
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Breast
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German credit
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Marginal likelihoods
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Sampling-based methods: importance sampling

IS IS-QMC

Dataset EF CPU MT MSE x MSE x
= ESS/N time speed-up (expect) (evid)

Pima 99.5% 37.54 s 4.39 28.9 42.7
German 97.9% 79.65 s 4.51 13.2 8.2
Breast 82.9% 50.91 s 4.45 2.6 6.2
Heart 95.2% 22.34 s 4.53 8.8 9.3
Liver 74.2 % 35.93 s 4.76 7.6 11.3
Plasma 90.0% 2.32 s 4.28 2.2 4.4
Australian 95.6% 53.32 s 4.57 12 20.3
Elections 21.39% 139.48 s 3.87 617.9 3.53

(Probit/Gaussian scenario, to make like easier for Gibbs)
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comparison with MCMC
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Bigger datasets

Dataset nD p

Musk 476 95
Sonar 208 61
DNA 400 180

Bigger datasets, but also with higher correlations between
predictors. We will look at the probit/Gaussian case.

IS no longer an option.
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Approximations: Musk
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Approximations: Sonar
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Approximations: DNA
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Sampling-based methods: Musk
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Sampling-based methods: Sonar
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Sampling-based methods: DNA
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Variable selection

Add for each predictor βj an indicator γj ∈ {0, 1}; prior for γ is
Uniform over {0, 1}p.

The posterior mixes discrete and continuous components;
p(γ|D) is severely multimodal.
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VS: proposed approach

To compute p(D|γ) =
∫
p(D|γ,β)p(β|γ) dβ, use:

1 either Laplace
2 or IS based on Laplace

To simulate from p(γ|D), adapt the tempering SMC sampler of
Schafer and Chopin (2013), for sampling binary vectors.
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Results
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Recommendations to end users (who wish to fit a binary
regression model)

EP is fast and accurate even in difficult cases.

to improve on EP, one might run SMC; often this will collapse
to IS and outperforms everything else significantly.

That said, for large p, RWHM performs surprising well.

HMC algorithms seem very difficult to calibrate.
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Benchmarks for specialised algorithms

For specialised algorithms (Gibbs), benchmark=dataset.

It is not very clear that the Gibbs samplers developped for binary
regression are very useful: corresponding papers tend to showcase
these algorithms on datasets with p < 50, for which more generic
methods fare much better.
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Benchmarks for generic algorithms

For generic algorithms (e.g. RWHM), benchmark=posterior.

A binary regression posterior of dimension < 50 is very close to a
Gaussian; i.e. it does not represent a very challenging benchmark.
However, it is an useful sanity check.

More challenging benchmarks: p ≥ 100, hierarchical regression,
spike and slab prior, . . .
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More general remarks

Beware ML fast approximation schemes; they are fast and getting
better and better. . .

Always compare new methods to well calibrated simple algorithms,
like IS and RWHM.
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Final word

Comments most welcome!
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