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Background

• In finance and econometrics, there has been an explosion of
papers analyzing returns and volatility by adopting
AR-GARCH-type models.

• Of crucial interest is the ability of these models to forecast/
predict returns and volatility at time t+ 1 conditional on
the available information at time t.

• The choice of these models is based on forecasting power
rather than the ability to explain the data generation
mechanism.
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Background (cont’d)

• An important practical question is how the length T of time
series used for the analysis of data (training data set)
affects the model forecasting power.

• Larger values of T provide more robust parameter
estimates, smaller T may be more informative in volatility
forecasting.

• In econometrics literature, non-parametric forecasting
models are adopted where older points receive smaller
weights in the inferential procedure.
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Motivating example

• Assume that at a particular day t, the prediction of returns
and volatilities of the one hundred stocks of the financial
index SP100 in day t+ 1 is required.

• Assume that AR(1)-GARCH(1,1) model which has five
parameters is adopted for each stock.
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Motivating example (cont’d)

• We use stocks closing price at time t+ 1 to test the
predictive power of the model for the returns.

• We take as a proxy for the true volatility at day t+ 1 the
quadratic variation calculated using 5-minutes intra-day
returns of day t+ 1.

• We choose as a testing criterion of the model forecasting
power to be the mean squared error (MSE) of the model
prediction at time t+ 1 against the return and quadratic
variation at time t+ 1.
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Motivating example (cont’d)
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Motivating example (cont’d)
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Modeling multivariate time series

• Suppose that for each stock i, i = 1, . . . , I, a times series
or returns (xt,i)

T
t=1 is observed.

• For each of them a model appropriate for forecasting is an
AR(1)-GARCH(1,1) process of the form

xt,i = µi + ρixt−1,i + εt,i

with the innovation εt,i ∼ σt,it(νi), where t(d) is a standard
Student-t distribution with d degrees of freedom (DoF) and

σ2
t,i = ηi + αiε

2
t−1 + βiσ

2
t−1,i.
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Modeling multivariate time series (cont’d)

• We denote with ψi = (µi, ρi, ηi, αi, βi)
T the parameter

vector of the AR(1)-GARCH(1,1) model of stock i. We use

λi = (λµi , λ
ρ
i , λ

η
i , λ

α
i , λ

β
i )T for the transformed parameter

vector.

• Standard Bayesian hierarchical setup assumes
exchangeability across units in a population (full
exchangeable), allowing borrowing strength and stable
inference procedures.

• For example, a standard hierarchical modeling specification
in the AR(1)-GARCH(1,1) model would assume that λi
(without subscript for easy of notation) are exchangeable
and follow some common distributions, i.e. λi ∼ N(θ, ξ).
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Modeling multivariate time series (cont’d)

• We assume that the parameter λi comes from the mixture
model

λi ∼
k∑
h=1

ωhN(θh, ξh),

where
∑
h ωh = 1 and the number of components k is

unknown.

• We assign a discrete uniform prior on the number of
components, k ∼ Unif(0, I) with I is the number of
stocks analyzed.

• The hierarchical structure is further specified by assigning a
symmetric prior density on the mixture weights
ω ∼ Dir(d1, . . . , dk).
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Modeling multivariate time series (cont’d)
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Priors setup

λi ∼
k∑
h=1

ωhN(θh, ξh).

• The model is completed by specifying prior densities
(Nobile and Green, 2000).

– We assign a normal distribution on the centre of the
components, θh ∼ N(mh, 1/τ).

– The variance of each mixture component
(within-component variance) is assumed to have an
inverse gamma distribution, ξ−1

h ∼ Ga(aξ, bξ).

– The between-components variance follows an inverse
gamma distribution τ ∼ Ga(aτ , bτ ).
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Priors setup (cont’d)
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Components random proximity

• When the parameters λi do not have a physical
interpretation or they characterize an unobservable process,
prior judgement of their cluster membership appears
difficult.

• Since the finite mixture models are defined in the
AR(1)-GARCH(1,1) parameter space, we lack of the
substantial knowledge needed to be incorporated in the
prior specification, i.e. on bξ and bτ .
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Components random proximity (cont’d)

• Two parameters are considered coming from the same
mixture component if p0 = Pr(|λi − λl| ≤ ∆).

