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Outline

I Today: Basics of EP, application to GLMs and latent Gaussian
models

I Tomorrow: Recent developments



Tradeo�s in variational inference

I Variational Inference methods are on an axis that goes from
�fast and inaccurate� to �slower but more accurate�

Fast, inaccurate Slower, accurate
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Expectation Propagation

I EP was introduced by Tom Minka (2001).

I EP is known empirically to be very accurate in many cases

I Gaussian processes
I Logistic regression

I EP is very easy to parallelise (Barthelmé, Chopin, Cottet,
2015. Cseke & Heskes, 2011)

I EP is fast when implemented properly



Objective

We have a posterior distribution π(θ), we wish to approximate it
with a Gaussian q such that

argmin
q∈Q

KL (π||q)

KL(π||q) =

ˆ
π(θ) log

π(θ)

q(θ)
dθ



Properties of the KL objective

The solution of:

argmin
q∈Q

KL (π||q)

has a �closed form� of sorts. It is the Gaussian q? with mean E (π)
and variance Var(π).
Obviously we have no hope of optimising the objective exactly.
In EP we will replace it with simpler, local problems we can actually
solve.



EP: the big picture
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How EP works (I): write the posterior as a product

Consider a posterior distribution with independent datapoints:

π(θ) = p(θ|y) ∝ p (θ)
n∏

i=1

li (θ)

It can be written as a product of factors:

π(θ) ∝
n∏

i=0

li (θ)



How EP works (II): take a product of Gaussians

We will approximate the posterior:

π(θ) ∝
n∏

i=0

li (θ)

with a product of a Gaussian factors:

q(θ) ∝
n∏

i=0

qi (θ)



How EP works (II): take a product of Gaussians

Each Gaussian factor equals:

qi (θ) = exp(−1
2
θtAiθ + rti θ)

And so the approximation is a Gaussian too:

q(θ) =
n∏

i=0

qi (θ) = exp(−1
2
θt
∑
i

{Ai}θ +
∑
i

{rti }θ)



How EP works (III): hybridise the true and approximate
distribution

You can form a hybrid between the true and the approximate
distribution by replacing one of the approximate factors with one of
the true factors:

1. Take out the approximate factor

q−i (θ) =
n∏

i 6=j

qi (θ)

2. Insert the true factor

hi (θ) = li (θ)q−i (θ)



How EP works (III): hybridise the true and approximate
distribution

Hopefully the hybrid is in
some sense closer to the
true distribution
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How EP works (III): project the hybrid

That's just equivalent to computing the moments:

z =

ˆ
hi (θ)dθ

E (θ) = z−1
ˆ

θhi (θ)dθ

Σ = z−1
ˆ

(θ − E (θ))(θ − E (θ))thi (θ)dθ

Our new global approximation q′ is a Gaussian with mean and
covariance as above.



An illustration
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How EP works (IV): update the approximate factor

I The last step is to update qi , the Gaussian approximation of
the factor we've just updated.

I Find the Gaussian qi such that qiq−i has the same moments
as the hybrid.

I It's a simple linear operation in the natural parameters (more
on that later)



EP for logistic regression

I So far we've stayed at a very abstract level

I Let's work through a concrete case: logistic regression

I Data y ∈ {−1, 1}n, covariates Xn×p, model:

p (yi = 1|xi ,θ) = φ
(
xti θ
)

I φ is the logistic function.



Choosing a factorisation

I Assume Gaussian prior p(θ) (can be relaxed), our target
distribution is:

π (θ) ∝ p(θ)
n∏

i=1

p(yi |xi ,θ) =
n∏

i=0

li (θ)

I Here l0 (θ) is the prior and each site corresponds to a
data-point. This is the most traditional factorisation.



The hard bit: computing moments of the hybrid

I The hybrid is a product of a Gaussian times a single likelihood
site, i.e.:

hi (θ) ∝ φ
(
yix

t
i θ
)
N (θ,µ,Σ)

I We need the normalisation constant, mean and covariance of
hi

I That's a non-Gaussian distribution in Rp, it's non-tractable!
Are we back to using MCMC?

I Actually no: the linear subspace property comes to the rescue



The linear subspace property: logistic case

Start with the normalisation constant. We need to compute:

z =

ˆ
Rp

φ
(
yix

t
i θ
)
N (θ,µ,Σ) dθ

Express it as an expectation under the cavity prior:

z = E
(
φ
(
yix

t
i θ
))
,θ ∼ N (µ,Σ)

We have:

z = E
(
φ
(
yix

t
i θ
))

= E
(
φ
(
btθ
))

= Eu (φ (u))

where u is a one-dimensional Gaussian variable! We can just use
quadrature.



The linear subspace property: mean and covariance

I We are able to compute z using a one-dimensional integral.

I The same goes for the mean and covariance but it's harder to
see (and the formulas are more complicated)

I At the end of the day, all you need is the mean and variance of
a one-dimensional marginal

I Proof:

I Stein's lemma
I Characteristic functions (more general)



The linear subspace property in general

If sites can be expressed as

li (θ) = gi (Biθ)

such that Biθ has dimension k < p, then the hybrid moments can
be computed from a marginal hybrid distribution of dimension k .
In logistic regression (and GLMs) k = 1, meaning that all the
moments can be computed using simple quadrature methods!
The linear subspace property is central to the success of many EP
methods.



Actual implementation

For those who can read R �uently: the expensive step is

compute.moments.logit <- function(y,m,v)

{

sd <- sqrt(v)

f <- function(x) dnorm(x,m,sd)*plogis(y*x)

z <- integrate(f,-Inf,Inf)$val

m.new <- integrate(function(x) f(x)*x,-Inf,Inf)$val/z

v.new <- integrate(function(x) f(x)*(x-m.new)^2,-Inf,Inf)$val/z

list(m.new=m.new,var.new=v.new)

}



EP in exponential families

I There's a very elegant way of writing down EP iterations using
exponential family notation, due to Matthias Seeger

I It's worth investing a few minutes setting it up

I Lets you generalise EP to other exponential families (not just
Gaussians)



Gaussians as exponential families

I Rewrite

q(θ) ∝ exp(−1
2
θtAθ + rtθ)

= exp

(∑
Aij

(
−θiθj
2

)
+
∑

θi ri

)
= exp

(
s (θ)t λ

)



Natural and moment parameters

q(θ) ∝ exp(−1
2
θtAθ + rtθ) = exp

(
s (θ)t λ

)
I λ = {A, r} (precision and shift) are the �natural� parameters

of the Gaussian

I η = Eq(s(θ)) (mean and covariance) are the �moment�
parameters of the Gaussian

I λ = ν (η): one-to-one transformation from natural to moment
parameters



Bene�ts of rewriting: additivity

I Multiply sites => natural parameters add

∏
qi (θ) =

∏
exp
(
s (θ)t λi

)
= exp

(
s (θ)t

∑
λi

)
I Take out a site => subtract

q (θ)

qi (θ)
= exp

(
s (θ)t (λ− λi )

)



EP in one slide

1. Initialise site parameters λ1 . . .λn. Global parameter:
λ =

∑
λi .

2. While not converged, loop over i :

2.1 Form cavity: λ−i = λ− λi , hybrid
hi (θ) ∝ li (θ) exp

(
s (θ)t λ−i

)
2.2 Compute moments: ηi = Ehi

(s (θ)), transform back to natural
parameters λi = ν (ηi )− λ−i

2.3 Update global approximation: λ = λ−i + λi



Some remarks

I Global approximation q(θ) ∝ exp
(
s (θ)t λ

)
, withλ =

∑
λi

I For Gaussian family: λ = {A, r} (precision and shift)

I Each site (each bit of the likelihood) contributes a little bit of
precision and a little bit of shift to the whole approximation

I Cavity: remove that contribution



Computational cost

I Two potentially expensive operations:

1. Computing moments of the hybrid ηi = Ehi
(s (θ)) (O (n) per

complete pass over the data)
2. Transforming natural parameters to moment parameters

involves matrix inverse (O
(
np3
)
per complete pass in the

general case)

I In typical problems Sequential EP stabilises in 3-4 passes
regardless of n so O (n) scaling!



EP success stories

Gaussian process classi�cation - essentially a big non-parametric
probit model

Nickish & Rasmussen (2008)



EP success stories

I EP does very well in latent Gaussian models: GLMs with
Gaussian priors (Cseke & Heskes 2011)

I Logistic regression with various priors (Ridway & Chopin
2015): non-Gaussian priors are approximated as just another
set of sites

I Sparse models (Seeger, 2008; Jylänki et al. 2014).

I Many more - incomplete list at:
http://research.microsoft.com/en-
us/um/people/minka/papers/ep/roadmap.html

I Can also be used to speed up MCMC (Fillipone & Girolami
2015)



Potential di�culties with EP

I Only one known large-scale application of EP in industry:
Microsoft's True Skill player rating system (designed by Tom
Minka).

I Why don't people use it more?

I It's hard to prove anything much about EP
I Also: EP can work extremely well, but implementation requires

care, especially in complex models.



Stability in EP: stable linear algebra

I EP is a �xed point algorithm: you iterate the updates until the
parameters stabilise

I Occasionnally, especially on models that aren't log-concave,
EP doesn't stabilise, it diverges

I Sometime, covariance matrices accumulate noise until one of
the eigenvalues goes to 0

I Fix #1: use stable linear algebra operations (Cholesky
decompositions, not explicit inverses). See Seeger (2008).



Stability in EP: slowing down

I Fix #2: If EP diverges try slowing down the iterations: instead
of going to the full update λ′, use

λt+1 = αλt + (1− α)λ′

I See Dehaene & Barthelmé (2015) for why this helps

I Interesting open question: optimal rate α, optimal
parameterisation



Stability in EP: Power EP

I Fix #3: Power-EP (Minka, 2004). Power EP is a form of
likelihood tempering.

I instead of having n full-strength sites, split them arti�cially
I New factorisation:

p(θ) ∝
∏
k

∏
n

l
1/k
i (θ)

I Power-EP behaves better on �hard� models.

I Equivalent to minimising KL(q||p) in the k →∞ limit



Implementations

I GPstu� toolbox (Vanhatalo et al. 2015, Matlab), latent
Gaussian models with various likelihoods

I gpml and glm-ie (H. Nickish, Matlab) for latent Gaussian
models and sparse GLMs.

I EPGLM (R, James Ridgway): logistic and probit models

I ABC-EP (Barthelmé & Chopin, Matlab): more on that
tomorrow



Learning more about EP

I There are di�erent perspectives on EP, each interesting:

I EP as improved Assumed Density Filtering: Minka (2001)
I Links to statistical physics: lecture notes by M. Opper (2015).
I Links to other forms of variational inference: Wainwright &

Jordan (); Minka (2005)
I Exponential families: Seeger (2008)