• We build the empirical distribution of the random variable
∆ based on all the I(I − 1)/2 pairwise absolute differences

of the MLE, |λ̂i − λ̂l|, i, l = 1, . . . , I with i > l.

• We apply an extra layer of hierarchy by assuming that ∆
has a gamma distribution center on the median of ∆ and
variance based on the interquartile range of ∆.
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Components random proximity (cont’d)
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Components random proximity (cont’d)

• For a specific value of ∆ different bξ and bτ are derived.

• Integrating out ξh, λi − λl follows a t-distribution with 2aξ
DoF, center in 0 and with precision aξ/(2bξ)

p0 = 2F2aξ

{
∆

(
aξ
2bξ

)1/2
}
− 1

and

bξ =
aξ
2

∆2

{
F−1
2aξ

(
1 + p0

2

)}−2

.
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Components random proximity (cont’d)

• However the derivation of the two hyper-parameters is
computational expensive since a time consuming
root-finding algorithm must be applied for bτ .

• For implementation purposes, a crucial element in our setup
is the discretiation of the support of gamma prior, storing
the value of bξ and bT for each ∆d, d = 1, . . . , D. For
instance,

bξ,d =
aξ
2

∆2
d

{
F−1
2aξ

(
1 + p0

2

)}−2

.
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Computational strategy

• Posterior inference for z, θh, ξh, τ and ∆ is performed
using Gibbs sampling.

• We use a reversible jump algorithm Green (1995) to sample
from the posterior distribution of k. Both τ and ∆ do not
depend on the k so they are not included in the acceptance
ratio.

• Sampling parameters ψi = (µi, ρi, ηi, αi, βi)
T is achieved

with random walk Metropolis-within-Gibbs algorithm and
scaling of all these chains is necessary.
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Computational strategy (cont’d)

• For each stock i and for each proposed values
(µ∗
i , ρ

∗
i , η

∗
i , α

∗
i , β

∗
i ), we need to evaluated the likelihood

`
(
(xit|σ2

it)
T
t=1

)
with

σ2
t,i = η∗i + α∗

i ε
2
t−1 + β∗

i σ
2
t−1,i.

• This is extremely time expensive since we have to simulate
the entire path using the recursive volatility equation.
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Posterior inference: shrinkage (cont’d)
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Posterior inference: shrinkage (cont’d)
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Bayesian predictive densities

• Bayesian inference allows to derive of the predictive density
for the next-day return π(xt+1,i|X) and the next-day
volatility π(σt+1,i|X) under any innovation density.

• From these densities moments can be calculated. For
instance,

E(xt+1,i|X) =
1

S

S∑
s=1

µ
(s)
i + ρ

(s)
i xt,i.
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Comparison with MLE and FullExch model, t+ 1
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Comparison with MLE and FullExch model, t+ 2
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Model assessment using predictive densities

• Return and volatility MSE is defined as

MSE(xt+1,i|X) = (xt+1,i − E(xt+1,i|X))2

and

MSE(σt+1,i|X) = (σt+1,i − E(σt+1,i|X))2.

• We called them “point vs point” model assessment.

• They do not capture model uncertainty that is fully
summarised in the predictive densities.
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Model assessment using predictive densities
(cont’d)

• Other summary statistics have to be used (Gelfand, Dey
and Chang, 1992):

MA1(xt+1,i|X) =
xt+1,i − E(xt+1,i|X)√

V (xt+1,i|X)
(Residuals)

MA2(xt+1,i) = P (Xt+1,i ≤ xt+1,i|X) (Tail probability)

• This is “point vs density” model assessment.
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Comparison with Ind and FullExch model, t+ 1
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Comparison with Ind and FullExch model, t+ 2
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Fully Bayesian model comparison

• Since the exact predictive density for normal innovations is
known with mean xt+1,i and variance σ2

t+1,i, we can
calculate the distance with the predictive density.

• We called it “density vs density” model assessment.
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Comparison with Ind and FullExch model, t+ 1
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Comparison with Ind and FullExch model, t+ 2
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Conclusions

• Our partial exchangeable model offers more robust return
and volatility forecasts.

• It outperforms standard MLE, the bayesian equivalent –
independent model - and full exchangeable model forecasts
when the length T of time series is short (less than 2
years).

• Posterior evidence of clustering for each parameter of the
AR(1)-GARCH(1,1) model can be used in a variety of
financial applications.
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